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Abstract

We obtain a recurrence to generate a sequence containing all n × k col-
umn reduced Echelon forms over the finite field Fq with q elements such
that two consecutive Echelon forms differ in exactly one position. The
corresponding sequence of subspaces generated by the Echelon forms de-
fines a cyclic minimal change sequence on the Grassmannian containing
all k-dimensional subspaces of Fn

q with respect to the injection metric
of subspaces. Furthermore, plugging q = 1 into the recurrence yields a
revolving door algorithm of the set of k-element subsets on a set with n
elements.

1 Introduction

A Gray code of {0, 1}k is a sequence of all binary vectors of length k such that two
consecutive vectors differs in exactly one bit. In addition, if the first and the last
vector within the sequence also differ in position, the Gray code is called cyclic [5, 7].

The concept of a Gray code can be generalized in the following sense. If X
denotes a finite set on which a metric d is defined, a minimal change sequence of X
is a sequence of all objects of X such that the distance of two consecutive elements
is minimal. Furthermore, if the distance of the first and the last element is also
minimal, then the minimal change sequence is called cyclic [8].

A well-known cyclic minimal change sequence on the set of k-element subsets of
a set with n elements, abbreviated by S(n, k), with respect to the metric dA(S, T ) :=
k − |S ∩ T | for S, T ∈ S(n, k), is called a revolving door algorithm [7, 9]. Further
examples of Gray codes can be found in [1, 2, 3].
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Concepts, theories, and discrete structures based on finite sets and their subsets
turn into a combinatorial q-analog if they are considered over vector spaces over a fi-
nite field Fq with q elements. In this case “subsets” of a finite set become “subspaces”
of a vector space and “cardinalities” of subsets become “dimensions” of subspaces.

If Sq(n, k) is the set of k-dimensional subspaces of an n-dimensional vector space
over Fq, called the Grassmannian, the q-analog of a revolving door algorithm on
Sq(n, k) which yields a cyclic minimal change sequence with respect to the injection
metric dI(S, T ) := k − dim(S ∩ T ) for S, T ∈ Sq(n, k) was constructed in [10].

If Eq(n, k) denotes the set of n × k column reduced Echelon forms over Fq, the
goal of this paper is to recursively construct a minimal change sequence on Eq(n, k)
with respect to the Hamming metric dH(A,B) := |{(i, j) | ai,j �= bi,j}| of matrices
A = [ai,j], B = [bi,j ] ∈ F

n×k
q . This sequence generalizes the recurrence given in [4] for

arbitrary field sizes.
We show that the resulting recurrence formula yields a cyclic minimal change

sequence on S(n, k) with respect to dA by plugging q = 1 into the recurrence.
Furthermore, the corresponding sequence of subspaces which are generated by

the column vectors of the column reduced Echelon forms also yields a cyclic minimal
change sequence on Sq(n, k) with respect to dI .

2 On Column Reduced Echelon Forms

In this section we briefly recall some basic facts on Echelon forms in order to deduce
a first recursive formula for the set Eq(n, k) of all n × k column reduced Echelon
forms.

A k-dimensional subspace of the canonical n-dimensional vector space F
n
q can

be represented by an n × k matrix over Fq where its columns denote a basis of the
subspace. By Gaussian elimination we can turn any basis of the k-dimensional sub-
space into a unique basis having the following properties, called the column reduced
Echelon form [6]:

• the first nonzero number upwards in each column, called the pivot coefficient,
is 1 and it is strictly above the pivot coefficient of the columns right next to it;

• each pivot coefficient is the only non-zero entry in its row.

Figure 1 shows the general shape of an Echelon form where the stars indicate
finite field elements.

In order to generate all matrices of Eq(n, k), we use a recurrence arising by
partitioning all elements of Eq(n, k) into two classes:

• column reduced Echelon forms containing a pivot element in the top row, say

[
1

A

]
:=

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 a0,0 · · · a0,k−2
...

...
...

0 an−2,0 · · · an−2,k−2

⎤
⎥⎥⎥⎦
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗
...

...
...

∗ ∗ ∗
1 0 0

∗ ∗
...

...
∗ ∗
1 0

∗
. . .

...
∗
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 1: The general shape of a column reduced Echelon form

where A = [ai,j ] ∈ Eq(n− 1, k − 1), and

• column reduced Echelon forms not containing a pivot element in the top row,
say

[
C
A

]
:=

⎡
⎢⎢⎢⎣

c0 · · · ck−1

a0,0 · · · a0,k−1
...

...
an−2,0 · · · an−2,k−1

⎤
⎥⎥⎥⎦

where A = [ai,j ] ∈ Eq(n− 1, k) and C = [c0, . . . , ck−1] ∈ F
1×k
q .

The decomposition of Eq(n, k) into these two classes immediately yields the fol-
lowing recurrence formula for 0 < k ≤ n:

Eq(n, k) =

{[
1

A

]
| A ∈ Eq(n− 1, k − 1)

}

∪
{[

C
A

]
| A ∈ Eq(n− 1, k), C ∈ F

1×k
q

}
.

Iterating this formula in the right part the number n decreases by one in each step
until the set Eq(k, k) is reached, which contains the only one k × k column reduced
Echelon form over Fq given by the identity matrix entries having 1 on the diagonal
and 0 otherwise:

Eq(k, k) =

{
Uk :=

⎡
⎢⎣ 1

. . .

1

⎤
⎥⎦}

.

On the other hand, iterating the recurrence for Eq(n, k) in the left part the values
n and k decrease simultaneously until Eq(n− k, 0) is reached. Since the only trivial
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0-dimensional subspace of Fn
q contains the zero vector we use the convention that

Eq(n, 0) contains the “empty” matrix ∅ with n rows and zero columns. By definition
extending the empty matrix ∅ ∈ Eq(n, 0) by an additional column containing a pivot
element yields the following column reduced (n + 1)× 1 Echelon form

[
1

∅
]
=

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ ∈ Eq(n+ 1, 1).

3 Minimal Change Sequences

In this section we consider operations on sequences of matrices and describe general
results how to form new minimal change sequences from given ones. These general
results will be combined to obtain a recurrence for a minimal change sequence of
column reduced Echelon forms in the subsequent section.

A series A = A0, . . . , Ar−1 of α× β matrices over Fq is called a sequence and it is
abbreviated by A � F

α×β
q . The i-th element of the sequence A is denoted by Ai. The

number r of elements in the sequence A is called the length of A and it is denoted
by |A|.

A sequence A is called a minimal change sequence if and only if two consecutive
matrices Ai and Ai+1 differ in exactly one position for all 0 ≤ i < |A| − 1.

For A � F
α×β
q , B � F

α×β
q , C ∈ F

γ×β
q , and i ≥ 0 we define the following operations:

• reflection:
AR := A|A|−1, . . . , A0 � F

α×β
q ,

• conditioned reflection:

A〈i〉 :=

{
A if i is zero or even

AR otherwise
� F

α×β
q ,

• shortening:
AS := A0, . . . , A|A|−2 � F

α×β
q ,

• extension:

AE :=

[
1

A0

]
, . . . ,

[
1

A|A|−1

]
� F

(α+1)×(β+1)
q ,

• concatenation:

A|B := A0, . . . , A|A|−1, B0, . . . , B|B|−1 � F
α×β
q ,

• left augmentation:

CA :=

[
C
A0

]
, . . . ,

[
C

A|A|−1

]
� F

(α+γ)×β
q ,
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• right augmentation:

AC :=

[
A0

C

]
, . . . ,

[
A|A|−1

C

]
� F

(α+γ)×β
q .

Furthermore, for a series of sequences A(0), A(1), . . . , A(m−1) � F
α×β
q we introduce

the notation
m−1∏
i=0

A(i) := A(0)|A(1)| . . . |A(m−1).

Lemma 3.1. Let A � F
α×β
q and B � F

γ×β
q be minimal change sequences, let C,D ∈

F
γ×β
q matrices differing in exactly one position, and let i ≥ 0 be an integer. Then the

following sequences have the minimal change property:

1. AR, AS, AE, A〈i〉, AC, and CA,

2. AC|ARD,

3.
∏|B|−1

i=0 A〈i〉Bi.

Proof. The first item is obvious from the definition of the operations. The second
item is also easy to see. Each part is a minimal change sequence and at the transition
from AC to ARD the elements differ in one position in the lower matrix segment C
and D, respectively. The third item is an iteration of the second one.

4 The Recurrence Formula

Theorem 4.1. Let q be a prime power and let Gq(k) � F
1×k
q denote a minimal

change sequence for all row vectors of length k > 0 over Fq whose first element is
the unit vector 10 . . . 0 and whose last element is the all-zero vector 0 . . . 0. Then for
0 < k < n the recurrence

Γq(n, k) := A|B|C
with

A := Γq(n− 1, k − 1)E

B :=

|Γq(n−1,k)|−1∏
i=0

(Gq(k)
S)〈i〉Γq(n− 1, k)i

C := Gq(k)|Gq(k)|−1Γq(n− 1, k)R

and initial values

Γq(n, 0)
E :=

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ � F

(n+1)×1
q
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and
Γq(k, k) := Uk � F

k×k
q

defines a minimal change sequence on the set Eq(n, k) of column reduced n×k Echelon
forms over Fq with respect to the Hamming metric of matrices.

Proof. (i) We note that a Gray code Gq(k) with the required property does exist and
can be obtained from a recursive construction [7].

(ii) The elements of Γq(n, k) are the same as Eq(n, k): the partial sequence A
contains the matrices of the left part and B|C corresponds to the right part of the
recurrence for Eq(n, k) introduced in Section 2. Hence, we get

|Γq(n, k)| =
[
n

k

]
q

where
[
n
k

]
q
denotes the number of k-subspaces of an n-dimensional vector space over

the finite field with q elements.
(iii) We determine the first and the last element of the sequence. The first element

of Γq(n, k) arises by A by extending the first element of Γq(n − 1, k − 1). Starting
with Γq(n− k, 0) containing only the “empty” matrix we recursively obtain

Γq(n, k)0 =

[
Uk

0n−k,k

]
where 0n−k,k denotes the (n− k)× k zero matrix. The last element of Γq(n, k) arises
by C from the last element of Γq(n− 1, k)R which is the first element of Γq(n− 1, k)
augmented by an additional zero row Gq(k)qk−1 = 01,k:

Γq(n, k)[nk]q−1 =

⎡
⎣ 01,k

Uk

0n−1−k,k

⎤
⎦ .

(iv) Finally, we show the minimal change property of the recurrence formula for
Γq(n, k) by induction. Assuming that Γq(n− 1, k − 1) and Γq(n− 1, k) are minimal
change sequences it is immediate to see from Lemma 3.1 that the partial sequences
A, B, and C are all minimal change sequences. To obtain a minimal change sequence
by A|B|C we must verify the minimal change property at the transition of the partial
sequences.

A|B: The last element of A is given by

⎡
⎢⎢⎣

1
01,k−1

Uk−1

0n−k,k−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 0 · · · 0
0 1
...

. . .

0 1
0 0 · · · 0
...

...
...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and the first element of B is defined to be

⎡
⎣ Gq(k)0

Uk−1

0n−k,k

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

1 0 · · · 0
0 1
...

. . .

0 1
0 0 · · · 0
...

...
...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Both matrices differ in exactly one position in the first column and second row.
B|C: The first element of C is given by⎡

⎢⎢⎣
Gq(k)qk−1

01,k

Uk

0n−2−k,k

⎤
⎥⎥⎦ .

The last element of B depends on the parity of the number of elements in Γq(n−1, k).
If the number of elements is even the last element of B is⎡

⎢⎢⎣
Gq(k)0
01,k

Uk

0n−2−k,k

⎤
⎥⎥⎦

and if the number of elements is odd the last element of B is⎡
⎢⎢⎣

Gq(k)qk−2

01,k

Uk

0n−2−k,k

⎤
⎥⎥⎦ .

Hence, the last element of B and the first element of C differ in the first column and
first row if the number of elements in Γq(n−1, k) is even and in the first column and
the last row if the number of elements is odd.

Example 4.1. We list Γ3(n, k) for 1 ≤ k ≤ 2 and k ≤ n ≤ 3:

Γ3(1, 1) =
[
1
]

Γ3(2, 1) =

[
1
0

]
︸ ︷︷ ︸
Γ3(1,0)E

,

[
1
1

]
,

[
2
1

]
︸ ︷︷ ︸
(G3(1)S )Γ3(1,1)0

,

[
0
1

]
︸ ︷︷ ︸

0Γ3(1,1)R

Γ3(2, 2) =

[
1 0
0 1

]
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Γ3(3, 1) =

⎡
⎣ 1

0
0

⎤
⎦

︸ ︷︷ ︸
Γ3(2,0)E

,

⎡
⎣ 1

1
0

⎤
⎦ ,

⎡
⎣ 2

1
0

⎤
⎦

︸ ︷︷ ︸
(G3(1)S )Γ3(1,1)0

,

⎡
⎣ 2

1
1

⎤
⎦ ,

⎡
⎣ 1

1
1

⎤
⎦

︸ ︷︷ ︸
(G3(1)S)RΓ3(1,1)1

,

⎡
⎣ 1

2
1

⎤
⎦ ,

⎡
⎣ 2

2
1

⎤
⎦

︸ ︷︷ ︸
(G3(1)S )Γ3(1,1)2

,

⎡
⎣ 2

0
1

⎤
⎦ ,

⎡
⎣ 1

0
1

⎤
⎦

︸ ︷︷ ︸
(G3(1)S)RΓ3(1,1)3

,

⎡
⎣ 0

0
1

⎤
⎦ ,

⎡
⎣ 0

2
1

⎤
⎦ ,

⎡
⎣ 0

1
1

⎤
⎦ ,

⎡
⎣ 0

1
0

⎤
⎦

︸ ︷︷ ︸
0Γ3(2,1)R

Γ3(3, 2) =

⎡
⎣ 1 0

0 1
0 0

⎤
⎦ ,

⎡
⎣ 1 0

0 1
0 1

⎤
⎦ ,

⎡
⎣ 1 0

0 2
0 1

⎤
⎦ ,

⎡
⎣ 1 0

0 0
0 1

⎤
⎦

︸ ︷︷ ︸
Γ3(2,1)E

,

⎡
⎣ 1 0

1 0
0 1

⎤
⎦ ,

⎡
⎣ 2 0

1 0
0 1

⎤
⎦ ,

⎡
⎣ 2 1

1 0
0 1

⎤
⎦ ,

⎡
⎣ 1 1

1 0
0 1

⎤
⎦ ,

⎡
⎣ 1 2

1 0
0 1

⎤
⎦ ,

⎡
⎣ 2 2

1 0
0 1

⎤
⎦ ,

⎡
⎣ 0 2

1 0
0 1

⎤
⎦ ,

⎡
⎣ 0 1

1 0
0 1

⎤
⎦

︸ ︷︷ ︸
(G3(2)S)Γ3(2,2)0

,

⎡
⎣ 0 0

1 0
0 1

⎤
⎦

︸ ︷︷ ︸
00Γ3(2,2)R

5 A Gray Code on the Grassmannian

If 〈K〉 denotes the subspace generated by the column vectors of the matrix K, the
sequence Γq(n, k) obviously yields a sequence on all k-dimensional subspaces of Fn

q

by
〈Γq(n, k)〉 := 〈Γq(n, k)0〉, 〈Γq(n, k)1〉, . . . .
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Lemma 5.1. Let S, T be two column reduced n×k Echelon forms over Fq with Ham-
ming distance dH(S, T ) = 1. Then the injection distance satisfies dI(〈S〉, 〈T 〉) = 1.

Proof. If S and T differ by one entry they also differ in exactly one column. The inter-
section of both subspaces 〈S〉 and 〈T 〉 is therefore k−1-dimensional and dI(〈S〉, 〈T 〉)
= k − (k − 1) = 1.

Lemma 5.2. The first and the last subspace of the sequence 〈Γq(n, k)〉 satisfy
dI(〈Γq(n, k)0〉, 〈Γq(n, k)[nk]q−1〉 = 1.

Proof. If ui is the i-th unit vector in F
n
q (starting with index 0) we get the structure

of both generator matrices from the proof of Theorem 4.1:

Γq(n, k)0 =

[
Uk

0n−k,k

]
= [u0, u1, . . . , uk−1],

Γq(n, k)[nk]q−1 =

⎡
⎣ 01,k

Uk

0n−1−k,k

⎤
⎦ = [u1, . . . , uk−1, uk].

The intersection of the corresponding subspaces is 〈u1, . . . , uk−1〉 and hence we get
dI(〈Γq(n, k)0〉, 〈Γq(n, k)[nk]q−1〉 = k − (k − 1) = 1.

Corollary 5.1. For all prime powers q and integers 1 ≤ k ≤ n, the sequence
〈Γq(n, k)〉 defines a cyclic minimal change sequence on the set of all k-dimensional
subspaces of Fn

q with respect to the injection distance of subspaces.

In [10] Schwartz has already constructed a cyclic minimal change sequence on
the Grassmannian. The proposed sequence 〈Γq(n, k)〉 has the further property that
the corresponding sequence of generating matrices is also a minimal change sequence
with respect to the Hamming metric of matrices.

6 The Case q = 1

Plugging q = 1 into the column reduced Echelon forms only yields matrices con-
sisting of unit vectors [ui0 , . . . , uik−1

] with corresponding index set {i0, . . . , ik−1} ⊆
{0, . . . , n− 1}. Furthermore, the recurrence of Theorem 4.1 reduces to

Γ1(n, k) := Γ1(n− 1, k − 1)E|01,kΓ1(n− 1, k)R

since no nonzero vectors exist in G1(k). Hence the middle part B vanishes. Trans-
lating this matrix representation to characteristic vectors of the corresponding index
sets, we obtain the following recursion which is a minimal change sequence on subsets:

Theorem 6.1. For integers 1 ≤ k ≤ n the sequence

γ(n, k) := 1γ(n− 1, k − 1)|0γ(n− 1, k)R

with initial values γ(k, k) = 1k = 1 . . . 1 and γ(n, 0) = 0n = 0 . . . 0 defines a minimal
change sequence on the set of k-element subsets of the canonic n-set with respect to
the distance dA.
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Proof. It is clear that γ(n, k) really generates all k-subsets of the canonic n-element
set (i.e. all binary vectors of length n and weight k).

By induction it follows that the first element of the sequence is

1k0n−k = 11k−100n−1−k

and the last element is

01k0(n−1)−k = 01k−110(n−1)−k.

The Hamming distance of both vectors is exactly 2 which means a distance of 1 if
we consider the vectors as subsets.

Assuming that γ(n−1, k−1) and γ(n−1, k) satisfy the minimal change property,
it is sufficient to verify this property at the transition from the first half 1γ(n−1, k−1)
to the second half 0γ(n − 1, k)R in order to show that γ(n, k) is a minimal change
sequence.

We know that the last element of the partial sequence 1γ(n − 1, k − 1) is given
by

101k−10(n−2)−(k−1) = 101k−100n−2−k

and the first element of 0γ(n− 1, k)R is

001k0(n−2)−k = 001k−110n−2−k

Again the underlined positions indicate a distance of 1, proving that the sequence is
a cyclic minimal change sequence.

Example 6.1. For n = 4 and k = 2 we get the sequence

Γ1(4, 2) =

⎡
⎢⎢⎣
1 0
0 1
0 0
0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
1 0
0 0
0 0
0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
1 0
0 0
0 1
0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 0
0 0
1 0
0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 0
1 0
0 0
0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 0
1 0
0 1
0 0

⎤
⎥⎥⎦

defining the following cyclic minimal change sequence on subsets:

γ(4, 2) = 1100, 1001, 1010, 0011, 0101, 0110.

The corresponding representation as index sets is

{0, 1}, {0, 3}, {0, 2}, {2, 3}, {1, 3}, {1, 2}
which is a revolving door algorithm on the set of 2-element subsets of the canonic
4-set.

7 Final Remarks

For enumerative coding and decoding of the introduced minimal change sequence on
column reduced Echelon forms algorithms for rank, unrank, and successor (see [8])
can be implemented. Facilitating the recurrence equation for Γq(n, k) the algorithms
for rank, unrank, and successor can be derived quite analogously as it is described
in [4].
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