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Abstract

We show that the complete symmetric digraph K∗
2m admits a resolvable

decomposition into directed cycles of length m for all odd m, 5 ≤ m ≤ 49.
Consequently, K∗

n admits a resolvable decomposition into directed cycles
of length m for all n ≡ 0 (mod 2m) and odd m, 5 ≤ m ≤ 49.

1 Introduction

The complete symmetric digraph of order n, denoted K∗
n, is the digraph with n

vertices, and with arcs (u, v) and (v, u) for each pair of distinct vertices u and v.
In this paper, we are concerned with the problem of decomposing the complete
symmetric digraph K∗

n into spanning subdigraphs, each a vertex-disjoint union of
directed cycles of length m. Thus, we are interested in the following problem.

Problem 1.1 Determine the necessary and sufficient conditions on m and n for
the complete symmetric digraph K∗

n to admit a resolvable decomposition into directed
m-cycles.

In the design-theoretic literature, such decompositions have also been called
Mendelsohn designs [8]. Problem 1.1 can also be viewed as the directed version
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of the well-known Oberwolfach Problem with uniform cycle lengths, which was com-
pletely solved in [2, 3, 9].

It is easily seen that K∗
n admits a resolvable decomposition into directed m-cycles

only if m divides n, and this condition is obviously sufficient if m = 2. Problem 1.1
has also been solved previously for m = 3 [6] and for m = 4 [1, 4]: the necessary
conditions are sufficient except for (m,n) = (3, 6) and (4, 4). More recently, two of
the present authors showed the following.

Theorem 1.2 [7] Let m and n be integers with 5 ≤ m ≤ n. Then the following
hold.

1. Let m be even, or m and n be both odd. Then there exists a resolvable decom-
position of K∗

n into directed m-cycles if and only if m divides n and (m,n) �=
(6, 6).

2. If there exists a resolvable decomposition of K∗
2m into directed m-cycles, then

there exists a resolvable decomposition of K∗
n into directed m-cycles whenever

n ≡ 0 (mod 2m).

In the same paper, we also posed the following conjecture.

Conjecture 1.3 [7] Let m be a positive odd integer. Then K∗
2m admits a resolvable

directed m-cycle decomposition if and only if m ≥ 5.

Observe that proving Conjecture 1.3 (which appears to be difficult) would com-
plete the solution to Problem 1.1. In this paper, we confirm the above conjecture for
all m ≤ 49. Thus, we prove the following result.

Theorem 1.4 Let m be an odd integer, 5 ≤ m ≤ 49. Then K∗
2m admits a resolvable

decomposition into directed m-cycles.

Except for the smallest case m = 5, the above theorem is proved using a general
construction that is complemented with a computational result. We expect that with
more computing power, this approach can be used to extend our result to even larger
values of m.

Theorems 1.2 and 1.4 immediately yield the following.

Corollary 1.5 Let m be an odd integer, 5 ≤ m ≤ 49. Then K∗
n admits a resolvable

decomposition into directed m-cycles whenever n ≡ 0 (mod 2m).

2 Preliminaries

In this paper, the term digraph will mean a directed graph with no loops or multiple
arcs. For a digraph D = (V,A), a subset V ′ ⊆ V of its vertex set, and subset
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A′ ⊆ A of its arc set, the symbols D[V ′] and D − A′ will denote the subdigraph of
D induced by V ′, and the subdigraph obtained from D by deleting all arcs in A′,
respectively. If D is a spanning subdigraph of the complete symmetric digraph K∗

n

and A′ ⊆ A(K∗
n) − A(D), then D + A′ will denote the digraph (V (D), A(D) ∪ A′).

That is, D+A′ is obtained from the digraph D by adjoining the (new) arcs from the
set A′.

A decomposition of a digraph D is a collection {H1, H2, . . . , Hk} of subdigraphs of
D whose arc sets partition the arc set ofD. If each of the digraphsHi is isomorphic to
a digraph H , then {H1, H2, . . . , Hk} is called an H-decomposition of the digraph G.

A resolution class (or parallel class) of a decomposition D = {H1, H2, . . . , Hk} of
D is a subset {Hi1, Hi2 , . . . , Hit} of D with the property that the vertex sets of the
digraphs Hi1, Hi2, . . . , Hit partition the vertex set of D. A decomposition is called
resolvable if it can be partitioned into resolution classes.

By �Cm we shall denote the directed cycle of length m. The terms �Cm-decompos-
ition and resolvable �Cm-decomposition will be abbreviated as �Cm-D and R �Cm-D,
respectively.

For a positive integer m and S ⊆ Z
∗
m, the digraph with vertex set Zm and arc

set {(i, i+ d) : i ∈ Zm, d ∈ S}, denoted Circ(m;S), is called the directed circulant of
order m with connection set S. (Note that the symbol Circ(m;S) will be used only
for directed circulants.)

A well-known result by Bermond et al. [5] shows that every 4-regular connected
Cayley graph on a finite abelian group can be decomposed into two Hamilton cycles.
The following corollary will be an important ingredient in our constructions.

Lemma 2.1 Let m be a positive integer and S ⊆ Z
∗
m. Assume S can be partitioned

into sets of the form

• {d} such that gcd(d,m) = 1, and

• {±d,±d′} of cardinality four such that gcd(d, d′, m) = 1.

Then the directed circulant Circ(m;S) can be decomposed into directed m-cycles.

Proof. By the assumption, Circ(m;S) can be decomposed into directed circulants of
the form Circ(m;S ′), where either S ′ = {d} for some d ∈ Z

∗
m such that gcd(d,m) = 1,

or S ′ = {±d,±d′} for some d, d′ ∈ Z
∗
m such that gcd(d, d′, m) = 1 and |{±d,±d′}| =

4. In the former case, Circ(m;S ′) itself is a directed m-cycle. In the latter case, let G′

be the undirected graph obtained from Circ(m;S ′) by replacing each pair of opposite
arcs with an undirected edge. Then G′ is a 4-regular (undirected) circulant, which
is connected because gcd(d, d′, m) = 1. Thus, G′ is a connected Cayley graph on a
cyclic group, and hence by [5] admits a decomposition into two Hamilton cycles, say
C1 and C2. Taking two copies of each of C1 and C2, and directing the two copies in
opposite ways results in a decomposition of Circ(m;S ′) into four directed m-cycles.
Hence Circ(m;S) can be decomposed into directed m-cycles.
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3 Results

Lemma 3.1 There exists a R �C5-D of K∗
10.

Proof. Label the vertices of K∗
10 by x0, x1, . . . , x9. It can be verified that the

following resolution classes (obtained by a computer search) form a R �C5-D of K∗
10.

R0 = {x0x1x2x3x4x0, x5x6x7x8x9x5}
R1 = {x0x2x1x3x5x0, x4x6x8x7x9x4}
R2 = {x0x3x1x4x2x0, x5x7x6x9x8x5}
R3 = {x0x4x1x5x8x0, x2x6x3x9x7x2}
R4 = {x0x5x2x8x3x0, x1x7x4x9x6x1}
R5 = {x0x6x2x5x9x0, x1x8x4x3x7x1}
R6 = {x0x7x3x8x6x0, x1x9x2x4x5x1}
R7 = {x0x8x2x9x1x0, x3x6x4x7x5x3}
R8 = {x0x9x3x2x7x0, x1x6x5x4x8x1}

The rest of the proof of Theorem 1.4 is divided into two main cases, m �≡ 0
(mod 3), which is dealt with in Proposition 3.4, and m ≡ 0 (mod 3), which is con-
sidered in Proposition 3.6, as well as two small cases, m = 11 and m = 9, which
require a modification of the general approach. All of these cases, however, have the
following construction in common.

Construction 3.2 Let m ≥ 5 be an odd integer, and write m = 2k+1. Let the ver-
tex set of D = K∗

2m be X∪Y , where X = {x0, x1, . . . , x2k} and Y = {y0, y1, . . . , y2k}.
We shall call arcs of the form (xi, xi+d) and (yi, yi+d) arcs of pure left and pure right
difference d, respectively, and arcs of the form (xi, yi+d) and (yi, xi+d) arcs of mixed
difference d. All subscripts will be evaluated modulo m = 2k + 1.

Start by defining directed m-cycles

C0 = x0y0x1y1x2y2 . . . xkx0 and C ′
0 = ykxk+1yk+1 . . . y2kyk.

Observe that cycles C0 and C ′
0 jointly use up all arcs of the form (xj , yj) except

(xk, yk), all arcs of the form (yj, xj+1) except (y2k, x0), and they also use the arcs
(xk, x0) and (y2k, yk).

For i ∈ Zm, obtain Ci and C ′
i from C0 and C ′

0, respectively, by adding i to the
subscripts of the vertices in X, and 2i to the subscripts of the vertices in Y . Observe
that cycles Ci and C ′

i jointly use up all arcs of the form (xj , yj+i) except (xk+i, yk+2i),
all arcs of the form (yj, xj+i+1) except (y2k+2i, xi), and they also use the arcs (xk+i, xi)
and (y2k+2i, yk+2i).

Next, form resolution classes

Ri = {Ci, C
′
i}, for i ∈ Zm.
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Observe that R0, . . . , Rm−1 use up all arcs of pure left difference k + 1, all arcs of
pure right difference k + 1, and all arcs of mixed differences except for the arcs

(xk+i, yk+2i) and (y2k+2i, xi) for all i ∈ Zm. (1)

Let L denote the subdigraph of D induced by the set of these leftover arcs. Then
L contains all vertices of D, and decomposes into directed 2-paths of the form

y2k+2i xi y(2k+2i)+(k+2), for all i ∈ Zm, (2)

that is, into directed (yj, yj+(k+2))-paths of length 2, for all j ∈ Zm. The union of
these directed 2-paths is a directed 2m-cycle if and only if gcd(k + 2, 2k + 1) = 1,
that is, if and only if gcd(3, 2k + 1) = 1. This case will be considered in Lemma 3.3
and Proposition 3.4. If, however, gcd(k + 2, 2k + 1) �= 1, then 3|m and the leftover
digraph is composed of three disjoint directed cycles of length 2m

3
. This case will be

covered in Lemma 3.5 and Proposition 3.6.

On the other hand, the digraph L can also be decomposed into directed 2-paths
of the form {

xk+i yk+2i x(k+i)+ 3k+3
2

if k is odd

xk+i yk+2i x(k+i)+ k+2
2

if k is even
, (3)

for all i ∈ Zm. In other words, L decomposes into directed (xj , xj+p)-paths of length
2, for all j ∈ Zm, where

p =

{
3k+3
2

if k is odd
k+2
2

if k is even
.

These observations will help us complete the constructions in Propositions 3.4
and 3.6.

Next, we examine the case m = 11, which requires a modified construction, but
serves as a good introduction to the general approach in the case m �≡ 0 (mod 3)
that will be described in Proposition 3.4.

Lemma 3.3 There exists a R �C11-D of K∗
22.

Proof. With m = 11, adopt the notation and define resolution classes R0, . . . , R10

as in Construction 3.2. Since 11 �≡ 0 (mod 3), as shown above, the 22 leftover arcs
of mixed differences in (1) form a directed 22-cycle

C = x5y5 . . . x5.

Using Observations (2) and (3), we decompose C into the following directed paths:

P1 = x5y5 . . . x6, P2 = x6y7,

P3 = y7x4, P4 = x4y3,

P5 = y3 . . . y2, P6 = y2x7,

P7 = x7y9, P8 = y9x5,
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where P1 and P5 are of length 10 and 6, respectively. Use the Pi for i odd to form
the resolution class

R11 = {P1x6x5, P3x4x7P7y9y3P5y2y7}.
We shall use the Pi for i even in the next resolution class. Notice that in D[Y ] we
have used all arcs of right pure difference 6 and two arcs — namely, (y9, y3) and
(y2, y7) — of right pure difference 5. The remaining arcs of right pure difference 5
form a directed (y3, y2)-path Q′

1 of length 2, and a directed (y7, y9)-path Q′
2 of length

7. If we can find vertex-disjoint directed (x7, x4)-path of length 7 (call it Q1) and
(x5, x6)-path of length 2 (call it Q2) in D[X], then the next resolution class will be

R12 = {P2Q
′
2P8Q2, P4Q

′
1P6Q1}.

What will then remain ofD[Y ] is a Circ(11; {±1,±2,±3,±4}), which admits a �C11-D
by Lemma 2.1. It thus suffices to appropriately decompose the remaining subdigraph
of D[X]. In particular, it suffices to find a set of differences S ⊆ Z

∗
11 such that

(X1) 6 �∈ S, as left pure difference 6 has already been used;

(X2) 3, 10 ∈ S, as only arcs (x6, x5) and (x4, x7) of these left pure differences have
already been used;

(X3) Circ(11;Z
∗
11 − S − {6}) admits a decomposition into directed 11-cycles; and

(X4) Circ(11;S) − {(6, 5), (4, 7)} admits a decomposition into directed 11-cycles,
and vertex-disjoint directed paths: a (5, 6)-path of length 2 and a (7, 4)-path
of length 7.

Such a set S was found using a computer search. The set S, as well as a suitable
decomposition, is shown in the appendix.

Proposition 3.4 Let m be an odd integer such that m �≡ 0 (mod 3), m ≥ 7, and
m �= 11. Let k = m−1

2
, and define parameters d, s′i, t

′
i, si, ti (for i = 1, 2) as indicated

below.

Parameter \Case k ≡ 0 (mod 4) k ≡ 1 (mod 4) k ≡ 2 (mod 4) k ≡ 3 (mod 4)

d (7k + 8)/4 (5k + 7)/4 (3k + 6)/4 (k + 5)/4

s′1 k/4 (3k + 1)/4 (5k + 2)/4 (7k + 3)/4

s′2 (3k + 4)/4 (k + 3)/4 (7k + 6)/4 (5k + 5)/4

t′2 (k − 2)/2 (3k − 1)/2 (k − 2)/2 (3k − 1)/2

t1 (3k + 2)/2 (k + 1)/2 (3k + 2)/2 (k + 1)/2

In addition, let t′1 = s2 = k, s1 = 2k − 1, and t2 = t′2.

Then gcd(d,m) = 1, and hence for each i = 1, 2, there exists a unique ri ∈ Zm

such that s′i + rid = t′i (in Zm). Furthermore, define ai = (ti, si) and dYi = si − ti (in
Zm).

Now assume there exists a set S ⊆ Z
∗
m such that:



A. BURGESS ET AL. /AUSTRALAS. J. COMBIN. 71 (2) (2018), 272–292 278

(Y1) k + 1 �∈ S;

(Y2) dY1 , d
Y
2 ∈ S;

(Y3) Circ(m;Z∗
m − (S ∪ {k + 1})) admits a �Cm-D; and

(Y4) Circ(m;S) − {a1, a2} admits a decomposition into directed m-cycles and two
vertex-disjoint directed paths: an (s1, t1)-path of length r1 and an (s2, t2)-path
of length r2.

Then K∗
2m admits a R �Cm-D.

Proof. Adopt the notation and define resolution classes R0, . . . , Rm−1 as in Con-
struction 3.2. As shown earlier, since m �≡ 0 (mod 3), the 2m leftover arcs of mixed
differences in (1) form a directed 2m-cycle

C = yk . . . xkyk.

Write C = P1P2 . . . P8 as a concatenation of directed paths such that P1 is of length
m − 1, P5 is of length m − 5, and the rest are of length 1. Using Observations (2)
and (3), it can be shown for each congruency class of k modulo 4 that the paths are

P1 = ys2 . . . yt2 , P2 = yt2xs′1 ,

P3 = xs′1yt1 , P4 = yt1xs′2 ,

P5 = xs′2 . . . xt′2 , P6 = xt′2ys1,

P7 = ys1xt′1 , P8 = xt′1ys2,

where the parameters si, ti, s
′
i, t

′
i (for i = 1, 2) are as defined in the statement of the

proposition. We use the Pi for i odd, together with 4 linking arcs (two of pure left,
and two of pure right difference) to form the resolution class

Rm = {P1yt2ys2, P5xt′2xs′1P3yt1ys1P7xt′1xs′2}.
The linking arcs are:

(xt′2 , xs′1) and (xt′1 , xs′2) of pure left difference d = s′1 − t′2 = s′2 − t′1,

a1 = (yt1 , ys1) of pure right difference dY1 = s1 − t1, and

a2 = (yt2, ys2) of pure right difference dY2 = s2 − t2,

with d, dY1 , d
Y
2 as defined in the statement of the proposition. Since m �= 11, observe

that none of these pure differences are equal to k + 1 (which has already been used
in R0, . . . , Rm−1).

The Pi for i even will be used in the next resolution class as shown below. But
first we verify that gcd(2k + 1, d) = 1. If k ≡ 0 (mod 4), then d = 7k+8

4
. Using

the Euclidean algorithm, we have 2k + 1 = 7k+8
4

+ k−4
4

and 7k+8
4

= 7k−4
4

+ 9. Hence
gcd(2k+1, 7k+8

4
) divides 9, but since 3 does not divide 2k+1, we must have gcd(2k+
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1, 7k+8
4

) = 1. Similarly it can be verified that gcd(2k + 1, d) = 1 for the remaining
congruency classes of k modulo 4.

It follows that the arcs of pure left difference d form a directed m-cycle, and in
particular, those that have not been used in Rm form a directed (xs′1 , xt′1)-path Q′

1

of length r1 and a directed (xs′2 , xt′2)-path Q′
2 of length r2, where r1 and r2 are as

defined in the statement of the proposition.

Now let S be a subset of Z∗
m satisfying Conditions (Y1)–(Y4) of the proposition,

and let Q1 and Q2 be the corresponding vertex-disjoint directed (ys1, yt1)-path of
length r1 and (ys2, yt2)-path of length r2, respectively. We then let the next resolution
class be

Rm+1 = {P2Q
′
1P8Q2, P4Q

′
2P6Q1}.

All arcs of mixed differences have now been used in resolution classes R0, . . . , Rm+1.
In D[X], we have also used up all arcs of differences k+1 and d. Since gcd(2k+1, k+
1) = gcd(2k + 1, d) = 1, Lemma 2.1 now guarantees that the remaining subdigraph

of D[X] admits a �Cm-D.

In D[Y ], however, we have used up:

• all arcs of difference k + 1;

• arcs a1 and a2 of differences dY1 and dY2 , respectively; and

• arcs used in the directed paths Q1 and Q2.

Assumptions (Y1)–(Y4) now guarantee that the remaining subdigraph ofD[Y ] admits

a �Cm-D. Finally, the directed m-cycles from the remaining subdigraphs of D[X ] and

D[Y ] can be arranged into resolution classes that complete our R �Cm-D of K∗
2m.

We now turn our attention to the case m ≡ 0 (mod 3). As before, a small case
(m = 9) requires a modified construction and will also serve as an introduction to
the general approach.

Lemma 3.5 There exists a R �C9-D of K∗
18.

Proof. Adopt the notation and construction of resolution classes R0, . . . , R8 from
Construction 3.2. The 18 leftover arcs of mixed differences from (1) now form three
directed 6-cycles, which we write as a concatenation of directed paths of length 2
and linking arcs as follows:

C(1) = x0y5x3y2x6y8x0 = PX
1 x3y2P

Y
1 y8x0,

C(2) = x1y7x4y4x7y1x1 = PX
2 x4y4P

Y
2 y1x1,

C(3) = x2y0x5y6x8y3x2 = PX
3 x5y6P

Y
3 y3x2.

We use the directed paths PX
i , P Y

i (for i = 1, 2, 3), together with 6 linking arcs
of pure differences, to form the resolution class R9:

R9 = {PX
1 x3x1P

X
2 x4x2P

X
3 x5x0, P

Y
1 y8y6P

Y
3 y3y4P

Y
2 y1y2}.
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We have thus used the following linking arcs:

bX1 = (x3, x1) of pure left difference dX1 = 7,

bX2 = (x4, x2) of pure left difference dX1 = 7,

bX3 = (x5, x0) of pure left difference dX2 = 4,

bY1 = (y1, y2) of pure right difference dY1 = 1,

bY2 = (y3, y4) of pure right difference dY1 = 1,

bY3 = (y8, y6) of pure right difference dY2 = 7.

Note that none of these differences are equal to 5, which has been used in R0, . . . , R8.

We have now used up all arcs of mixed differences except for the arcs (x3, y2),
(x4, y4), (x5, y6) and arcs (y8, x0), (y1, x1), (y3, x2).

To form the resolution class R10, we want to find three vertex-disjoint directed
paths with sources x0, x1, x2 and terminals x3, x4, x5 using some of the remaining arcs
in D[X], and three vertex-disjoint directed paths with sources y2, y4, y6 and terminals
y8, y1, y3 using some of the remaining arcs in D[Y ]; these paths, together with all the
remaining arcs of mixed differences, will form two vertex-disjoint directed 9-cycles.
In particular, we can define

R10 = {Q′
1x3y2Q1y3x2Q

′
2x4y4Q2y1x1, Q

′
3x5y6Q3y8x0}

as long as we have suitable directed paths

Q′
1 : (x1, x3)-path of length 1,

Q′
2 : (x2, x4)-path of length 1,

Q′
3 : (x0, x5)-path of length 4,

Q1 : (y2, y3)-path of length 1,

Q2 : (y4, y1)-path of length 2, and

Q3 : (y6, y8)-path of length 3

that use only hitherto unused arcs of pure differences. More precisely, it suffices to
find sets SX , SY ⊆ Z

∗
9 such that the following hold.

(X1) 5 �∈ SX , as left pure difference 5 has already been used;

(X2) 4, 7 ∈ SX , as arcs (x3, x1), (x4, x2), (x5, x0) have already been used;

(X3) Circ(9;Z
∗
9 − SX − {5}) admits a decomposition into directed 9-cycles; and

(X4) Circ(9;SX) − {(3, 1), (4, 2), (5, 0)} admits a decomposition into directed 9-
cycles and pairwise vertex-disjoint directed (1, 3)-path of length 1, (2, 4)-path
of length 1, and (0, 5)-path of length 4;

(Y1) 5 �∈ SY , as right pure difference 5 has already been used;

(Y2) 1, 7 ∈ SY , as arcs (y1, y2), (y3, y4), (y8, y6) have already been used;
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(Y3) Circ(9;Z
∗
9 − SY − {5}) admits a decomposition into directed 9-cycles; and

(Y4) Circ(9;S
Y )−{(1, 2), (3, 4), (8, 6)} admits a decomposition into directed 9-cycles

and pairwise vertex-disjoint directed paths: a (2, 3)-path of length 1, a (4, 1)-
path of length 2, and a (6, 8)-path of length 3.

Such sets SX and SY were found using a computer search. These sets, as well as
suitable decompositions, are shown in the appendix.

Proposition 3.6 Let m be an odd integer such that m ≡ 0 (mod 3), m ≥ 15. Let
k = m−1

2
, and define parameters s1 and t1 as indicated in the table below.

Parameter \Case k ≡ 0 (mod 4) k ≡ 1 (mod 4) k ≡ 2 (mod 4) k ≡ 3 (mod 4)

s1 k/2 (3k + 1)/2 k/2 (3k + 1)/2

t1 3k/4 (k − 1)/4 (7k + 2)/4 (5k + 1)/4

In addition, for i = 1, 2, let s1+i = s1 + 2i and t1+i = t1 + i (all evaluated in Zm).

Furthermore, define arcs:

bX1 = (t1, 1), bY1 = (1, s1), c1 = (t1, 0),

bX2 = (t2, 2), bY2 = (3, s2), c2 = (t2, 1),

bX3 = (t3, 0), bY3 = (−1, s3), c3 = (t3, 2).

Now assume there exist sets SX , SY ⊆ Z
∗
m such that:

(X1) k + 1,−t1 �∈ SX ;

(X2) 1− t1,−2− t1 ∈ SX ;

(X3) Circ(m;Z∗
m − (SX ∪ {k + 1,−t1})) admits a �Cm-D;

(X4) Circ(m;SX)− {bX1 , bX2 , bX3 }+ {c1, c2, c3} admits a �Cm-D;

(Y1) k + 1 �∈ SY ;

(Y2) s1 − 1, s1 + 5 ∈ SY ;

(Y3) Circ(m;Z∗
m − (SY ∪ {k + 1})) admits a �Cm-D; and

(Y4) Circ(m;SY )− {bY1 , bY2 , bY3 } admits a decomposition into directed m-cycles and
three pairwise vertex-disjoint directed paths: an (s1,−1)-path of length 2m

3
− 1,

an (s2, 3)-path of some length q ∈ {1, . . . , m
3
− 3}, and an (s3, 1)-path of length

m
3
− 2− q.

Then K∗
2m admits a R �Cm-D.
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Proof. Adopt the notation and construction of resolution classes R0, . . . , Rm−1

from Construction 3.2. We have seen that, since m ≡ 0 (mod 3), the 2m remaining
arcs of mixed differences in (1) form three directed 2m

3
-cycles. Using Observations

(2) and (3), we write each of these three cycles as a concatenation of directed paths
of length m

3
− 1 and linking arcs as follows:

C(1) = x0yk+1 . . . y−1x0 = PX
1 xt1ys1P

Y
1 y−1x0,

C(2) = x1yk+3 . . . y1x1 = PX
2 xt2ys2P

Y
2 y1x1,

C(3) = x2yk+5 . . . y3x2 = PX
3 xt3ys3P

Y
3 y3x2.

It can be verified that, for each congruency class of k modulo 4, the parameters si, ti
(for i = 1, 2, 3) have values as defined in the statement of the proposition.

We use the directed paths PX
i , P Y

i (for i = 1, 2, 3), together with 6 linking arcs
of pure differences, to form the resolution class Rm:

Rm = {PX
1 xt1x1P

X
2 xt2x2P

X
3 xt3x0, P

Y
1 y−1ys3P

Y
3 y3ys2P

Y
2 y1ys1}.

We have thus used the following linking arcs:

bX1 = (xt1 , x1) of pure left difference dX1 = 1− t1,

bX2 = (xt2 , x2) of pure left difference dX1 = 1− t1,

bX3 = (xt3 , x0) of pure left difference dX2 = −2− t1,

bY1 = (y1, ys1) of pure right difference dY1 = s1 − 1,

bY2 = (y3, ys2) of pure right difference dY1 = s1 − 1,

bY3 = (y−1, ys3) of pure right difference dY2 = s1 + 5.

Note that, in all cases, none of these differences are equal to k + 1.

We have now used up all arcs of mixed differences except for the arcs (xti , ysi)
for i = 1, 2, 3, and arcs (y−1, x0), (y1, x1), (y3, x2).

To form the resolution class Rm+1, we want to find three vertex-disjoint directed
paths of appropriate lengths with sources x0, x1, x2 and terminals xt1 , xt2 , xt3 using
some of the remaining arcs in D[X], and three vertex-disjoint directed paths with
sources ys1, ys2, ys3 and terminals y−1, y1, y3 using some of the remaining arcs in D[Y ];
these paths, together with all the remaining arcs of mixed differences, will form two
vertex-disjoint directed m-cycles.

It can be shown that gcd(m, t1) = 3. Namely, since 2k + 1 ≡ 0 (mod 3), we
have k ≡ 1 (mod 3), and hence we can easily verify that t1 ≡ 0 (mod 3) for each
congruency class of k modulo 4. The Euclidean algorithm for 2k + 1 and t1 then
results in remainder ±3, confirming that gcd(2k+1, t1) = 3. Hence the following are
indeed directed (m

3
− 1)-paths in D[X] with the required sources and terminals:

Q′
1 = x0x−t1x−2t1 . . . xt1 ,

Q′
2 = x1x1−t1x1−2t1 . . . xt2 , and

Q′
3 = x2x2−t1x2−2t1 . . . xt3 .
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Observe that these paths use all arcs of difference dX = −t1 except for arcs c1 =
(xt1 , x0), c2 = (xt2 , x1), and c3 = (xt3 , x2).

Now let SX , SY ⊆ Z
∗
m be two sets satisfying Assumptions (X1)–(X4),(Y1)–(Y4) of

the proposition. Furthermore, let Q1, Q2, Q3 be the pairwise vertex-disjoint directed
paths in D[Y ] whose existence is assured by Condition (Y4), so that

Q1 is a directed (ys1, y−1)-path of length 2m
3
− 1,

Q2 is a directed (ys2, y3)-path of length q, for some q ∈ {1, . . . , m
3
− 3}, and

Q3 is a directed (ys3, y1)-path of length m
3
− 2− q.

We may then define our next resolution class as

Rm+1 = {Q′
1xt1ys1Q1y−1x0, Q

′
2xt2ys2Q2y3x2Q

′
3xt3ys3Q3y1x1}.

Now, all arcs of mixed differences have been used in resolution classes R1, . . . , Rm+1.
In addition, we have also used up in D[X ]:

• all arcs of difference k + 1;

• arcs bXi , for i = 1, 2, 3 (of differences 1− t1 and −2− t1); and

• all arcs of difference −t1 except ci, for i = 1, 2, 3.

Assumptions (X1)–(X4) now guarantee that the remaining subdigraph of D[X ] ad-

mits a �Cm-D. In D[Y ], however, we have used up:

• all arcs of difference k + 1;

• arcs bYi , for i = 1, 2, 3 (of differences s1 − 1 and s1 + 5); and

• arcs used in the directed paths Qi, for i = 1, 2, 3.

Assumptions (Y1)–(Y4) now guarantee that the remaining subdigraph ofD[Y ] admits

a �Cm-D. The directed m-cycles from the remaining subdigraphs of D[X ] and D[Y ]

can be arranged into resolution classes that complete our R �Cm-D of K∗
2m.

Proof of Theorem 1.4. Let m be an odd integer, 5 ≤ m ≤ 49. Then K∗
2m admits

a R �Cm-D by Lemma 3.1 if m = 5, by Lemma 3.3 if m = 11, and by Lemma 3.5 if
m = 9. It can be verified that the computational results in Appendix A show that
the conditions of Proposition 3.4 hold for all odd m, 7 ≤ m ≤ 49, m �≡ 0 (mod 3),

m �= 11; hence K∗
2m admits a R �Cm-D for all such m. Finally, Appendix B shows that

the conditions of Proposition 3.6 hold for all odd m, 15 ≤ m ≤ 45, m ≡ 0 (mod 3);

hence K∗
2m admits a R �Cm-D for all such m as well. Therefore, the statement holds

for all odd m, 5 ≤ m ≤ 49.
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4 Conclusion

In Propositions 3.4 and 3.6 we gave sufficient conditions for the complete symmetric
digraph K∗

2m to admit a resolvable decomposition into directed m-cycles. These
sufficient conditions — missing ingredients to complete Construction 3.2 — were
verified computationally for 7 ≤ m < 50. We expect that more computing power,
as well as more persistence, would yield similar results for larger values of m. A
general result would, of course, be preferable. We therefore leave the reader with the
following open problem.

Problem 4.1 Prove that the sufficient conditions in Propositions 3.4 and 3.6 are
satisfied for all admissible values of m, or more generally, complete Construction 3.2
to obtain a resolvable directed m-cycle decomposition of K∗

2m for all odd m ≥ 7.

Note that solving Problem 4.1 would complete the proof of Conjecture 1.3, which
in turn would complete the solution to Problem 1.1.

A Computational results—Case m �≡ 0 (mod 3)

For each value of m we give a set S ⊆ Z
∗
m satisfying Conditions (Y1) – (Y4) of

Proposition 3.4 (if m �= 11), or Conditions (X1) – (X4) from the proof of Lemma 3.3
(if m = 11). The required differences appear in bold type. In addition, we give a
desired decomposition into directed m-cycles Ci and vertex-disjoint directed paths
Q1 and Q2. If m is not prime, we also give a partition of Z∗

m− (S ∪{m+1
2

}) satisfying
the assumptions of Lemma 2.1.

• m = 7
S = {2, 3, 6}
Q1 = (5, 0, 2)
Q2 = (3, 6, 1, 4)
C1 = (0, 3, 5, 4, 6, 2, 1, 0)
C2 = (0, 6, 5, 1, 3, 2, 4, 0)

• m = 11
S = {3, 4, 9, 10}
Q1 = (7, 10, 9, 2, 0, 3, 1, 4)
Q2 = (5, 8, 6)
C1 = (0, 10, 2, 6, 9, 8, 1, 5, 4, 3, 7, 0)
C2 = (0, 4, 8, 7, 6, 10, 3, 2, 5, 9, 1, 0)
C3 = (0, 9, 7, 5, 3, 6, 4, 2, 1, 10, 8, 0)

• m = 13
S = {1, 2, 3, 4}
Q1 = (11, 1, 5, 7, 10)
Q2 = (6, 9, 0, 3, 4, 8, 12, 2)
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C1 = (0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 3, 7, 11, 0)
C2 = (0, 4, 7, 8, 11, 2, 5, 9, 12, 1, 3, 6, 10, 0)
C3 = (0, 2, 3, 5, 8, 10, 1, 4, 6, 7, 9, 11, 12, 0)

• m = 17
S = {1, 2, 3, 5}
Q1 = (15, 16, 1, 4, 7, 9, 14, 2, 5, 6, 11, 13)
Q2 = (8, 10, 12, 0, 3)
C1 = (0, 2, 4, 6, 8, 9, 12, 13, 14, 15, 1, 3, 5, 7, 10, 11, 16, 0)
C2 = (0, 5, 8, 11, 14, 16, 2, 3, 4, 9, 10, 13, 1, 6, 7, 12, 15, 0)
C3 = (0, 1, 2, 7, 8, 13, 16, 4, 5, 10, 15, 3, 6, 9, 11, 12, 14, 0)

• m = 19
S = {2, 12, 15}
Q1 = (17, 0, 15, 11, 7, 3, 5)
Q2 = (9, 2, 4, 6, 8, 10, 12, 14, 16, 18, 1, 13)
C1 = (0, 12, 8, 4, 16, 9, 5, 1, 3, 18, 11, 13, 15, 17, 10, 6, 2, 14, 7, 0)
C2 = (0, 2, 17, 13, 6, 18, 14, 10, 3, 15, 8, 1, 16, 12, 5, 7, 9, 11, 4, 0)

• m = 23
S = {1, 2, 15, 18}
Q1 = (21, 22, 17, 9, 1, 19, 20, 12, 7, 8, 10, 5, 0, 2, 4, 6)
Q2 = (11, 3, 18, 13, 14, 15, 16)
C1 = (0, 15, 7, 22, 14, 9, 4, 19, 11, 6, 1, 2, 3, 5, 20, 21, 16, 17, 18, 10, 12, 13, 8, 0)
C2 = (0, 18, 19, 14, 16, 8, 9, 10, 11, 13, 15, 17, 12, 4, 5, 6, 7, 2, 20, 22, 1, 3, 21, 0)
C3 = (0, 1, 16, 18, 20, 15, 10, 2, 17, 19, 21, 13, 5, 7, 9, 11, 12, 14, 6, 8, 3, 4, 22, 0)

• m = 25
S = {1, 2, 4, 7}
Q1 = (23, 2, 6, 10, 14, 15, 16, 17, 19)
Q2 = (12, 13, 20, 21, 0, 7, 8, 9, 11, 18, 22, 24, 1, 3, 4, 5)
C1 = (0, 4, 8, 12, 16, 20, 24, 6, 7, 11, 15, 19, 1, 2, 3, 10, 17, 21, 22, 23, 5, 9, 13, 14, 18, 0)

C2 = (0, 1, 5, 6, 8, 15, 22, 4, 11, 13, 17, 24, 3, 7, 14, 16, 18, 20, 2, 9, 10, 12, 19, 21, 23, 0)

C3 = (0, 2, 4, 6, 13, 15, 17, 18, 19, 20, 22, 1, 8, 10, 11, 12, 14, 21, 3, 5, 7, 9, 16, 23, 24, 0)

Partition contains: {±3,±5}, {±6,±10}, and {e} for each remaining differ-
ence e

• m = 29
S = {1, 2, 5, 8}
Q1 = (27, 28, 7, 8, 9, 11, 16, 21, 23, 25, 26, 5, 10, 12, 13, 15, 17, 18, 20, 22)
Q2 = (14, 19, 24, 0, 1, 2, 3, 4, 6)
C1 = (0, 5, 13, 18, 23, 28, 4, 9, 14, 22, 1, 6, 7, 15, 20, 25, 27, 3, 8, 16, 24, 26, 2, 10, 11,
12, 17, 19, 21, 0)
C2 = (0, 8, 10, 15, 23, 2, 7, 9, 17, 22, 24, 25, 4, 12, 20, 21, 26, 28, 1, 3, 5, 6, 11, 13, 14,
16, 18, 19, 27, 0)
C3 = (0, 2, 4, 5, 7, 12, 14, 15, 16, 17, 25, 1, 9, 10, 18, 26, 27, 6, 8, 13, 21, 22, 23, 24, 3,
11, 19, 20, 28, 0)
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• m = 31
S = {1, 21, 24}
Q1 = (29, 19, 9, 30, 23, 13, 14, 4, 28, 18, 8)
Q2 = (15, 16, 17, 10, 11, 12, 5, 6, 7, 0, 1, 2, 3, 24, 25, 26, 27, 20, 21, 22)
C1 = (0, 21, 11, 4, 5, 26, 16, 9, 10, 3, 27, 17, 7, 28, 29, 22, 12, 2, 23, 24, 14, 15, 8, 1,
25, 18, 19, 20, 13, 6, 30, 0)
C2 = (0, 24, 17, 18, 11, 1, 22, 23, 16, 6, 27, 28, 21, 14, 7, 8, 9, 2, 26, 19, 12, 13, 3, 4,
25, 15, 5, 29, 30, 20, 10, 0)

• m = 35
S = {1, 24, 27}
Q1 = (33, 22, 14, 3, 27, 16, 5, 32, 21, 13, 2, 29, 18, 10, 34, 26, 15, 7, 8, 0, 1, 28, 20, 9)
Q2 = (17, 6, 30, 19, 11, 12, 4, 31, 23, 24, 25)
C1 = (0, 24, 16, 8, 9, 1, 25, 26, 27, 28, 17, 18, 19, 20, 12, 13, 14, 6, 7, 31, 32, 33, 34,
23, 15, 4, 5, 29, 21, 10, 2, 3, 30, 22, 11, 0)
C2 = (0, 27, 19, 8, 32, 24, 13, 5, 6, 33, 25, 14, 15, 16, 17, 9, 10, 11, 3, 4, 28, 29, 30, 31,
19, 21, 22, 23, 12, 1, 2, 26, 18, 7, 34, 0)
Partition contains: {±5,±7}, {±10,±14}, {±15,±2}, and {e} for each re-
maining difference e

• m = 37
S = {1, 7, 10}
Q1 = (35, 36, 0, 1, 11, 12, 13, 14, 15, 25, 26, 27, 28)
Q2 = (18, 19, 29, 2, 9, 10, 20, 21, 22, 23, 30, 3, 4, 5, 6, 16, 17, 24, 31, 32, 33, 34, 7, 8)
C1 = (0, 7, 14, 21, 28, 1, 8, 15, 22, 29, 36, 9, 16, 26, 33, 6, 13, 23, 24, 34, 35, 5, 12, 19,
20, 30, 31, 4, 11, 18, 25, 32, 2, 3, 10, 17, 27, 0)
C2 = (0, 10, 11, 21, 31, 1, 2, 12, 22, 32, 5, 15, 16, 23, 33, 3, 13, 20, 27, 34, 4, 14, 24,
25, 35, 8, 9, 19, 26, 36, 6, 7, 17, 18, 28, 29, 30, 0)

• m = 41
S = {1, 8, 11}
Q1 = (39, 6, 14, 15, 23, 24, 32, 40, 7, 18, 26, 34, 1, 2, 10, 11, 19, 27, 35, 36, 3, 4, 12,
13, 21, 22, 30, 31)
Q2 = (20, 28, 29, 37, 38, 5, 16, 17, 25, 33, 0, 8, 9)
C1 = (0, 11, 12, 23, 31, 1, 9, 17, 28, 36, 6, 7, 8, 19, 20, 21, 32, 2, 3, 14, 22, 33, 34, 35,
5, 13, 24, 25, 26, 37, 4, 15, 16, 27, 38, 39, 40, 10, 18, 29, 30, 0)
C2 = (0, 1, 12, 20, 31, 32, 33, 3, 11, 22, 23, 34, 4, 5, 6, 17, 18, 19, 30, 38, 8, 16, 24, 35,
2, 13, 14, 25, 36, 37, 7, 15, 26, 27, 28, 39, 9, 10, 21, 29, 40, 0)

• m = 43
S = {1, 30, 33}
Q1 = (41, 28, 15, 2, 32, 19, 6, 36, 23, 10, 0, 33, 34, 24, 11)
Q2 = (21, 22, 12, 13, 3, 4, 5, 35, 25, 26, 16, 17, 18, 8, 9, 42, 29, 30, 20, 7, 37, 38, 39,
40, 27, 14, 1, 31)
C1 = (0, 30, 31, 32, 33, 20, 10, 11, 1, 34, 21, 8, 38, 28, 18, 19, 9, 39, 29, 16, 3, 36, 26,
27, 17, 4, 37, 24, 25, 12, 2, 35, 22, 23, 13, 14, 15, 5, 6, 7, 40, 41, 42, 0)
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C2 = (0, 1, 2, 3, 33, 23, 24, 14, 4, 34, 35, 36, 37, 27, 28, 29, 19, 20, 21, 11, 12, 42, 32,
22, 9, 10, 40, 30, 17, 7, 8, 41, 31, 18, 5, 38, 25, 15, 16, 6, 39, 26, 13, 0)

• m = 47
S = {1, 33, 36}
Q1 = (45, 46, 35, 24, 13, 2, 3, 4, 40, 29, 18, 19, 5, 41, 27, 16, 17, 6, 7, 43, 32, 33, 22,
8, 44, 30, 31, 20, 21, 10, 11, 12)
Q2 = (23, 9, 42, 28, 14, 0, 36, 37, 38, 39, 25, 26, 15, 1, 34)
C1 = (0, 33, 34, 20, 6, 42, 43, 29, 15, 16, 2, 35, 36, 22, 23, 12, 1, 37, 26, 27, 13, 14, 3,
39, 28, 17, 18, 4, 5, 38, 24, 25, 11, 44, 45, 31, 32, 21, 7, 40, 41, 30, 19, 8, 9, 10, 46, 0)
C2 = (0, 1, 2, 38, 27, 28, 29, 30, 16, 5, 6, 39, 40, 26, 12, 13, 46, 32, 18, 7, 8, 41, 42, 31,
17, 3, 36, 25, 14, 15, 4, 37, 23, 24, 10, 43, 44, 33, 19, 20, 9, 45, 34, 35, 21, 22, 11, 0)

• m = 49
S = {2, 10, 13}
Q1 = (47, 8, 18, 28, 38, 48, 9, 19, 21, 31, 44, 46, 10, 23, 25, 35, 37)
Q2 = (24, 34, 36, 0, 2, 12, 22, 32, 45, 6, 16, 26, 39, 41, 5, 7, 20, 33, 43, 4, 14, 27, 29,
42, 3, 13, 15, 17, 30, 40, 1, 11)
C1 = (0, 10, 20, 30, 43, 7, 9, 22, 35, 45, 47, 11, 13, 23, 36, 38, 40, 4, 17, 19, 32, 42, 6, 8, 21,

34, 44, 5, 18, 31, 33, 46, 48, 12, 14, 24, 26, 28, 41, 2, 15, 25, 27, 37, 1, 3, 16, 29, 39, 0)

C2 = (0, 13, 26, 36, 46, 7, 17, 27, 40, 42, 44, 8, 10, 12, 25, 38, 2, 4, 6, 19, 29, 31, 41, 43, 45,

9, 11, 21, 23, 33, 35, 48, 1, 14, 16, 18, 20, 22, 24, 37, 39, 3, 5, 15, 28, 30, 32, 34, 47, 0)

Partition contains: {±7,±1}, {±14,±3}, {±21,±4}, and {e} for each remain-
ing difference e

B Computational results—Case m ≡ 0 (mod 3)

For each value of m we give sets SX , SY ⊆ Z
∗
m satisfying Conditions (X1) – (X4),

(Y1) – (Y4) of Proposition 3.6 (if m ≥ 15), or from the proof of Lemma 3.5 (if
m = 9). The required differences appear in bold type. In addition, we give a desired
decomposition of a subgraph of D[X] into directed m-cycles C ′

i and (for m = 9 only)
pairwise vertex-disjoint directed paths Q′

i, and a desired decomposition of a subgraph
of D[Y ] into directed m-cycles Ci and pairwise vertex-disjoint directed paths Qi. We
also give a partition of Z∗

m − (S ∪ {m+1
2

}) satisfying the assumptions of Lemma 2.1.

• m = 9
SX = {1, 2, 3, 4, 6, 7}
Q′

1 = (1, 3)
Q′

2 = (2, 4)
Q′

3 = (0, 6, 7, 8, 5)
C ′

1 = (0, 4, 8, 3, 7, 5, 6, 1, 2, 0)
C ′

2 = (0, 7, 2, 6, 8, 1, 4, 5, 3, 0)
C ′

3 = (0, 3, 6, 4, 7, 1, 5, 2, 8, 0)
C ′

4 = (0, 1, 8, 2, 3, 5, 7, 4, 6, 0)
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C ′
5 = (0, 2, 5, 8, 6, 3, 4, 1, 7, 0)

Partition contains: {8}
SY = {1, 3, 4, 6, 7, 8}
Q1 = (2, 3)
Q2 = (4, 7, 1)
Q3 = (6, 5, 0, 8)
C1 = (0, 1, 8, 2, 5, 6, 7, 4, 3, 0)
C2 = (0, 7, 8, 5, 3, 1, 4, 2, 6, 0)
C3 = (0, 3, 6, 4, 1, 7, 5, 2, 8, 0)
C4 = (0, 6, 1, 5, 4, 8, 3, 7, 2, 0)
C5 = (0, 4, 5, 8, 7, 6, 3, 2, 1, 0)
Partition contains: {2}

• m = 15
SX = {4, 7, 9}
C ′

1 = (0, 4, 13, 7, 11, 5, 9, 3, 12, 1, 10, 14, 8, 2, 6, 0)
C ′

2 = (0, 7, 1, 8, 12, 6, 13, 5, 14, 3, 10, 4, 11, 2, 9, 0)
C ′

3 = (0, 9, 13, 2, 11, 3, 7, 14, 6, 10, 1, 5, 12, 4, 8, 0)
Partition contains: {±3,±5}, and {e} for each remaining difference e

SY = {1, 5, 6, 9, 10}
Q1 = (11, 6, 7, 12, 2, 8, 9, 4, 5, 14)
Q2 = (13, 3)
Q3 = (0, 10, 1)
C1 = (0, 1, 2, 12, 7, 13, 8, 3, 4, 14, 9, 10, 11, 5, 6, 0)
C2 = (0, 5, 11, 2, 7, 1, 6, 12, 3, 9, 14, 8, 13, 4, 10, 0)
C3 = (0, 6, 11, 1, 7, 8, 2, 3, 12, 13, 14, 5, 10, 4, 9, 0)
C4 = (0, 9, 3, 8, 14, 4, 13, 7, 2, 11, 12, 6, 1, 10, 5, 0)
Partition contains: {±3,±2}, and {e} for each remaining difference e

• m = 21
SX = {1, 4, 18}
C ′

1 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 16, 20, 17, 18, 0)
C ′

2 = (0, 4, 8, 12, 9, 6, 10, 14, 18, 19, 1, 5, 2, 20, 3, 7, 11, 15, 16, 13, 17, 0)
C ′

3 = (0, 18, 15, 12, 16, 17, 14, 11, 8, 5, 9, 13, 10, 7, 4, 1, 19, 20, 2, 6, 3, 0)
Partition contains: {±6,±7}, {±9,±2},and {e} for each remaining difference e

SY = {3, 4, 10, 13, 18}
Q1 = (5, 15, 19, 2, 12, 16, 13, 17, 0, 4, 8, 18, 10, 20)
Q2 = (7, 11, 14, 6, 3)
Q3 = (9, 1)
C1 = (0, 10, 14, 18, 1, 11, 15, 4, 7, 17, 6, 19, 8, 12, 9, 13, 16, 5, 2, 20, 3, 0)
C2 = (0, 13, 2, 15, 12, 4, 1, 14, 11, 3, 6, 10, 7, 20, 17, 9, 19, 16, 8, 5, 18, 0)
C3 = (0, 3, 16, 19, 1, 4, 14, 17, 20, 2, 6, 9, 12, 15, 18, 7, 10, 13, 5, 8, 11, 0)
C4 = (0, 18, 15, 7, 4, 17, 14, 3, 13, 10, 2, 5, 9, 6, 16, 20, 12, 1, 19, 11, 8, 0)
Partition contains: {±6,±7}, {±9,±2}, and {e} for each remaining difference e
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• m = 27
SX = {3, 22, 25}
C ′

1 = (0, 25, 23, 21, 19, 17, 15, 13, 11, 6, 4, 1, 26, 2, 24, 22, 20, 18, 16, 14, 9, 12, 7, 10,
5, 8, 3, 0)
C ′

2 = (0, 22, 25, 20, 15, 18, 13, 16, 19, 14, 17, 12, 10, 8, 11, 9, 4, 7, 2, 5, 3, 6, 1, 23, 26,
21, 24, 0)
C ′

3 = (0, 3, 25, 1, 4, 26, 24, 19, 22, 17, 20, 23, 18, 21, 16, 11, 14, 12, 15, 10, 13, 8, 6, 9,
7, 5, 2, 0)
Partition contains: {±6,±1}, {±9,±4}, {±12,±7}, and {e} for each remaining
difference e

SY = {3, 4, 19, 24, 25}
Q1 = (20, 12, 4, 2, 5, 9, 13, 17, 21, 19, 16, 8, 11, 15, 18, 10, 7, 26)
Q2 = (22, 14, 6, 25, 23, 0, 3)
Q3 = (24, 1)
C1 = (0, 19, 11, 3, 1, 26, 18, 16, 14, 12, 15, 7, 4, 23, 20, 24, 22, 25, 17, 9, 6, 10, 2, 21,
13, 5, 8, 0)
C2 = (0, 25, 2, 6, 4, 7, 11, 8, 12, 9, 1, 5, 24, 16, 13, 10, 14, 17, 20, 23, 21, 18, 15, 19,
22, 26, 3, 0)
C3 = (0, 4, 1, 25, 22, 19, 17, 14, 11, 9, 12, 10, 8, 6, 3, 7, 5, 2, 26, 23, 15, 13, 16, 20, 18,
21, 24, 0)
C4 = (0, 24, 21, 25, 1, 4, 8, 5, 3, 6, 9, 7, 10, 13, 11, 14, 18, 22, 20, 17, 15, 12, 16, 19,
23, 26, 2, 0)
Partition contains: {±6,±1}, {±9,±5}, {±12,±7}, and {e} for each remain-
ing difference e

• m = 33
SX = {11, 12, 19, 22}
C ′

1 = (0, 19, 5, 24, 10, 29, 15, 1, 20, 6, 28, 14, 25, 11, 30, 8, 27, 16, 2, 13, 32, 21, 7, 18,
4, 26, 12, 23, 9, 31, 17, 3, 22, 0)
C ′

2 = (0, 22, 1, 12, 31, 20, 9, 28, 6, 17, 29, 18, 7, 19, 8, 30, 16, 5, 27, 13, 24, 3, 25, 14,
26, 15, 4, 23, 2, 21, 10, 32, 11, 0)
C ′

3 = (0, 11, 22, 8, 19, 30, 9, 20, 31, 10, 21, 32, 18, 29, 7, 26, 4, 15, 27, 5, 16, 28, 17, 6,
25, 3, 14, 2, 24, 13, 1, 23, 12, 0)
C ′

4 = (0, 12, 24, 2, 14, 3, 15, 26, 5, 17, 28, 7, 29, 8, 20, 32, 10, 22, 11, 23, 1, 13, 25, 4,
16, 27, 6, 18, 30, 19, 31, 9, 21, 0)
Partition contains: {±3,±1}, {±6,±2}, {±9,±4}, {±15,±5}, and {e} for
each remaining difference e

SY = {1, 7, 13, 26}
Q1 = (8, 21, 14, 27, 28, 2, 15, 16, 29, 9, 22, 23, 24, 17, 30, 4, 11, 18, 25, 5, 31, 32)
Q2 = (12, 19, 20, 13, 26, 6, 7, 0, 1)
Q3 = (10, 3)
C1 = (0, 7, 20, 27, 1, 14, 21, 28, 8, 15, 22, 29, 30, 23, 16, 9, 2, 3, 4, 17, 10, 11, 24, 31,
5, 12, 13, 6, 32, 25, 18, 19, 26, 0)
C2 = (0, 13, 14, 7, 8, 1, 2, 9, 10, 17, 18, 11, 12, 25, 26, 27, 20, 21, 22, 15, 28, 29, 3, 16,
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23, 30, 31, 24, 4, 5, 6, 19, 32, 0)
C3 = (0, 26, 19, 12, 5, 18, 31, 11, 4, 30, 10, 23, 3, 29, 22, 2, 28, 21, 1, 27, 7, 14, 15, 8,
9, 16, 17, 24, 25, 32, 6, 13, 20, 0)
Partition contains: {±3,±11}, {±6,±2}, {±9,±4}, {±12,±5}, {±15,±8},
and {e} for each remaining difference e

• m = 39
SX = {13, 16, 24, 26}
C ′

1 = (0, 13, 26, 3, 16, 29, 6, 19, 32, 9, 22, 35, 12, 25, 38, 15, 28, 2, 18, 31, 5, 21, 34, 8,
24, 37, 11, 27, 1, 14, 30, 4, 17, 33, 7, 20, 36, 10, 23, 0)
C ′

2 = (0, 16, 32, 6, 22, 38, 12, 28, 15, 2, 26, 13, 29, 3, 19, 35, 9, 25, 1, 17, 30, 7, 23, 10,
36, 21, 37, 14, 27, 4, 20, 33, 18, 5, 31, 8, 34, 11, 24, 0)
C ′

3 = (0, 26, 11, 37, 24, 9, 35, 22, 7, 33, 20, 5, 18, 3, 29, 14, 38, 25, 10, 34, 19, 4, 30,
15, 31, 16, 1, 27, 12, 36, 23, 8, 21, 6, 32, 17, 2, 28, 13, 0)
C ′

4 = (0, 24, 11, 35, 20, 7, 31, 18, 34, 21, 8, 32, 19, 6, 30, 17, 4, 28, 5, 29, 16, 3, 27, 14,
1, 25, 12, 38, 23, 36, 13, 37, 22, 9, 33, 10, 26, 2, 15, 0)
Partition contains: {±3,±1}, {±6,±2}, {±9,±4}, {±12,±5}, {±18,±7}, and
{e} for each remaining difference e

SY = {2, 7, 28, 34}
Q1 = (29, 18, 7, 14, 16, 23, 25, 27, 22, 17, 12, 19, 21, 10, 5, 0, 28, 35, 24, 13, 2, 30, 32,
34, 36, 38)
Q2 = (31, 20, 9, 37, 26, 15, 4, 11, 6, 8, 3)
Q3 = (33, 1)
C1 = (0, 34, 23, 12, 1, 35, 3, 37, 5, 7, 2, 36, 4, 32, 21, 16, 18, 25, 20, 15, 17, 6, 13, 8,
10, 38, 27, 29, 31, 33, 22, 24, 26, 28, 30, 19, 14, 9, 11, 0)
C2 = (0, 7, 9, 16, 11, 13, 15, 10, 17, 19, 8, 36, 25, 32, 27, 34, 2, 4, 38, 6, 1, 3, 5, 12, 14,
21, 28, 23, 18, 20, 22, 29, 24, 31, 26, 33, 35, 30, 37, 0)
C3 = (0, 2, 9, 4, 6, 34, 29, 36, 31, 38, 1, 8, 15, 22, 11, 18, 13, 20, 27, 16, 5, 33, 28, 17,
24, 19, 26, 21, 23, 30, 25, 14, 3, 10, 12, 7, 35, 37, 32, 0)
Partition contains: {±3,±13}, {±6,±1}, {±9,±4}, {±12,±8}, {±15,±10},
{±18,±14}, and {e} for each remaining difference e

• m = 45
SX = {4, 7, 39}
C ′

1 = (0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 43, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 2, 6, 10,
14, 18, 22, 26, 30, 34, 38, 42, 1, 40, 44, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 0)
C ′

2 = (0, 7, 1, 5, 12, 19, 26, 33, 27, 21, 28, 35, 42, 4, 11, 18, 25, 32, 39, 43, 2, 9, 16, 23,
30, 37, 44, 6, 13, 20, 14, 8, 15, 22, 29, 36, 40, 34, 41, 3, 10, 17, 24, 31, 38, 0)
C ′

3 = (0, 39, 33, 40, 1, 8, 2, 41, 35, 29, 23, 17, 11, 5, 44, 38, 32, 26, 20, 27, 34, 28, 22,
16, 10, 4, 43, 37, 31, 25, 19, 13, 7, 14, 21, 15, 9, 3, 42, 36, 30, 24, 18, 12, 6, 0)
Partition contains: {±3,±5}, {±9,±10}, {±12,±20}, {±15,±1}, {±18,±2},
{±21,±8}, and {e} for each remaining difference e
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SY = {10, 16, 31, 35}
Q1 = (11, 21, 31, 2, 12, 22, 38, 9, 19, 29, 39, 4, 14, 24, 40, 30, 20, 10, 0, 35, 25, 41, 6,
37, 27, 17, 7, 42, 28, 44)
Q2 = (13, 23, 33, 43, 8, 18, 34, 5, 36, 26, 16, 32, 3)
Q3 = (15, 1)
C1 = (0, 10, 20, 30, 40, 5, 21, 37, 23, 13, 3, 38, 28, 18, 4, 39, 29, 15, 31, 41, 12, 2, 33,
19, 35, 6, 16, 26, 36, 1, 32, 22, 8, 24, 34, 44, 9, 25, 11, 42, 7, 17, 27, 43, 14, 0)
C2 = (0, 16, 6, 22, 32, 42, 13, 29, 19, 9, 44, 30, 1, 17, 3, 34, 20, 36, 7, 38, 24, 10, 41,
31, 21, 11, 27, 37, 2, 18, 8, 43, 33, 23, 39, 25, 15, 5, 40, 26, 12, 28, 14, 4, 35, 0)
C3 = (0, 31, 17, 33, 4, 20, 6, 41, 27, 13, 44, 34, 24, 14, 30, 16, 2, 37, 8, 39, 10, 26, 42,
32, 18, 28, 38, 3, 19, 5, 15, 25, 35, 21, 7, 23, 9, 40, 11, 1, 36, 22, 12, 43, 29, 0)
Partition contains: {±3,±5}, {±6,±20}, {±9,±1}, {±12,±2}, {±15,±4},
{±18,±7}, {±21,±8}, and {e} for each remaining difference e
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