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Abstract

We show that the complete symmetric digraph K3, admits a resolvable
decomposition into directed cycles of length m for all odd m, 5 < m < 49.
Consequently, K admits a resolvable decomposition into directed cycles
of length m for all n =0 (mod 2m) and odd m, 5 < m < 49.

1 Introduction

The complete symmetric digraph of order n, denoted K}, is the digraph with n
vertices, and with arcs (u,v) and (v,u) for each pair of distinct vertices u and v.
In this paper, we are concerned with the problem of decomposing the complete
symmetric digraph K into spanning subdigraphs, each a vertex-disjoint union of
directed cycles of length m. Thus, we are interested in the following problem.

Problem 1.1 Determine the necessary and sufficient conditions on m and n for
the complete symmetric digraph K to admit a resolvable decomposition into directed
m-cycles.

In the design-theoretic literature, such decompositions have also been called
Mendelsohn designs [8]. Problem 1.1 can also be viewed as the directed version
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of the well-known Oberwolfach Problem with uniform cycle lengths, which was com-
pletely solved in [2, 3, 9].

It is easily seen that K admits a resolvable decomposition into directed m-cycles
only if m divides n, and this condition is obviously sufficient if m = 2. Problem 1.1
has also been solved previously for m = 3 [6] and for m = 4 [1, 4]: the necessary
conditions are sufficient except for (m,n) = (3,6) and (4,4). More recently, two of
the present authors showed the following.

Theorem 1.2 [7] Let m and n be integers with 5 < m < n. Then the following
hold.

1. Let m be even, or m and n be both odd. Then there exists a resolvable decom-
position of K into directed m-cycles if and only if m divides n and (m,n) #
(6,6).

2. If there exists a resolvable decomposition of K3, into directed m-cycles, then

there exists a resolvable decomposition of K into directed m-cycles whenever
n=0 (mod 2m).

In the same paper, we also posed the following conjecture.

Conjecture 1.3 [7] Let m be a positive odd integer. Then K} admits a resolvable
directed m-cycle decomposition if and only if m > 5.

Observe that proving Conjecture 1.3 (which appears to be difficult) would com-
plete the solution to Problem 1.1. In this paper, we confirm the above conjecture for
all m < 49. Thus, we prove the following result.

Theorem 1.4 Let m be an odd integer, 5 < m < 49. Then K, admits a resolvable
decomposition into directed m-cycles.

Except for the smallest case m = 5, the above theorem is proved using a general
construction that is complemented with a computational result. We expect that with
more computing power, this approach can be used to extend our result to even larger
values of m.

Theorems 1.2 and 1.4 immediately yield the following.

Corollary 1.5 Let m be an odd integer, 5 < m < 49. Then K admits a resolvable
decomposition into directed m-cycles whenever n =0 (mod 2m).

2 Preliminaries

In this paper, the term digraph will mean a directed graph with no loops or multiple
arcs. For a digraph D = (V, A), a subset V' C V of its vertex set, and subset
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A" C A of its arc set, the symbols D[V'] and D — A" will denote the subdigraph of
D induced by V', and the subdigraph obtained from D by deleting all arcs in A,
respectively. If D is a spanning subdigraph of the complete symmetric digraph K
and A" C A(K}) — A(D), then D + A’ will denote the digraph (V(D), A(D) U A).
That is, D+ A’ is obtained from the digraph D by adjoining the (new) arcs from the
set A’

A decomposition of a digraph D is a collection { Hy, Hs, ..., Hy} of subdigraphs of
D whose arc sets partition the arc set of D. If each of the digraphs H; is isomorphic to
a digraph H, then {Hy, Hs, ..., Hy} is called an H-decomposition of the digraph G.

A resolution class (or parallel class) of a decomposition D = {Hy, Ha, ..., Hy} of
D is a subset {H;,, H;,, ..., H;} of D with the property that the vertex sets of the
digraphs H;,, H;,, ..., H;, partition the vertex set of D. A decomposition is called
resolvable if it can be partitioned into resolution classes.

By C., we shall denote the directed cycle of length m. The terms ém—deconlpos—
ition and resolvable ém—decomposition will be abbreviated as C,,-D and Rém—D,
respectively.

For a positive integer m and S C Z?,, the digraph with vertex set Z,, and arc
set {(i,i+d) :i € Zy,,d € S}, denoted Circ(m;.S), is called the directed circulant of
order m with connection set S. (Note that the symbol Circ(m;S) will be used only
for directed circulants.)

A well-known result by Bermond et al. [5] shows that every 4-regular connected
Cayley graph on a finite abelian group can be decomposed into two Hamilton cycles.
The following corollary will be an important ingredient in our constructions.

Lemma 2.1 Let m be a positive integer and S C Z;,. Assume S can be partitioned
into sets of the form

e {d} such that ged(d,m) =1, and
o {£d,£d'} of cardinality four such that ged(d,d’,m) = 1.
Then the directed circulant Circ(m; S) can be decomposed into directed m-cycles.

PROOF. By the assumption, Circ(m; S) can be decomposed into directed circulants of
the form Circ(m; S”), where either S’ = {d} for some d € Z?, such that ged(d,m) = 1,
or §" = {%d, £d'} for some d,d' € Z;, such that ged(d,d’,m) =1 and |{£d, +=d'}| =
4. In the former case, Circ(m; S’) itself is a directed m-cycle. In the latter case, let G’
be the undirected graph obtained from Circ(m; S’) by replacing each pair of opposite
arcs with an undirected edge. Then G’ is a 4-regular (undirected) circulant, which
is connected because ged(d,d’;m) = 1. Thus, G’ is a connected Cayley graph on a
cyclic group, and hence by [5] admits a decomposition into two Hamilton cycles, say
C1 and Cs. Taking two copies of each of €', and (5, and directing the two copies in
opposite ways results in a decomposition of Circ(m;.S’) into four directed m-cycles.
Hence Circ(m;.S) can be decomposed into directed m-cycles. 0
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3 Results

Lemma 3.1 There exists a RC5-D of K.

ProoOF. Label the vertices of Kj, by z¢,21,...,29. It can be verified that the
following resolution classes (obtained by a computer search) form a RC5-D of K7,

Ry = {9503519523339543307 $59€6~’U79€8$9$5}
Ry = {2omox12325%0, TaT6T37ToT s}
Ry = {zox3210422%0, T5T70629TsT5 )
Ry = {9503549513359583307 $29€6$39€9$7$2}
R, = {$0$5$2$89€3$0, $1IE7$4IE9$6$1}
Ry = {9503569523359593307 $19€8£U49€3337331}
Re = {9503579533389563307 $19€9£U29€4335331}
R; = {$0$8$2$99€1$0, $3IE6$4IE7$5$3}
Ry = {9503599533329573307 $19€6~’U59€43§83§1}

O

The rest of the proof of Theorem 1.4 is divided into two main cases, m # 0
(mod 3), which is dealt with in Proposition 3.4, and m = 0 (mod 3), which is con-
sidered in Proposition 3.6, as well as two small cases, m = 11 and m = 9, which
require a modification of the general approach. All of these cases, however, have the
following construction in common.

Construction 3.2 Let m > 5 be an odd integer, and write m = 2k+1. Let the ver-
tex set of D = K, be XUY, where X = {xg,x1,..., 2ot} and Y = {yo,y1,. .., Yor }-
We shall call arcs of the form (z;, z;14) and (y;, yira) arcs of pure left and pure right
difference d, respectively, and arcs of the form (x;,y;14) and (y;, x;1q) arcs of mized
difference d. All subscripts will be evaluated modulo m = 2k + 1.

Start by defining directed m-cycles

Co = ToYoT1Y1T2Y2 - - - TpTo and C(/) = YkTk+1Yk+1 - - - Y2k Yk-

Observe that cycles Cp and Cf jointly use up all arcs of the form (x;,y;) except
(2, yx), all arcs of the form (y;, x;41) except (yax, o), and they also use the arcs
(k, zo) and (Yak, Yi)-

For i € Z,,, obtain C; and C! from Cy and C{, respectively, by adding i to the
subscripts of the vertices in X, and 27 to the subscripts of the vertices in Y. Observe
that cycles C; and C jointly use up all arcs of the form (z;, y;4:) except (Ti4i, Yk+2i),
all arcs of the form (y;, zj4i41) except (Yort2i, T;), and they also use the arcs (T4, 7;)
and (y2k+2i, yk:+2z‘)~

Next, form resolution classes

R, = {CZ, 01/}7 for i € Z,,.
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Observe that Ry,..., R,,_1 use up all arcs of pure left difference k& + 1, all arcs of
pure right difference k£ 4 1, and all arcs of mixed differences except for the arcs

(Tpris Yproi) and  (Yopyoi, z;) for all i € Z,,. (1)

Let L denote the subdigraph of D induced by the set of these leftover arcs. Then
L contains all vertices of D, and decomposes into directed 2-paths of the form

Yok+2i Ti Y(ort2i)+(k+2), 1or all i € Zy,, (2)

that is, into directed (y;, y;+(k+2))-paths of length 2, for all j € Z,,. The union of
these directed 2-paths is a directed 2m-cycle if and only if ged(k + 2,2k + 1) = 1,
that is, if and only if ged(3, 2k + 1) = 1. This case will be considered in Lemma 3.3
and Proposition 3.4. If, however, ged(k 4 2,2k 4+ 1) # 1, then 3|m and the leftover
digraph is composed of three disjoint directed cycles of length 277” This case will be
covered in Lemma 3.5 and Proposition 3.6.

On the other hand, the digraph L can also be decomposed into directed 2-paths
of the form

(3)

Thoti ;T o skrs if kis odd
k+i Yk+2i (ki) 23
e ,
Tt Ykt 2i L (i) k52 if k is even

for all ¢ € Z,,. In other words, L decomposes into directed (z;, x;4,)-paths of length
2, for all j € Z,,, where
- &;3 if k is odd
p_{k—;r? if k is even
These observations will help us complete the constructions in Propositions 3.4
and 3.6. O

Next, we examine the case m = 11, which requires a modified construction, but
serves as a good introduction to the general approach in the case m # 0 (mod 3)
that will be described in Proposition 3.4.

Lemma 3.3 There exists a RCy1-D of K3,.

Proor. With m = 11, adopt the notation and define resolution classes Ry, ..., Rig
as in Construction 3.2. Since 11 # 0 (mod 3), as shown above, the 22 leftover arcs
of mixed differences in (1) form a directed 22-cycle

C:ZL‘5y5...l'5.

Using Observations (2) and (3), we decompose C' into the following directed paths:

P = ws5ys. .. w6, Py = zgy7,
Py = Y1y, Py = x4y3,
Ps= ys...y, Ps = yowy,

P = 7Y, Py = ygxs,
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where P; and P; are of length 10 and 6, respectively. Use the P; for ¢ odd to form
the resolution class

Ry = {Pixews, Pswaxs Pryoys Psyayr }

We shall use the P; for i even in the next resolution class. Notice that in D[Y] we
have used all arcs of right pure difference 6 and two arcs — namely, (yo,ys) and
(y2,y7) — of right pure difference 5. The remaining arcs of right pure difference 5
form a directed (ys, y2)-path Q] of length 2, and a directed (y7, yo)-path @, of length
7. If we can find vertex-disjoint directed (z7,x4)-path of length 7 (call it Q1) and
(x5, z6)-path of length 2 (call it Q3) in D[X], then the next resolution class will be

Riz = {P,Q5PsQ2, PyQ PsQ1 }.

What will then remain of D[Y] is a Cire(11; {#1, £2, +3, £4}), which admits a C};-D
by Lemma 2.1. It thus suffices to appropriately decompose the remaining subdigraph
of D[X]. In particular, it suffices to find a set of differences S C Z7, such that

(X1) 6 ¢S, as left pure difference 6 has already been used;

(X3) 3,10 € S, as only arcs (xg,x5) and (x4, z7) of these left pure differences have
already been used;

(X3) Cire(11;Z5, — S — {6}) admits a decomposition into directed 11-cycles; and

(X4) Cire(11;5) — {(6,5), (4,7)} admits a decomposition into directed 11-cycles,
and vertex-disjoint directed paths: a (5, 6)-path of length 2 and a (7,4)-path
of length 7.

Such a set S was found using a computer search. The set S, as well as a suitable
decomposition, is shown in the appendix. 0

Proposition 3.4 Let m be an odd integer such that m # 0 (mod 3), m > 7, and
m # 11. Let k = mT’l, and define parameters d, s, t;, s;, t; (for i =1,2) as indicated
below.

H Parameter\ Case H k=0 (mod 4) ‘ k=1 (mod 4) ‘ k=2 (mod 4) ‘ k=3 (mod 4) H

d (Tk + 8)/4 (5k +7)/4 (3k +6)/4 (k+5)/4
s k/4 3k +1)/4 (5k + 2)/4 (Tk + 3) /4
s (3% + 4)/4 k+3)/4 (7k + 6)/4 (5% + 5)/4
t, k—2)/2 3k —1)/2 k—2)/2 Bk —1)/2
t (3% + 2)/2 k+1)/2 (3% + 2)/2 k+1)/2

In addition, let t) = so =k, s1 =2k — 1, and ty = t,.

Then ged(d, m) = 1, and hence for each i = 1,2, there exists a unique r; € Ly,
such that s, +r;d =t (in Z,,). Furthermore, define a; = (t;,s;) and df = s; —t; (in
L)

Now assume there exists a set S C Z;, such that:
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Vi) k+1¢5;
(Y2) di,dy € S;
(Ys) Circ(m; Z:, — (S U {k +1})) admits a C,,-D; and

(Yy) Circ(m; S) — {a1,as} admits a decomposition into directed m-cycles and two
vertex-disjoint directed paths: an (s1,t1)-path of length r1 and an (s, ts)-path
of length r.

Then K, admits a RC,,-D.

Proor. Adopt the notation and define resolution classes Ry, ..., R, 1 as in Con-
struction 3.2. As shown earlier, since m #Z 0 (mod 3), the 2m leftover arcs of mixed
differences in (1) form a directed 2m-cycle

Write C'= PP, ... Pg as a concatenation of directed paths such that P; is of length
m — 1, Ps is of length m — 5, and the rest are of length 1. Using Observations (2)
and (3), it can be shown for each congruency class of k£ modulo 4 that the paths are

b= Yso -+ Yty P2:yt2xs’17
P3 = "L‘s’lytn P4 :ytlxsé’
Ps= xzg .. .xy, Ps = xyys,,
Pr= ysay, Ps = 2y ys,,

where the parameters s;, t;, s;, ¢, (for i = 1,2) are as defined in the statement of the

1) 7

proposition. We use the P; for i odd, together with 4 linking arcs (two of pure left,
and two of pure right difference) to form the resolution class

Rm = {Plyt2y527 P5l't’2xs’1 ngt1y51P7xt/1x512}.

The linking arcs are:
(x4, 24) and (x4, x4 ) of pure left difference d = s} —ty = s, — 1],

ay = (Y, Ys,) of pure right difference di = s; — 1, and
as = (Ys,, Ys,) Of pure right difference dj = sy — to,

with d,d¥, d¥ as defined in the statement of the proposition. Since m # 11, observe
that none of these pure differences are equal to k£ + 1 (which has already been used
in Ry,...,Rm_1).

The P; for i even will be used in the next resolution class as shown below. But
first we verify that ged(2k + 1,d) = 1. If k = 0 (mod 4), then d = 2. Using
the Euclidean algorithm, we have 2k 4+ 1 = % + % and Lﬁ = 71‘%4 + 9. Hence
ged(2k +1, ™258) divides 9, but since 3 does not divide 2k + 1, we must have ged(2k +
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1, %E8) = 1. Similarly it can be verified that ged(2k + 1,d) = 1 for the remaining
congruency classes of k modulo 4.

It follows that the arcs of pure left difference d form a directed m-cycle, and in
particular, those that have not been used in R,, form a directed (7., zy )-path Q)
of length ry and a directed (wy, 7y )-path @ of length ry, where r; and 7y are as
defined in the statement of the proposition.

Now let S be a subset of Z}, satisfying Conditions (Y7)—(Ys) of the proposition,
and let Q1 and @y be the corresponding vertex-disjoint directed (ys,, v, )-path of
length r; and (ys,, ys, )-path of length 7o, respectively. We then let the next resolution
class be

R = { Q1 P3Q2, PaQ5 PeQ1 }-
All arcs of mixed differences have now been used in resolution classes Ry, ..., Rpi1-
In D[X], we have also used up all arcs of differences k+1 and d. Since ged(2k+1, k+
1) = ged(2k + 1,d) = 1, Lemma 2.1 now guarantees that the remaining subdigraph

of D[X] admits a C,,-D.
In D[Y], however, we have used up:

e all arcs of difference k + 1;
e arcs a; and ay of differences d and d¥ , respectively; and
e arcs used in the directed paths ;1 and Q5.

Assumptions (Y7)—(Ys) now guarantee that the remaining subdigraph of D[Y] admits
a Cy,-D. Finally, the directed m-cycles from the remaining subdigraphs of D[X] and
D[Y] can be arranged into resolution classes that complete our RC,,,-D of K3,,.

We now turn our attention to the case m = 0 (mod 3). As before, a small case
(m = 9) requires a modified construction and will also serve as an introduction to
the general approach.

Lemma 3.5 There exists a RCy-D of Kig.

PRrROOF. Adopt the notation and construction of resolution classes Ry, ..., Rg from
Construction 3.2. The 18 leftover arcs of mixed differences from (1) now form three
directed 6-cycles, which we write as a concatenation of directed paths of length 2
and linking arcs as follows:

C(l) = ZoYs5T3Y2TeYgTo = P1X$3y2p1yys$0>
0(2) = T1YrlaYaTry1T1 = P2X954§U4P2Yyl$1a
0(3) = X2YoTs5YeTgY3la = P3X9U5y6pgyy39€2-

We use the directed paths PX, PY (for i = 1,2,3), together with 6 linking arcs
of pure differences, to form the resolution class Ry:

Ry = {P" w321 PX 0405 Py 2570, P ysys Py ysya Py 1192}
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We have thus used the following linking arcs:

b (z3,71)  of pure left difference di* =7,
by = (w4,15) of pure left difference di =7,
by = (ws,m0) of pure left difference dy = 4,
b' = (y1,y2) of pure right difference d =1,
by (y3,y4) of pure right difference d} =1,
by = (ys,ys) of pure right difference dj = 7.
Note that none of these differences are equal to 5, which has been used in Ry, ..., Rs.

We have now used up all arcs of mixed differences except for the arcs (z3,ys),
($47 y4)’ (ZL‘5, yG) and arcs (y87 l’o), (yla "L‘l)v (y3a "L‘2)'

To form the resolution class Rjy, we want to find three vertex-disjoint directed
paths with sources xg, x1, r9 and terminals x3, x4, x5 using some of the remaining arcs
in D[X], and three vertex-disjoint directed paths with sources ys, y4, y¢ and terminals
s, Y1, Y3 using some of the remaining arcs in D[Y]; these paths, together with all the
remaining arcs of mixed differences, will form two vertex-disjoint directed 9-cycles.
In particular, we can define

Rip = {Q123y2Q1Y322Q524y1Qovr 1, Q525Y6Q3YsTo }

as long as we have suitable directed paths

Qy:  (x1,x3)-path of length 1,
Q,: (w9, x4)-path of length 1,
Q5 : (o, x5)-path of length 4,
Q1: (Y2, y3)-path of length 1,
Q2 :  (ys4,y1)-path of length 2, and
Qs  (ys, ys)-path of length 3

that use only hitherto unused arcs of pure differences. More precisely, it suffices to
find sets SX,SY C Z§ such that the following hold.

X1) 5 ¢& SX, as left pure difference 5 has already been used;

(X1)
(X5) 4,7 € 8%, as arcs (w3, 21), (74, T2), (5, 7o) have already been used;

(X3) Cire(9;Zy — SX — {5}) admits a decomposition into directed 9-cycles; and
(Xy) Circ(9;8%) — {(3,1),(4,2),(5,0)} admits a decomposition into directed 9-
cycles and pairwise vertex-disjoint directed (1, 3)-path of length 1, (2,4)-path
of length 1, and (0, 5)-path of length 4;

(Y1) 5 ¢ SY, as right pure difference 5 has already been used;

(Y2) 1,7 € SY, as arcs (y1,92), (y3, y4), (ys, ¥s) have already been used;
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(Y3) Circ(9; Z§ — S* — {5}) admits a decomposition into directed 9-cycles; and

(Y;) Cire(9; SY)—{(1,2),(3,4), (8,6)} admits a decomposition into directed 9-cycles
and pairwise vertex-disjoint directed paths: a (2,3)-path of length 1, a (4, 1)-
path of length 2, and a (6, 8)-path of length 3.

Such sets S* and SY were found using a computer search. These sets, as well as
suitable decompositions, are shown in the appendix. 0

Proposition 3.6 Let m be an odd integer such that m = 0 (mod 3), m > 15. Let

k= mT_l, and define parameters s, and ty as indicated in the table below.

| Parameter\ Case | k=0 (mod 4) [ k=1 (mod 4) | k=2 (mod 4) | k =3 (mod 4) |
51 k/2 (3k+1)/2 k/2 (3k+1)/2
f 3k /4 k—1)/4 (7k + 2)/4 (5k + 1)/4

In addition, fori = 1,2, let s14; = s1 + 2i and t14; = t; + i (all evaluated in Z,,).

Furthermore, define arcs:

b{( - (tla 1)7 b¥ = (1a31)> C1 = (tl,O),
by = (t2,2), by = (3,52), 2 = (t2, 1),
bé( - (t3’0)7 bBY = (_1’33)7 C3 = (t3>2)'

Now assume there exist sets S*,SY C Z* such that:
(X1) k+1,—t, € S%;
(X)) 1—t,—2—t; € S%;
(Xs) Cire(m; Z;, — (SX U{k +1,—t,})) admits a C,,-D;
(X,) Circ(m; SX) — {bX, b5, b5} + {c1, ¢, 3} admits a C,,-D;
Y1) k+1¢8Y;
(Yy) s1— 1,8, +5€ SY;
(Ys) Cire(m; Z%, — (SY U {k +1})) admits a C,,-D; and

(Yy) Circ(m; SY) — {bY, 0¥, X'} admits a decomposition into directed m-cycles and
three pairwise vertex-disjoint directed paths: an (s1, —1)-path of length QTm -1,
an (sz,3)-path of some length q € {1,...,% — 3}, and an (s3,1)-path of length
T —2—q.

3

Then K3, admits a RC,,-D.
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ProOOF. Adopt the notation and construction of resolution classes Ry,..., Ry_1
from Construction 3.2. We have seen that, since m = 0 (mod 3), the 2m remaining
arcs of mixed differences in (1) form three directed 2Tm—cycles. Using Observations
(2) and (3), we write each of these three cycles as a concatenation of directed paths
of length % — 1 and linking arcs as follows:

Cay = ToYur---Y—170 = P @,y P y—_10,
0(2) = T1lYk+3..-Y1T1 = PQXl'toSQPQYylfL‘la
0(3) = TolYkis-.. Y3Tog = PfxtSySSnggxz.

It can be verified that, for each congruency class of k£ modulo 4, the parameters s;, t;
(for ¢ = 1,2, 3) have values as defined in the statement of the proposition.

We use the directed paths PX, PY (for i = 1,2,3), together with 6 linking arcs
of pure differences, to form the resolution class R,,:

Rm == {Pf(xtlxlpfl’tngP;(l’tgl’O) Pf/y—lysgp?}/y3y82p2yylys1}'

We have thus used the following linking arcs:

by = (xz4,,71) of pure left difference d;' = 1 —ty,
by = (my,,25) of pure left difference df =1 —t,,
by = (my,,20) of pure left difference dy = —2 —ty,
b = (y1,9s,) of pure right difference d} =s; — 1,
by = (ys,ys,) of pure right difference d} =s; — 1,
by = (y_1,9s,) of pure right difference dj = s; + 5.

Note that, in all cases, none of these differences are equal to k + 1.

We have now used up all arcs of mixed differences except for the arcs (zy,,ys,)
for i =1,2,3, and arcs (y_1, %o), (y1, 1), (Y3, T2).

To form the resolution class R, 1, we want to find three vertex-disjoint directed
paths of appropriate lengths with sources xy, z1, 22 and terminals z;,, x4, Ty, using
some of the remaining arcs in D[X], and three vertex-disjoint directed paths with
SOUTCeS Ys, , Ys, > Ys; and terminals y_1, y1, y3 using some of the remaining arcs in D[Y];
these paths, together with all the remaining arcs of mixed differences, will form two
vertex-disjoint directed m-cycles.

It can be shown that ged(m,t;) = 3. Namely, since 2k + 1 = 0 (mod 3), we
have £ = 1 (mod 3), and hence we can easily verify that ¢t; = 0 (mod 3) for each
congruency class of £ modulo 4. The Euclidean algorithm for 2k + 1 and ¢; then
results in remainder £3, confirming that ged(2k+1,¢1) = 3. Hence the following are
indeed directed (% — 1)-paths in D[X] with the required sources and terminals:

/
Q) = ToT_ 4y, Toopy - Tyy,

/
Q2 = T1l1—4,T1-2t1 - - - Ty, and

/
Q3 = ToTo—41 X221 - -+ Tiq-
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Observe that these paths use all arcs of difference d* = —t; except for arcs ¢; =
(T4, T0), 2 = (x4, 1), and c3 = (x5, T2).

Now let S, SY C Z7, be two sets satisfying Assumptions (X;)—(X,),(Y;)—(Y3) of
the proposition. Furthermore, let @1, @2, @3 be the pairwise vertex-disjoint directed
paths in D[Y] whose existence is assured by Condition (Y}), so that

Q1 is a directed (ys,,y—1)-path of length 2% — 1,

@ is a directed (ys,, ys)-path of length ¢, for some ¢ € {1,...,% —3}, and

@3 is a directed (ys,,y1)-path of length % —2 —q.

We may then define our next resolution class as

Ry = {Qi«?ﬁtl Ys; Q1Y—170, Ql2xt2 Yso Q2y3x2Q/3xt3 3/33Q3y19€1}-

Now, all arcs of mixed differences have been used in resolution classes Ry, ..., Rpyi1-
In addition, we have also used up in D[X]:

e all arcs of difference k + 1;
e arcs b¥, for i = 1,2,3 (of differences 1 — ¢; and —2 — #;); and
e all arcs of difference —t; except ¢;, for i = 1,2, 3.

Assumptions (X;)—(X4) now guarantee that the remaining subdigraph of D[X] ad-
mits a Cy,-D. In D[Y], however, we have used up:

e all arcs of difference k + 1;
e arcs b, for i = 1,2, 3 (of differences s; — 1 and s; + 5); and

e arcs used in the directed paths @;, for 2 =1, 2, 3.

Assumptions (Y7)—(Ys) now guarantee that the remaining subdigraph of D[Y] admits
a Cp,-D. The directed m-cycles from the remaining subdigraphs of D[X] and D[Y]
can be arranged into resolution classes that complete our RC,,-D of K3, . 0

PROOF OF THEOREM 1.4. Let m be an odd integer, 5 < m < 49. Then K  admits
a RC,,-D by Lemma 3.1 if m = 5, by Lemma 3.3 if m = 11, and by Lemma 3.5 if
m = 9. It can be verified that the computational results in Appendix A show that
the conditions of Proposition 3.4 hold for all odd m, 7 < m < 49, m # 0 (mod 3),
m # 11; hence K, admits a RC,,-D for all such m. Finally, Appendix B shows that
the conditions of Proposition 3.6 hold for all odd m, 15 < m <45 m =0 (mod 3);
hence K3, admits a RC,,-D for all such m as well. Therefore, the statement holds
for all odd m, 5 < m < 49. 0
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4 Conclusion

In Propositions 3.4 and 3.6 we gave sufficient conditions for the complete symmetric
digraph K;  to admit a resolvable decomposition into directed m-cycles. These
sufficient conditions — missing ingredients to complete Construction 3.2 — were
verified computationally for 7 < m < 50. We expect that more computing power,
as well as more persistence, would yield similar results for larger values of m. A
general result would, of course, be preferable. We therefore leave the reader with the
following open problem.

Problem 4.1 Prove that the sufficient conditions in Propositions 3.4 and 3.6 are
satisfied for all admissible values of m, or more generally, complete Construction 3.2
to obtain a resolvable directed m-cycle decomposition of K3, for all odd m > 7.

Note that solving Problem 4.1 would complete the proof of Conjecture 1.3, which
in turn would complete the solution to Problem 1.1.

A Computational results — Case m #Z 0 (mod 3)

For each value of m we give a set S C Z;, satisfying Conditions (Y;) — (Yi) of
Proposition 3.4 (if m # 11), or Conditions (X;) — (X4) from the proof of Lemma 3.3
(if m = 11). The required differences appear in bold type. In addition, we give a
desired decomposition into directed m-cycles C; and vertex-disjoint directed paths
@1 and Q. If m is not prime, we also give a partition of Z}, — (SU{Z4t'}) satisfying
the assumptions of Lemma 2.1.

o m=171
S =1{2,3,6)
Q1= (570’2)
Q2 = (3767174)
Oy = (0,3,5,4,6,2,1,0)
Cy = (0,6,5,1,3,2,4,0)
e m=11

S = {3, 4,9, 10}

Q) = (7,10,9,2,0,3,1,4)

Q2 = (57 8, 6)

¢y, =1(0,10,2,6,9,8,1,5,4,3,7,0)
Cy =(0,4,8,7,6,10,3,2,5,9,1,0)
C3=(0,9,7,5,3,6,4,2,1,10,8,0)

Q1 =(11,1,5,7,10)
QQ = (679a073a478a ]-2a 2)
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¢y =1(0,1,2,4,5,6,8,9,10,12,3,7,11,0)
Cy=1(0,4,7,8,11,2,5,9,12,1, 3,6, 10,0)
C3=1(0,2,3,5,8,10,1,4,6,7,9,11,12,0)

m =17

S =1{1,2,3,5)

Q1 = (15,16,1,4,7,9,14,2,5,6, 11, 13)

Q. = (8,10,12,0,3)

Cy = (0,2,4,6,8,9,12,13,14,15,1,3,5, 7, 10,11, 16, 0)
Cy = (0,5,8,11, 14, 16,2, 3, 4,9, 10,13, 1,6,7, 12, 15,0)
. =(0,1,2,7,8,13,16,4,5, 10, 15,3,6,9, 11, 12,14, 0)

O

m =19

S ={2,12,15}

Q1 =(17,0,15,11,7,3,5)

Q2 =(9,2,4,6,8,10,12,14, 16, 18,1,13)
Cy=(0,12,8,4,16,9,5,1,3,18,11,13,15,17,10,6,2,14,7,0)
Cy =(0,2,17,13,6,18,14,10,3,15,8,1,16,12,5,7,9,11,4,0)

m = 23

S ={1,2,15,18}

Q1 =(21,22,17,9,1,19,20,12,7,8,10,5,0, 2,4, 6)

Q2 = (11,3,18,13, 14, 15, 16)

Cy =1(0,15,7,22,14,9,4,19,11,6,1,2,3,5,20,21, 16,17, 18,10, 12, 13, 8,0)
Cy =(0,18,19,14,16,8,9,10,11,13,15,17,12,4,5,6,7, 2,20, 22,1, 3,21, 0)
C3 = (0,1,16,18,20,15,10,2,17,19,21,13,5,7,9,11,12,14,6, 8, 3, 4, 22, 0)

m = 25

S =1{1,2,4,7}

Q. = (23,2,6,10, 14,15, 16, 17, 19)

Qs = (12,13,20,21,0,7,8,9,11, 18,22, 24, 1,3, 4, 5)

Cy = (0,4,8,12,16,20,24,6,7,11,15,19,1, 2, 3,10, 17, 21, 22,23, 5,9, 13, 14, 18, 0)

Cy = (0,1,5,6,8,15,22,4,11, 13, 17,24, 3,7, 14,16, 18, 20,2, 9, 10, 12, 19, 21, 23, 0)

C3 =(0,2,4,6,13,15,17,18,19,20,22,1,8,10,11, 12,14, 21,3,5,7,9, 16, 23,24, 0)
Partition contains: {+3,+5}, {£6,+10}, and {e} for each remaining differ-
ence e

m = 29

S={1,2,5,8}

Q1 =(27,28,7,8,9,11,16, 21, 23, 25,26, 5, 10,12, 13, 15,17, 18, 20, 22)

Q2 = (14,19,24,0,1,2,3,4,6)

Cy = (0,5,13,18,23,28,4,9,14,22,1,6,7,15, 20, 25,27, 3,8, 16, 24, 26, 2, 10, 11,
12,17,19,21,0)

Cy = (0,8,10,15,23,2,7,9,17,22,24,25,4,12, 20,21, 26,28, 1, 3,5,6,11, 13, 14,
16,18, 19,27,0)

Cs3 = (0,2,4,5,7,12,14,15,16, 17,25, 1,9, 10, 18, 26, 27,6, 8, 13, 21, 22, 23,24, 3,
11,19, 20, 28, 0)
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e m=231
S ={1,21,24}
Q1 =(29,19,9,30,23,13, 14,4, 28, 18, 8)
Q. = (15,16,17,10,11,12,5,6,7,0, 1,2, 3,24, 25, 26, 27, 20, 21, 22)
C; = (0,21,11,4,5,26,16,9,10,3,27,17,7,28,29,22,12,2,23,24,14,15,8, 1,
25,18, 19,20, 13,6, 30,0)
Cy = (0,24,17,18,11,1,22,23,16,6,27,28,21,14,7,8,9,2, 26,19, 12,13, 3,4,
25,15, 5,29, 30,20, 10,0)

e m =235
S ={1,24,27}
O, = (33,22,14,3,27,16,5,32,21,13,2,29, 18,10, 34, 26, 15,7, 8, 0, 1, 28, 20, 9)
Q2 = (17,6, 30,19, 11,12, 4, 31,23, 24, 25)
C, = (0,24,16,8,9,1,25,26,27,28,17, 18,19, 20,12, 13,14, 6,7, 31, 32, 33, 34,
23,15,4,5,29,21,10,2,3, 30,22, 11,0)
Cy = (0,27,19,8,32,24,13,5,6,33,25,14,15,16, 17,9, 10, 11, 3,4, 28, 29, 30, 31,
19,21, 22,23,12, 1,2, 26, 18,7, 34, 0)
Partition contains: {#£5,£7}, {£10,£14}, {£15,+2}, and {e} for each re-
maining difference e

o m =237
S ={1,7,10}
Q1 = (35,36,0,1,11,12,13, 14, 15, 25, 26, 27, 28)
Q2 = (18,19,29,29, 10, 20, 21, 22, 23, 30, 3,4, 5,6, 16, 17,24, 31, 32, 33,34, 7, 8)
Cy = (0,7,14,21,28,1,8,15,22,29, 36,9, 16, 26, 33, 6, 13, 23, 24, 34, 35,5, 12, 19,
20, 30,31,4,11,18,25,32,2,3,10,17,27,0)
Cy = (0,10,11,21,31,1,2,12,22,32,5,15, 16, 23, 33, 3, 13, 20, 27, 34,4, 14, 24,
25,35,8,9,19,26,36,6,7,17, 18, 28,29, 30,0)

e m =141
S ={1,8,11}
Q1 = (39,6,14,15,23,24,32,40,7,18,26,34,1,2,10,11, 19,27, 35, 36, 3,4, 12,
13,21, 22,30, 31)
Q2 = (20,28,29,37,38,5,16,17, 25,33,0,8,9)
C, = (0,11,12,23,31,1,9,17,28,36,6,7,8,19, 20,21, 32,2, 3, 14, 22,33, 34, 35,
5,13,24,25,26,37,4,15,16, 27, 38, 39, 40, 10, 18, 29, 30, 0)
Cy = (0,1,12,20,31,32,33,3,11,22,23,34,4,5,6, 17, 18, 19, 30, 38, 8, 16, 24, 35,
2,13,14,25,36,37,7,15,26,27,28,39,9, 10, 21, 29, 40, 0)

e m =143
S ={1,30,33}
Q1 = (41,28,15,2,32,19,6, 36, 23, 10,0, 33, 34,24, 11)
Q2 = (21,22,12,13,3,4,5,35,25,26,16,17,18, 8,9, 42, 29, 30, 20, 7, 37, 38, 39,
40,27,14,1,31)
C; = (0,30,31,32,33,20,10,11,1, 34,21, 8, 38, 28, 18, 19, 9, 39, 29, 16, 3, 36, 26,
27,17,4,37,24,25,12,2,35,22,23,13,14,15,5,6,7,40,41,42,0)



B

A. BURGESS ET AL./AUSTRALAS. J. COMBIN. 71 (2) (2018), 272-292 287

Cy = (0,1,2,3,33,23,24, 14, 4,34, 35,36, 37, 27, 28,29, 19, 20, 21, 11, 12, 42, 32,
22,9,10,40,30,17,7,8,41,31, 18, 5,38, 25, 15, 16,6, 39, 26, 13, 0)

m = 47

S ={1,33,36}

Q1 = (45,46,35,24,13,2,3,4,40,29,18,19,5,41,27,16,17,6, 7,43, 32, 33, 22,
8,44,30,31,20,21,10,11, 12)

Q2 = (23,9,42,28, 14,0, 36, 37, 38, 39, 25,26, 15, 1, 34)

C1 = (0,33,34,20,6,42, 43,29, 15, 16, 2, 35, 36, 22,23, 12, 1, 37, 26, 27, 13, 14, 3,
39,28,17,18,4,5,38,24,25,11,44, 45,31, 32,21, 7,40, 41, 30, 19, 8,9, 10, 46, 0)
Cy = (0,1,2,38,27,28, 29,30, 16, 5, 6, 39, 40, 26, 12, 13, 46, 32, 18,7, 8,41, 42, 31,
17,3,36,25,14,15,4,37,23,24, 10,43, 44, 33,19, 20, 9, 45, 34, 35, 21,22, 11, 0)

m = 49

S =1{2,10,13}

Q. = (47,8,18, 28,38, 48,9, 19, 21, 31, 44, 46, 10, 23, 25, 35, 37)

Qx = (24,34,36,0,2,12,22,32,45,6, 16,26, 39, 41,5, 7, 20, 33, 43, 4, 14, 27, 29,
42,3,13,15,17, 30,40, 1, 11)

C; = (0,10,20,30,43,7,9,22,35,45,47,11, 13, 23, 36, 38,40, 4, 17,19, 32,42, 6,8, 21,
34,44,5,18,31,33,46,48,12, 14, 24, 26, 28,41, 2,15, 25, 27,37, 1, 3, 16, 29, 39, 0)

Cy = (0,13,26,36,46,7,17,27, 40,42, 44,8, 10, 12,25, 38,2, 4, 6, 19, 29, 31, 41, 43, 45,
9,11,21,23,33,35,48, 1, 14, 16, 18, 20, 22, 24, 37, 39, 3, 5, 15, 28, 30, 32, 34, 47, 0)
Partition contains: {£7,+1}, {£14,+£3}, {£21,+4}, and {e} for each remain-
ing difference e

Computational results — Case m =0 (mod 3)

For each value of m we give sets S*,SY C Z, satisfying Conditions (X;) — (X4),

(Y1) -

(Y1) of Proposition 3.6 (if m > 15), or from the proof of Lemma 3.5 (if

m =9). The required differences appear in bold type. In addition, we give a desired
decomposition of a subgraph of D[X] into directed m-cycles C} and (for m = 9 only)
pairwise vertex-disjoint directed paths @)}, and a desired decomposition of a subgraph
of D[Y] into directed m-cycles C; and pairwise vertex-disjoint directed paths @;. We
also give a partition of Z7, — (S U {™1}) satisfying the assumptions of Lemma 2.1.

e m=29

SX ={1,2,3,4,6,7}

Q) = (1, 3)
5 =(2,4)
Q, = (0,6,7,8,5)
C! =(0,4,8,3,7,5,6,1,2,0)
Ch=(0,7,2,6,8,1,4,5,3,0)
Cl =(0,3,6,4,7,1,5,2,8,0)
(0,1,8,2,3,5,7,4,6,0)

c) =
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Ct=(0,2,5,8,6,3,4,1,7,0)

Partition contains: {8}

Y =1{1,3,4,6,7,8}

Q1 =(2,3)

Q2 = (4,7,1)

Q3 (6757078)
C1=1(0,1,8,2,5,6,7,4,3,0)
Cy=(0,7,8,5,3,1,4,2,6,0)
C3=1(0,3,6,4,1,7,5,2,8,0)
Cy = (0,6,1,548372,0)
Cs = (0,4,5,8,7,6,3,2,1,0)

Partition contains: {2}

m = 15

SX ={4,79}

C1 =1(0,4,13,7,11,5,9,3,12,1,10,14,8,2,6,0)

Cl =(0,7,1,8,12,6,13,5,14,3,10,4, 11,2,9,0)

C} =1(0,9,13,2,11,3,7,14,6,10,1,5,12,4,8,0)

Partition contains: {£3, 45}, and {e} for each remaining difference e

Y = {1,5,6,9,10}
Q1 = (11,6,7,12,2,8,9,4,5, 14)

Q, = (13,3)
(0,10,1)

Cy = (0,1,2,12,7,13,8,3,4,14,9,10,11,5,6,0)
(0,5,11,2,7,1,6,12,3,9,14,8,13,4,10,0)
(0,6,11,1,7,8,2,3,12,13,14,5,10,4,9,0)

Cu=(0,9,3,8,14,4,13,7,2,11,12,6,1, 10,5, 0)
Partition contains: {£3,42}, and {e} for each remaining difference e

m = 21

S¥ ={1,4,18}

C) =(0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 19, 16, 20, 17, 18, 0)

0 = (0,4,8,12,9,6,10,14, 18,19, 1,5,2,20,3,7, 11, 15, 16, 13, 17, 0)

Ol = (0,18, 15,12, 16, 17, 14, 11,8,5,9,13,10, 7,4, 1, 19, 20,2, 6, 3, 0)

Partition contains: {£6,+7}, {£9, £2},and {e} for each remaining difference e

Y = {3,4,10,13,18}
Q1 (5,15,19,2,12,16,13,17,0, 4,8, 18,10, 20)

= (7,11, 1463)
=(9,1)
1:(0 10,14,18,1,11,15,4,7,17,6,19,8,12,9, 13, 16, 5, 2, 20, 3, 0)
02:(0 13,2,15,12,4,1,14,11, 3,6, 10, 7,20,17,9, 19, 16, 8,5, 18,0)
(031619,1,41417202691215187101358110)

04 = (0,18,15,7,4,17,14,3, 13,10, 2,5,9, 6, 16,20, 12, 1,19, 11,8, 0)
Partition contains: {46, £7}, {9, 2}, and {e} for each remaining difference e
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o m =27
SX = {3,22,25}
C! = (0,25,23,21,19,17, 15,13, 11,6, 4, 1,26, 2, 24, 22, 20, 18, 16, 14,9, 12, 7, 10,
5,8,3,0)
C = (0,22,25,20,15, 18,13, 16, 19, 14,17, 12, 10,8, 11,9, 4,7, 2,5, 3,6, 1, 23, 26,
21,24, 0)
C = (0,3,25,1,4,26,24,19,22, 17, 20, 23, 18, 21, 16, 11, 14,12, 15, 10, 13, 8,6, 9,
7,5,2,0)
Partition contains: {6, £1}, {£9, £4}, {£12, £7}, and {e} for each remaining
difference e

SY ={3,4,19, 24,25}

Q: = (20,12,4,2,5,9,13,17, 21,19, 16,8, 11, 15, 18, 10, 7, 26)
Q> = (22,14,6,25,23,0,3)

@3 = (24,1)
C, = (0,19,11,3,1,26,18,16,14, 12,15, 7,4, 23,20, 24,22, 25,17,9,6, 10,2, 21,
13,5,8,0)

Cy = (0,25,2,6,4,7,11,8,12,9,1,5,24,16,13, 10, 14, 17, 20, 23, 21, 18, 15, 19,
22,26, 3,0)

Cy = (0,4,1,25,22,19,17,14,11,9,12,10,8, 6,3, 7,5, 2, 26, 23, 15, 13, 16, 20, 18,
21,24, 0)

C. = (0,24,21,25,1,4,8,5,3,6,9,7,10,13, 11, 14, 18, 22, 20,17, 15, 12, 16, 19,
23,26, 2,0)

Partition contains: {£6, £1}, {£9,+5}, {£12,£7}, and {e} for each remain-
ing difference e

e m =233
SX ={11,12,19, 22}
C7 = (0,19,5,24,10,29,15,1, 20,6, 28,14, 25,11, 30, 8, 27, 16, 2, 13, 32,21, 7, 18,
4,26,12,23,9,31,17,3,22,0)
cy = (0,22,1,12,31,20,9,28,6,17,29,18,7,19, 8,30, 16, 5,27, 13, 24, 3,25, 14,
26, 15,4,23,2,21,10,32,11,0)
C} = (0,11,22,8,19, 30,9, 20,31, 10, 21, 32, 18,29, 7, 26,4, 15,27, 5, 16, 28, 17, 6,
25,3,14,2,24,13,1,23,12,0)
C, = (0,12,24,2,14,3,15,26,5,17,28,7,29, 8, 20,32, 10,22,11,23,1, 13,25, 4,
16,27, 6,18, 30,19, 31,9,21,0)
Partition contains: {£3,+1}, {£+6,+2}, {£9,+4}, {£15,+5}, and {e} for
each remaining difference e

SY ={1,7,13,26}

Q1 = (8,21,14,27,28,2,15,16,29,9,22,23,24,17,30,4, 11, 18, 25, 5, 31, 32)

Q, = (12,19,20,13,26,6,7,0,1)

Qs = (10,3)

C, = (0,7,20,27,1,14,21,28,8,15,22, 29, 30,23, 16,9, 2, 3,4,17,10,11, 24, 31,
5,12,13,6,32,25, 18,19, 26, 0)

Cy = (0,13,14,7,8,1,2,9,10,17,18, 11,12, 25, 26, 27, 20, 21, 22, 15, 28,29, 3, 16,
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23,30,31,24,4,5,6,19,32,0)

Cy = (0,26,19,12,5,18,31, 11,4, 30, 10, 23,3,29,22,2, 28,21, 1,27, 7, 14, 15, 8,
9,16,17,24,25,32,6,13,20,0)

Partition contains: {3, £11}, {£6,+£2}, {£9, +4}, {£12, £5}, {£15, £8},
and {e} for each remaining difference e

m = 39

S¥ = {13,16,24,26}

O = (0,13,26,3,16,29, 6,19, 32,9, 22, 35,12, 25, 38, 15, 28, 2, 18,31, 5, 21, 34, 8,
24,37,11,27, 1, 14,30, 4, 17,33, 7, 20, 36, 10, 23, 0)

Ch = (0,16,32,6,22,38,12,28,15, 2,26, 13,29, 3,19, 35,9, 25,1, 17, 30, 7, 23, 10,
36,21, 37, 14,27, 4,20, 33,18, 5,31, 8, 34, 11, 24, 0)

Cf = (0,26,11,37,24,9,35,22,7,33,20,5, 18, 3,29, 14, 38, 25, 10, 34, 19, 4, 30,
15,31,16, 1,27, 12, 36, 23,8, 21, 6, 32, 17, 2, 28, 13, 0)

O = (0,24,11,35,20,7,31, 18,34, 21,8, 32, 19,6, 30, 17, 4, 28, 5,29, 16,3, 27, 14,
1,25,12,38,23,36,13,37,22,9, 33, 10, 26, 2, 15, 0)

Partition contains: {£3,+1}, {£6, £2}, {9, £4}, {£12,+5}, {£18, £7}, and
{e} for each remaining difference e

SY ={2,7,28,34}
Q1 = (29,18,7,14,16,23,25,27,22,17,12,19, 21, 10, 5, 0, 28, 35, 24, 13, 2, 30, 32,

34,36, 38)
Qs = (31,20,9,37,26,15,4,11,6,8, 3)
Q3 = (33,1)

O, = (0,34,23,12,1,35,3,37,5,7,2,36,4,32,21, 16, 18, 25,20, 15, 17, 6,13, 8,
10, 38, 27, 29, 31, 33, 22, 24, 26, 28, 30, 19, 14,9, 11, 0)

Cy =(0,7,9,16,11,13,15,10,17,19, 8, 36, 25, 32,27, 34,2,4,38,6,1,3,5,12, 14,
21,28,23,18,20,22,29, 24, 31, 26, 33, 35, 30, 37, 0)

Oy = (0,2,9,4,6,34,29,36,31,38, 1,8, 15,22, 11, 18, 13, 20, 27, 16, 5, 33, 28, 17,
24,19, 26,21,23,30, 25, 14, 3, 10, 12, 7, 35, 37, 32, 0)

Partition contains: {3, £13}, {6, +1}, {9, £4}, {£12, 48}, {15, +10},
{£18,£14}, and {e} for each remaining difference e

m = 45

SX = {4,7,39)

C1 = (0,4,8,12,16, 20,24, 28, 32,36, 43,5,9, 13,17, 21, 25,29, 33, 37,41, 2,6, 10,
14,18, 22, 26, 30, 34, 38,42, 1, 40,44, 3,7,11, 15,19, 23, 27, 31, 35, 39, 0)

Oy = (0,7,1,5,12,19,26, 33,27, 21, 28, 35,42, 4,11, 18, 25, 32, 39, 43, 2,9, 16, 23,
30,37, 44,6, 13,20, 14,8, 15, 22, 29, 36, 40, 34, 41,3, 10, 17, 24, 31, 38, 0)

Cf = (0,39,33,40,1,8,2,41,35,29,23,17, 11, 5, 44, 38, 32, 26, 20, 27, 34, 28, 22,
16,10,4,43,37,31,25,19,13,7,14,21,15,9, 3,42, 36, 30, 24, 18,12, 6, 0)
Partition contains: {£3, £5}, {£9, £10}, {£12, £20}, {£15, £1}, {£18, +2},
{£21, £8}, and {e} for each remaining difference e
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SY = {10,16,31, 35}

O, = (11,21,31,2,12,22,38,9, 19,29, 39, 4, 14, 24, 40, 30, 20, 10, 0, 35, 25, 41, 6,
37,27,17,7,42,28,44)

0, = (13,23, 33,43, 8, 18,34, 5, 36, 26, 16, 32, 3)

Qs = (15,1)

O, = (0,10,20,30,40,5,21,37,23, 13,3, 38, 28, 18,4, 39, 29, 15, 31,41, 12, 2, 33,
19, 35,6, 16, 26, 36, 1,32,22,8,24,34,44,9,25,11,42,7,17,27,43,14,0)

Cy = (0,16,6,22,32,42,13,29,19,9,44,30, 1, 17, 3, 34, 20, 36, 7, 38,24, 10,41,
31,21, 11,27, 37,2, 18, 8, 43, 33, 23, 39, 25, 15, 5, 40, 26, 12, 28, 14, 4, 35, 0)

Cy = (0,31,17,33,4,20,6,41,27, 13,44, 34, 24, 14, 30, 16, 2, 37, 8, 39, 10, 26, 42,
32,18, 28, 38,3, 19,5, 15, 25,35, 21,7, 23,9, 40, 11, 1, 36, 22, 12, 43, 29, 0)
Partition contains: {£3,45}, {£6,£20}, {£9, £1}, {£12, £2}, {15, £4},
{£18,£7}, {£21,48}, and {e} for each remaining difference e

Acknowledgements

The authors gratefully acknowledge support by the Natural Sciences and Engineering
Research Council of Canada. Special thanks to Patrick Niesink and Ryan Murray,
who wrote most of the code used to obtain the computational results, and to Aras
Erzurumluoglu for his careful proofreading of the manuscript.

References

1]

2]

P. Adams and D. Bryant, Resolvable directed cycle systems of all indices for
cycle length 3 and 4, (unpublished).

B. Alspach and R. Héaggkvist, Some observations on the Oberwolfach problem,
J. Graph Theory 9 (1985), 177-187.

B. Alspach, P.J. Schellenberg, D.R. Stinson and D. Wagner, The Oberwolfach
problem and factors of uniform odd length cycles, J. Combin. Theory Ser. A 52
(1989), 20-43.

F.E. Bennett and X. Zhang, Resolvable Mendelsohn designs with block size 4,
Aequationes Math. 40 (1990), 248-260.

J.-C. Bermond, O. Favaron and M. Mahéo, Hamiltonian decomposition of Cay-
ley graphs of degree 4, J. Combin. Theory Ser. B 46 (1989), 142-153.

J.-C. Bermond, A. Germa and D. Sotteau, Resolvable decomposition of K}, J.
Combin. Theory Ser. A 26 (1979), 179-185.

A. Burgess and M. Sajna, On the directed Oberwolfach Problem with equal
cycle lengths, Elec. J. Comb. 21 (2014), P1.15 (14 pages).



A. BURGESS ET AL./AUSTRALAS. J. COMBIN. 71 (2) (2018), 272-292 292

[8] C.J. Colbourn and J.H. Dinitz (editors), Handbook of combinatorial designs,
Chapman and Hall/CRC, Boca Raton, FL, 2007.

9] D.G. Hoffman and P.J. Schellenberg, The existence of Cy-factorizations of
Ky, — F, Discrete Math. 97 (1991), 243-250.

(Received 21 June 2017; revised 7 Mar 2018)



