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Abstract

Let G = (V,E) be a simple, connected and undirected graph with non-
empty vertex set V (G) and edge set E(G). We define a labeling φ :
V ∪ E → {1, 2, 3, . . . , k} to be a vertex irregular total k-labeling of G
if for every two different vertices x and y of G, their weights w(x) and
w(y) are distinct, where the weight w(x) of a vertex x ∈ V is w(x) =
φ(x) +

∑
xy∈E(G) φ(xy). The minimum k for which the graph G has

a vertex irregular total k-labeling is called the total vertex irregularity
strength of G, denoted by tvs(G). The subdivision graph S(G) of a
graph G is the graph obtained from G by replacing each edge e = uv
with the path (u, re, v) of length 2, where re is a new vertex (called a
subdivision vertex) corresponding to the edge e. Let T be a tree. Let
E(T ) = E1 ∪E2 be the set of edges in T where E1(T ) = {e1, e2, . . . , en1}
and E2(T ) = {e1, e2, . . . , en2} are the sets of pendant edges and interior
edges, respectively. Let S(T ; ri; sj) be the subdivision tree obtained from
T by replacing each edge ei ∈ E1 with a path of length ri + 1 and each
edge ej ∈ E2 with a path of length sj + 1, for i ∈ [1, n1] and j ∈ [1, n2].
In 2010, Nurdin et al. conjectured that tvs(T ) = max{t1, t2, t3}, where
ti = d(1+

∑i
j=1 nj)/(i+1)e and ni is the number of vertices of degree i ∈

[1, 3]. In this paper, we show that the total vertex irregularity strength of
S(T ; ri; sj) is equal to t2, where the value of t2 is calculated for S(T ; ri; sj).
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1 Introduction

Graph theory has experienced a fast development during the last 60 years. Among
all the different kinds of problems that appear while studying graph theory, one
that has been growing strongly during the last three decades is the area that studies
labelings of graphs. Let us consider a connected and undirected graph G = (V,E)
without loops and parallel edges. The set of vertices and edges of this graph are
denoted by V (G) and E(G), respectively. Wallis [17] defined a labeling of G as a
mapping that carries a set of graph elements into a set of integers, called labels. If
the labeling on a graph G is applied to the union of its vertex and edge sets, then
such a labeling is called a total labeling. Baca et al. [5] defined a vertex irregular total
k-labeling on graph G as a mapping φ : V (G) ∪ E(G)→ {1, 2, . . . , k} such that the
total vertex-weights w(x) = φ(x) +

∑
xy∈E(G) φ(xy) are different for all vertices, that

is, w(x) 6= w(y) for all different vertices x, y ∈ V . Furthermore, they defined the
total vertex irregularity strength tvs(G) of a graph G as the minimum k for which G
has a vertex irregular total k-labeling.

Finding the irregularity strength of a graph seems to be rather hard even for
simple graphs; see [1, 2, 3, 6, 7, 8, 12]. In [5], Baca et al. proved that for any tree
with m pendant vertices and no vertices of degree 2, d(m + 1)/2e ≤ tvs(T ) ≤ m.
Anholcer et al. [4] in 2011, then, improved the lower bound for such a tree T with
no isolated vertices by showing that tvs(T ) = d(m+ 1)/2e. Stronger results for trees
were proved by Nurdin et al. [10]. They gave the following theorem.

Theorem 1.1 [10] Let T be any tree having ni vertices of degree i, (i = 1, 2, . . . ,∆),
where ∆ = ∆(T ) is the maximum degree in T . Then

tvs(T ) ≥ max

{⌈
1 + n1

2

⌉
,

⌈
1 + n1 + n2

3

⌉
, . . . ,

⌈
1 + n1 + n2 + · · ·+ n∆

∆ + 1

⌉}
.

Studying the total vertex irregularity strength of a general tree is an NP-complete
problem. So there is no efficient algorithm to determine the total vertex irregular-
ity strength of a general tree. Nurdin et al. [10] conjectured that the total vertex
irregularity strength of any tree T is only determined by the number of its vertices
of degrees 1, 2, and 3. More precisely, they gave the following conjecture.

Conjecture 1 [10] Let T be a tree with maximum degree ∆. Let ni be the number
of vertices of degree i ≤ ∆ in T . Then

tvs(T ) = max{t1, t2, t3}, where ti =

⌈
1 +

∑i
k=1 nk

(i+ 1)

⌉
for i ∈ {1, 2, 3}. (1)

For an integer r ≥ 1, the subdivision graph S(G, r) of a graph G is the graph
obtained from G by replacing every edge e = uv with a path (u, x1, x2, . . . , xr, v)
of length r + 1. The new vertices x1, x2, . . . , xr are called subdivision vertices corre-
sponding to the edge uv. If r = 1, then we write S(G) for short. Let T be a tree
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and let E(T ) = E1 ∪ E2 be the set of edges in T where E1(T ) = {e1, e2, . . . , en1}
and E2(T ) = {e1, e2, . . . , en2} are the sets of pendant edges and interior edges, re-
spectively. Now define S(T ; ri; sj) to be the subdivision tree obtained from T by
replacing each edge ei ∈ E1 with a path of length ri + 1 and each edge ej ∈ E2 with
a path of length sj + 1, for i ∈ [1, n1] and j ∈ [1, n2]. If ri = sj = r for all i and j,
then we write S(T ; ri; sj) as S(T, r). Furthermore, if ri = sj = 1 for all i and j, then
we write S(T ; ri; sj) as S(T ).

Consider S(T ; ri; sj). In order to define the total labeling of S(T ; ri; sj), we need
some additional definitions. A vertex of degree at least 3 in a tree T will be called a
major vertex of T . Any pendant vertex u of T is said to be a terminal vertex of a
major vertex v of T if d(u, v) < d(u,w) for every major vertex w of T . The terminal
degree of a major vertex v is the number of terminal vertices of v. A major vertex v
of T is an exterior major vertex of T if it has positive terminal degree.

A branch path is a path between a terminal vertex and its exterior major vertex.
Furthermore, we define an interior path as a path between two major vertices that
is passing vertices of degree 2 only. Let P = {P 1, P 2, . . . , P n1} be the ordered set of
n1 branch paths where |P i| ≥ |P i+1| for each i, and let Q = {Q1, Q2, . . . , Qn2} be
the ordered set of interior paths with |Qj| ≥ |Qj+1| for each j. See Figure 1 for an
illustration.

Figure 1: T and S(T ; ri; sj).

Many researchers restricted their studies in finding the total vertex irregularity
strength of trees for certain classes. Susilawati, Baskoro and Simanjuntak in [14, 15]
determined the total vertex irregularity strength of trees with maximum degree four
or five. They also determined the total vertex irregularity strength for subdivision of
several classes of trees such as subdivision of a caterpillar, subdivision of a fire cracker
and subdivision of an amalgamation of stars [13]. Recently, they studied the vertex
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irregularity strength for trees having many vertices of degree 2 [16]. Furthermore, for
some particular classes of trees such as paths and caterpillars [10], linear forests [9],
firecrackers and banana trees [11], their values are known. These results supported
Conjecture 1.

In this paper, we investigate the total vertex irregularity strength of an irregular
subdivision of any tree S(T ; ri; sj). This paper adds further support to Conjecture 1
by showing that such a subdivision of any tree has total vertex irregularity strength
equal to t2. Note that any subdivision of a tree is also a tree.

2 Main Results

The following lemma will be used to prove the next theorem.

Lemma 2.1 Let T be a tree with p vertices and q edges. If S(T ; ri; sj) is an irregular
subdivision of T where ri, sj ≥ 1 for each i and j, then t2 = max{t1, t2, . . . , t∆}, where
all the ti are calculated for S(T ; ri; sj).

Proof. Consider a tree T with p vertices and q edges. Let ni be the number of
vertices of degree i in T . By using the facts that p =

∑∆
i=1 ni and q = p − 1 such

that q =
∑∆

i=1 ni − 1, we have:

n1 = 2 +
∑∆

i=2
(i− 2)ni. (2)

By substituting the value of n1 from Equation (2) into Equation (1), we obtain

ti =

⌈
1 +

∑i
k=1 nk

(i+ 1)

⌉
=

⌈
1 + (2 +

∑∆
k=2(k − 2)nk) +

∑i
k=2 nk

(i+ 1)

⌉
=

⌈
3 +

(∑i
k=2(k − 2)nk +

∑∆
j=i+1(j − 2)nj

)
+
∑i

k=2 nk

(i+ 1)

⌉
=

⌈
3 +

∑i
k=2(k − 1)nk +

∑∆
j=i+1(j − 2)nj

(i+ 1)

⌉
. (3)

Now we consider S(T ; ri; sj). Since ri, sj ≥ 1 and each edge of T is subdivided, we
have:

n2(S(T ; ri; sj)) ≥
∑∆

i=1
ni(T )− 1. (4)

After the subdivision of tree T , only the number of vertices of degree 2 (n2) in
S(T ; ri; sj) is changed. The other values of the ni (i 6= 2) remain the same. Recall
equation (1) and calculate all the ti for S(T ; ri; sj). By Inequality (4), it is clear that
t2 ≥ t1. Now, for i ≥ 3 and ti in (3), we will show that t2 − ti is nonnegative.
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t2(S(T ; ri; sj))− ti(S(T ; ri; sj))

=

⌈
1 + n1 + n2

3

⌉
−
⌈

3 +
∑i

k=2(k − 1)nk +
∑∆

j=i+1(j − 2)nj

(i+ 1)

⌉
=

⌈
(i+ 1)(1 + n1 + n2)

3(i+ 1)

⌉
−
⌈

3(3 +
∑i

k=2(k − 1)nk +
∑∆

j=i+1(j − 2)nj)

3(i+ 1)

⌉
≥

⌈
(i+ 1) + (i+ 1)n1 + (i+ 1)(

∑∆
j=1 nj − 1)

3(i+ 1)

⌉
−
⌈

9 + 3
∑3

k=2(k − 1)nk + 3
∑∆

j=4(j − 2)nj)

3(i+ 1)

⌉
=

⌈
2(i+ 1)n1 + (i+ 1)

∑∆
k=2 nk

3(i+ 1)

⌉
−
⌈

9 + 3
∑3

k=2(k − 1)nk + 3
∑∆

j=4(j − 2)nj

3(i+ 1)

⌉
.

Since 2(i+ 1)n1 + (i+ 1)
∑∆

k=2 nk > 9 + 3
∑3

k=2(k− 1)nk + 3
∑∆

j=4(j− 2)nj, for i ≥ 3
we have t2 − ti ≥ 0. Hence t2 = max{t1, t2, . . . , t∆}. �

Theorem 2.1 Let T be a tree with p vertices and q edges. If S(T ; ri; sj) is an
irregular subdivision of T where ri, sj ≥ 1 for each i and j, then tvs(S(T ; ri; sj)) = t2,
where all tis are calculated for S(T ; ri; sj).

Proof. By Lemma 2.1 and Theorem 1.1, we have tvs(S(T ; ri; sj)) ≥ t2, where t2 is
calculated in S(T ; ri; sj). To prove the upper bound, we define a total t2-mapping φ
of S(T ; ri; sj) as follows.

Let VB and EB be the set of vertices and edges of S(T ; ri; sj) in branch paths,
respectively. Their members are as follows.

VB = {vi,j | 1 ≤ i ≤ n1, 1 ≤ j ≤ ki + 1} ∪ {wt,l|3 ≤ t ≤ ∆, 1 ≤ l ≤ nk},
EB = {vi,jvi,j+1 | 1 ≤ i ≤ n1, 1 ≤ j ≤ ki} ∪ {vi,ki+1wt,l|1 ≤ i ≤ n1}.

First, we label the edges in all branch paths by the following steps. Note that
ki is the number of vertices of degree 2 in the branch path P i starting from the
pendant vertex vi,1 for i ∈ [1, n1]. Vertices wt,l are the external major vertices.
Order all branch paths in S(T ; ri; sj) such that k1 ≥ k2 ≥ · · · ≥ kn1 ≥ 1 and let
k = k1 + k2 + · · ·+ kn1 + n1 + 1.

For 1 ≤ j ≤ k1, we define

aj = |{ki | ki = j, 1 ≤ i ≤ n1}|,
z0 = n1,

zj = n1 −
j∑

s=1

as.
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Label the edges in all branch paths by the following steps.

1. For 1 ≤ i ≤ z0, φ(vi,1vi,2) = i.

2. For 2≤j≤k1 and 1≤ i ≤ zj−1, φ(vi,jvi,j+1)=

⌈
(1+i+

∑j−2
r=0 zr)−φ(vi,j−1vi,j)

2

⌉
.

3. For 1 ≤ i ≤ n1, φ(vi,ki+1wt,l)= t2 where vi,ki+1wt,l is an edge for some t, l.

Label the vertices in all branch paths by the following steps.

1. For 1 ≤ i ≤ z0, φ(vi,1) = 1.

2. For 2 ≤ j ≤ k1 + 1 and 1 ≤ i ≤ zj−1, φ(vi,j) =

⌊
(1+i+

∑j−2
r=0 zr)−φ(vi,j−1vi,j)

2

⌋
.

Now, consider all the interior paths of S(T ; ri; sj). Note that lj is the number
of vertices of degree two in the jth interior path Qj. Order all the interior paths in
S(T ; ri; sj) such that l1 ≥ l2 ≥ · · · ≥ ln2 ≥ 1.

Let VI and EI be the vertex and edge sets of all interior paths, respectively. Their
members are as follows.

VI = {ym,n| 1 ≤ m ≤ n2 and 1 ≤ n ≤ lm} and

EI = {wt,lym,1|1 ≤ m ≤ n2} ∪ {ym,nym,n+1| 1 ≤ m ≤ n2, 1 ≤ n ≤ lm − 1} ∪
{ym,lmwt,l|1 ≤ m ≤ n2}.

See Figure 2 for an illustration.

Label the edges in all interior paths of S(T ; ri; sj) by the following steps.

For 1 ≤ m ≤ n2 − 1, let z0 = k and zm = zm−1 + lm.

1. For 1 ≤ m ≤ n2, define φ(wt,lym,1) = t2 and φ(ym,lmwt′,l′) = t2 for some t, t′, l
and l′.

2. For 1 ≤ m ≤ n2 and 1 ≤ n ≤ lm − 1, define

φ(ym,nym,n+1) =

⌈
n+ zm−1 − φ(ym,n−1ym,n)

2

⌉
.

Note that ym,0 = wt,l for some t, l.

Label the vertices in all interior paths as follows.

For 1 ≤ m ≤ n2 and 1 ≤ n ≤ lm + 1, we define

φ(ym,n) =

⌊
n+ zm−1 − φ(ym,n−1ym,n)

2

⌋
.
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Figure 2: S(T ; ri; sj).

Label all vertices of degree k ∈ {3, 4, . . . ,∆} as follows.

For s ∈ {3, 4, . . . ,∆} and l = 1, 2, . . . , ns, we define φ(ws,l) = (n1 +1)+ l+ns−1−
st2.

Under the labeling φ, the total weights of all vertices in S(T ; ri; sj) are described
as follows.

• All vertices in VB admit consecutive weights from 2 to k + 1.

• All vertices in VI admit consecutive weights from k + 2 to k +
∑w

i=1 li + 2

• All vertices of the form ws,l have different weights st2 +
∑n1

i=1 ki + 1 + n1,
where l = 1, 2, . . . , ns.

Therefore the proof is complete. �

Now we give an alternative function λ to label S(T ) with n2(T ) = 0. We define
a function λ : V ∪E → {1, 2, . . . , t2}. Let V = V1 ∪ V2 ∪ V∆ be the set of all vertices
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of S(T ) and let |V | = n, where

V1 = {vi,j | i = 1, 2, . . . , n1, j = 1, 2} is the set of all vertices of degree

one or two in pendant edges of S(T );

V2 = {ym,1 | m = 1, 2, . . . , n− n1 − 1} is the set of all vertices of degree

two in interior edge of S(T );

V∆ = {ws,l | 3 ≤ s ≤ ∆, 1 ≤ l ≤ ns} is the set of all vertices of degree at least

s (s ≥ 3).

See Figure 3 for an illustration.

w3,1 y1,1

w3,2

y2,1 w3,3 y3,1 w3,4

v1,1

v2,1
v2,2

v1,2

y4,1

w3,5

v3,2

v3,1

v4,2

v4,1

v5,2

v5,1

v7,2

v6,2

v7,1

v6,1

Figure 3: T with n2(T ) = 0 and S(T ).

Label all the edges of S(T ) by the following steps.

1. λ(vi,1vi,2) =

{
i, i = 1, 2, . . . , t2,
t2, i = t2 + 1, . . . , n1;

2. λ
(
vi,2ws,l

)
= t2, where vi,2 ∼ ws,l;

3. λ
(
ym,1ws,l

)
= t2, where ym,1 ∼ ws,l.

Label all the vertices of S(T ) by the following steps.

1. λ(vi,1) =

{
1, i = 1, 2, . . . , t2,
2, 3, . . . , (n1 − t2) + 1, i = t2 + 1, . . . , ni;

2. λ(vi,2) =

{
(n1 + 1) + i− (t2 + i), i = 1, 2, . . . , t2,
(n1 + 1) + i− 2t2, i = t2 + 1, . . . , (n1 − t2);

3. λ(ym,1) = 2n1 + 1 +m− 2t2;

4. λ(ws,l) = (n1 + 2) + s+|Vs−1|−st2 where s = 3, 4, . . . ,∆ and l = 1, 2, . . . , ns.

Under the labeling λ, the total weights of the vertices are described as follows.

• All vertices in V1 admit consecutive weights from 2 to 2n1 + 1.
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• All vertices in V2 admit consecutive weights from 2n1 +2 to 2n1 +2+
∑n1

i=1 ki +
1 + n1.

• All vertices ws,l have different weights from st2 + l where l = 1, 2, . . . , ns.

We would like to conclude this paper by providing the following algorithm to
check whether a tree T has the total vertex irregularity strength equal to t2.

Algorithm

1. Consider the tree T .

2. Consider V ′(T ) = {v1, . . . , vn3+···+n∆
}, the set of vertices of degree at least 3.

3. For i = 1, 2, . . . , n3 + · · ·+ n∆,
if vi is not adjacent to a vertex of degree 2, then:

a. T is not an S(T0; ri, sj) for any tree T0.

b. End algorithm.

4. T is an S(T0; ri; sj) for some T0, and tvs(T ) = t2.
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