4-Cycle decompositions of complete 3-uniform hypergraphs

HEATHER JORDON

Department of Mathematics and Computer Science
Albion College
Albion, MI 49224
U.S.A.
hjordon@albion.edu

GENEVIEVE NEWKIRK

Beach Park Middle School
Beach Park, IL 60099
U.S.A.
gennynewk@gmail.com

Abstract

A 3-uniform complete hypergraph of order n has vertex set $\{1, 2, ..., n\}$ and, as its edge set, the set of all possible subsets of size 3. A 4-cycle in this hypergraph is $v_1, e_1, v_2, e_2, v_3, e_3, v_4, e_4, v_1$ where $\{v_1, v_2, v_3, v_4\}$ are distinct vertices and $\{e_1, e_2, e_3, e_4\}$ are distinct 3-edges such that $v_i, v_{i+1} \in e_i$ for i = 1, 2, 3 and $v_4, v_1 \in e_4$ (also known as a Berge cycle). A decomposition of a hypergraph is a partition of its edge set into edge-disjoint subsets. In this paper, we give necessary and sufficient conditions for a decomposition of the complete 3-uniform hypergraph of order n into 4-cycles.

1 Introduction

Problems concerning decompositions of graphs into edge-disjoint subgraphs have been well-studied; see for example the survey in [6]. A decomposition of a graph G is a set $\{F_1, F_2, \ldots, F_k\}$ of subgraphs of G such that $E(F_1) \cup E(F_2) \cup \cdots \cup E(F_k) = E(G)$ and $E(F_i) \cap E(F_j) = \emptyset$ for all $1 \leq i < j \leq k$. If F is a fixed graph and $\mathcal{F} = \{F_1, F_2, \ldots, F_k\}$ is a decomposition such that $F_1 \cong F_2 \cong \ldots \cong F_k \cong F$, then \mathcal{F} is called an F-decomposition. The problem of determining all values of n for which there is an F-decomposition of the complete graph K_n of order n has attracted a lot of interest for various graphs F (see the survey [1]).

The notion of decompositions of graphs naturally extends to hypergraphs. A hypergraph H consists of a finite nonempty set V of vertices and a set $E = \{e_1, e_2, \ldots, e_m\}$ of hyperedges where each $e_i \subseteq E$ with $|e_i| > 0$ for $1 \le i \le m$. If $|e_i| = h$, then we call e_i an h-edge. If every edge of H is an h-edge for some h, then we say that H is h-uniform. The complete h-uniform hypergraph $K_n^{(h)}$ is the hypergraph with vertex set V, where |V| = n, in which every h-subset of V determines an h-edge. It then follows that $K_n^{(h)}$ has $\binom{n}{h}$ hyperedges. When h = 2, then $K_n^{(2)} = K_n$, the complete graph on n vertices. We will use the notation $K_n - I$ to denote the complete graph of order n with the edges of a 1-factor I removed.

As in the case of graphs, a decomposition of a hypergraph H is a partition of its edge set into subsets. A decomposition of a hypergraph H is a set $\{F_1, F_2, \ldots, F_k\}$ of subhypergraphs of H such that $E(F_1) \cup E(F_2) \cup \cdots \cup E(F_k) = E(H)$ and $E(F_i) \cap E(F_j) = \emptyset$ for all $1 \leq i < j \leq k$. If F is a fixed hypergraph and $\mathcal{F} = \{F_1, F_2, \ldots, F_k\}$ is a decomposition such that $F_1 \cong F_2 \cong \ldots \cong F_k \cong F$, then \mathcal{F} is called an F-decomposition. In [7], necessary and sufficient conditions are given for an F-decomposition of $K_n^{(3)}$ for all 3-uniform hypergraphs F with at most three edges and at most six vertices.

A cycle of length k in a hypergraph H with vertex set $V(H) = \{v_1, v_2, \ldots, v_n\}$ and hyperedge set $E(H) = \{e_1, e_2, \ldots, e_m\}$ is a sequence of the form

$$v_1, e_1, v_2, e_2, \dots, v_k, e_k, v_1$$

where $\{v_1, v_2, \dots, v_k\}$ are distinct vertices and $\{e_1, e_2, \dots, e_k\}$ are distinct hyperedges satisfying $v_i, v_{i+1} \in e_i$ for $1 \leq i \leq k-1$ and $v_k, v_1 \in e_k$. This cycle is known as a Berge cycle, having been introduced by Berge in [3]. Decompositions of the complete 3-uniform hypergraph into hamiltonian cycles were considered in [4, 5] and the completion of the proof of their existence was completed in [15]. Decompositions of the complete k-uniform hypergraph into hamiltonian cycles were considered in [11, 13], where a complete solution was given in [11] for $k \geq 4$ and $n \geq 30$ and cyclic decompositions were considered in [13]. In [10], a different type of cycle in a hypergraph was introduced: a tight ℓ -cycle in a k-uniform hypergraph is a cyclic ordering of ℓ vertices, $\ell > k$, such that each consecutive k-tuple of vertices is a hyperedge. Tight hamiltonian cycles of 3-uniform hypergraphs were investigated in [2, 9, 12], and no complete resolution of the problem is known. As a consequence of the results in [2, 9, 12], decompositions of $K_n^{(3)}$ into tight hamiltonian cycles are known for all admissible $n \leq 46$. Tight (not necessarily hamiltonian) cycles are briefly considered in [12] where it is remarked that a decomposition of $K_n^{(3)}$ into tight 4-cycles exists if and only if $n \equiv 2, 4 \pmod{6}$ due to a classical result of Hanani [8] regarding the existence of balanced incomplete block designs of order 4.

Thus, in this paper, we are interested in (Berge) 4-cycle decompositions of complete 3-uniform hypergraphs. We seek to partition the edge set of $K_n^{(3)}$ into subsets of four hyperedges each such that each subset gives rise to a 4-cycle in $K_n^{(3)}$. For convenience, we will often write the 3-edge $\{a, b, c\}$ as abc and cycles of length k in

a 3-uniform hypergraph as

$$(x_1y_1x_2, x_2y_2x_3, \dots, x_{k-1}y_{k-1}x_k, x_ky_kx_1),$$

where $x_i y_i x_{i+1}$ is a 3-edge for $1 \le i \le k$ (addition modulo k), $\{x_1, x_2, \ldots, x_k\}$ are distinct vertices, and all 3-edges in the cycle are different.

A necessary condition for the existence of a 4-cycle decomposition of $K_n^{(3)}$ is that 4 must divide the number of hyperedges in $K_n^{(3)}$, that is, $4 \mid \binom{n}{3}$. Clearly, if n is even, then $4 \mid \binom{n}{3}$ and if n is odd and $4 \mid \binom{n}{3}$, then $n \equiv 1 \pmod{8}$. Hence, we have the following lemma.

Lemma 1.1 For $n \geq 4$, if there exists a 4-cycle decomposition of $K_n^{(3)}$, then either n is even or $n \equiv 1 \pmod{8}$.

For n even, we handle the case in which $n \equiv 4, 0, 2 \pmod{6}$ in Sections 2, 3, and 4 respectively. The case in which $n \equiv 1 \pmod{8}$ is handled in Section 5.

2 The $n \equiv 4 \pmod{6}$ case

In this section, we consider the case when $n \equiv 4 \pmod{6}$. In this case, since $4 \mid \binom{n}{3}$ and $n \equiv 4 \pmod{6}$, we know that $4 \mid [n(n-2)/2]$ and $3 \mid (n-1)$. Thus, since $K_n - I$ has n(n-2)/2 edges, we may use a decomposition of $K_n - I$ into 4-cycles, and then blow up each 4-cycle of $K_n - I$ exactly (n-1)/3 times to obtain a 4-cycle decomposition of $K_n^{(3)}$. For the rest of this section, we will assume the vertex set of $K_n^{(3)}$ (or K_n) is \mathbb{Z}_n , the integers modulo n. Without loss of generality, we consider a specific 1-factor of K_n , namely,

$$I = \{\{0, n/2\}, \{1, n/2 + 1\}, \dots, \{n/2 - 1, n - 1\}\}.$$

Note that $K_n^{(3)}$ has n(n-1)(n-2)/6 hyperedges and $K_n - I$ has n(n-2)/2 edges. Now, as mentioned previously, if we have a decomposition of $K_n - I$ into 4-cycles, we seek a procedure by which we can build each 4-cycle of $K_n - I$ into (n-1)/3 4-cycles in $K_n^{(3)}$. Thus, following [15], we define a *choice design* on a given 3-uniform hypergraph H to be a choice of one vertex from each 3-edge of H to represent that 3-edge. Given two vertices a and b, we define ab* to be the set of all 3-edges containing both a and b for which neither a nor b is the representative.

The following grouping of the elements of the vertex set $V = \mathbb{Z}_n$ of either $K_n^{(3)}$ or K_n will be used in the construction of a suitable choice design. Group the elements of V into n/2 groups $G_i = \{i, n/2 + i\}$ for $0 \le i \le n/2 - 1$. The notation G(a) will denote the subscript of the group containing element a, that is, G(a) = i if $a \in G_i$. Let $\binom{V}{3}$ denote the set of all 3-edges of $K_n^{(3)}$ and define two types of 3-edges in $\binom{V}{3}$:

Type 1: 3-edges abc in which a and b are in the same group and c is in a different group; and

Type 2: 3-edges abc in which a, b, and c are all in different groups.

The following lemma describes a choice design on $K_n^{(3)}$ in which given b and c in different groups, the set bc* contains (n-1)/3 elements.

Lemma 2.1 For every positive integer $n \equiv 4 \pmod{6}$, there exists a choice design on $K_n^{(3)}$ with vertex set $V = \mathbb{Z}_n$ grouped into sets $G_i = \{i, i+n/2\}$ for $i = 0, 1, \ldots, n/2-1$ such that

- 1. if $abc \in \binom{V}{3}$ and a and b are in the same group, then c is not chosen as the representative of this 3-edge; and
- 2. given b and c in different groups, the set bc* contains (n-1)/3 elements.

PROOF: Let $n \equiv 4 \pmod{6}$ be a positive integer, say n = 6k + 4 for some positive integer k. We construct a choice design on $K_n^{(3)}$ and then show it satisfies the two conditions given above.

Let $V = \mathbb{Z}_n$ be the vertex set of $K_n^{(3)}$ and let $G_i = \{i, i+n/2\}$ for $i = 0, 1, \dots, n/2-1$. Choosing representatives for 3-edges of Type 1: Order the 3-edge abc of Type 1 as a, a + n/2, b so that $a, a + n/2 \in G_i$ for some i with $0 \le i \le n/2 - 1$. Then, choose the representative for this 3-edge as follows:

- if b < a, choose a + n/2;
- if a < b < a + n/2, choose a; and
- if b > a + n/2 choose a + n/2.

Choosing representatives for 3-edges of Type 2: Order the 3-edge abc so that G(a) < G(b) < G(c). Then, choose the representative for this 3-edge as follows:

- if $a + b + c \equiv 0 \pmod{3}$, choose a;
- if $a + b + c \equiv 1 \pmod{3}$, choose b; and
- if $a + b + c \equiv 2 \pmod{3}$, choose c.

We must now prove that this is indeed the desired choice design. Clearly, Condition (1) follows immediately by the choice of representatives for Type 1 edges. We now wish to show Condition (2) holds. Let b and c belong to different groups and without loss of generality assume b < c. We wish to show that bc* contains (n-1)/3 elements. Consider first the Type 1 edges containing b and c. There are only two: bc(b+n/2) or bc(c+n/2) where all arithmetic is done modulo n. If c < c + n/2, then c + n/2 represents bc(c+n/2) and b represents bc(b+n/2). If c > c + n/2, then rewrite bc(c+n/2) as (c-n/2)bc. If c-n/2 < b < c, then c-n/2 represents this edge and b represents bc(b+n/2). On the other hand, if b < c - n/2, then c represents (c-n/2)bc and (c-n/2)bc are in different groups, then exactly one representative is added to (c-n/2)bc and (c-n/2)bc are in different groups, then exactly one representative is added to (c-n/2)bc and (c-n/2)bc are in different groups.

Now suppose abc is a Type 2 edge. With b and c fixed, the 3-edges abc of Type 2 are created by allowing a to run through each of the two elements in the remaining 3k groups, giving 6k possible choices for a. Thus, exactly 2k times a will be chosen as the representative, 2k times b will be chosen at the representative, and 2k times c will be chosen as the representative. Hence, bc* will contain 2k+1=(n-1)/3 elements.

We now show that $K_n^{(3)}$ decomposes into 4-cycles when $n \equiv 4 \pmod{6}$.

Theorem 2.2 For each positive integer $n \ge 10$ with $n \equiv 4 \pmod{6}$, the complete 3-uniform hypergraph $K_n^{(3)}$ decomposes into 4-cycles.

PROOF: Let $n \geq 10$ be a positive integer with $n \equiv 4 \pmod 6$. Then, $4 \mid [n(n-2)/2]$ and it is well-known that $K_n - I$ decomposes into 4-cycles. Hence let $V(K_n) = \mathbb{Z}_n$ and decompose $K_n - I$ into 4-cycles. Consider the choice design on $K_n^{(3)}$ given by Lemma 2.1. Let (x_1, x_2, x_3, x_4) be a 4-cycle in the decomposition of $K_n - I$, and let y_j^i represent each of the (n-1)/3 representatives in $x_j x_{j+1} *$, that is, $x_j x_{j+1} * = \{y_j^1, y_j^2, \dots, y_j^{(n-1)/3}\}$, for j = 1, 2, 3, 4 and where all arithmetic is done modulo 4. Then, for $i = 1, 2, \dots, (n-1)/3$, the 4-cycle (x_1, x_2, x_3, x_4) in the decomposition of $K_n - I$ will give rise to (n-1)/3 edge-disjoint 4-cycles $(x_1 y_1^i x_2, x_2 y_2^i x_3, x_3 y_3^i x_4, x_4 y_4^i x_1)$ in $K_n^{(3)}$. Thus, the n(n-2)/8 edge-disjoint 4-cycles in the decomposition of $K_n - I$ will give rise to n(n-1)(n-2)/24 edge-disjoint 4-cycles in $K_n^{(3)}$.

3 The $n \equiv 0 \pmod{6}$ case

In this section, we consider the case when $n \equiv 0 \pmod{6}$. We begin with a few special cases.

Lemma 3.1 The hypergraph $K_6^{(3)}$ decomposes into 4-cycles.

PROOF: A decomposition of $K_6^{(3)}$ into 4-cycles can be found in the Appendix. \Box

Define the 3-uniform hypergraph H_m of order 2m as follows: Let $V(H_m) = \{0, 1, \ldots, 2m-1\}$ grouped as $G_0 = \{0, 2, \ldots, 2m-2\}$ and $G_1 = \{1, 3, \ldots, 2m-1\}$. Let $E(H_m)$ be the set of all 3-edges abc such that a, b, and c are not all from the same group, that is, at least one of a, b, c is an element of G_0 and at least one of a, b, c is an element of G_1 . Note that $|E(H_m)| = m^2(m-1)$.

We now require a decomposition of H_6 of order 12 into 4-cycles.

Lemma 3.2 The 3-uniform hypergraph H_6 , as defined above, decomposes into 4-cycles.

PROOF: Note that H_6 is the 3-uniform hypergraph with $V(H_6) = \{0, 1, ..., 11\}$ groups as $G_0 = \{0, 2, 4, 6, 8, 10\}$ and $G_1 = \{1, 3, 5, 7, 9, 11\}$, every 3-edge abc has at least one element of G_0 and at least one element of G_1 . Note also that $|E(H_6)| = 180$. First, $K_{6,6}$ decomposes into 9 edge-disjoint 4-cycles and we seek a decomposition of H_6 into 45 edge-disjoint 4-cycles. Thus, we want to define a choice design on H_6 so that bc* is empty if b and c are in the same group or bc* has 5 elements if b and c are in different groups. Such a choice design is given in the Appendix.

As in the proof of Theorem 2.2, each 4-cycle in the decomposition of $K_{6,6}$ with partite sets $\{0, 2, ..., 10\}$ and $\{1, 3, ..., 11\}$ will give rise to five edge-disjoint 4-cycles in H_6 . Thus, the desired conclusion follows.

Next, define the 3-uniform hypergraph H'_m of order 3m as follows: Let $V(H'_m) = \{0,1,\ldots,3m-1\}$ and let $E(H'_m)$ be the set of all 3-edges abc such that $a \in \{0,1,\ldots,m-1\}$, $b \in \{m,m+1,\ldots,2m-1\}$, and $c \in \{2m,2m+1,\ldots,3m-1\}$. Note that $|E(H'_m)| = m^3$. We now show that H'_m decomposes into 4-cycles when m is even.

Lemma 3.3 For each positive integer $k \geq 1$, the 3-uniform hypergraph H'_{2k} , as defined above, decomposes into 4-cycles.

PROOF: Note that $V(H'_{2k}) = \{0, 1, \ldots, 6k-1\}$ and that $E(H'_{2k})$ is the set of all 3-edges abc such that $a \in \{0, 1, \ldots, 2k-1\}$, $b \in \{2k, 2k+1, \ldots, 4k-1\}$, and $c \in \{4k, 4k+1, \ldots, 6k-1\}$. Note that $|E(H'_{2k})| = 8k^3$ and thus we seek to decompose H'_{2k} into $2k^3$ edge-disjoint 4-cycles. Recall that $K_{2k,2k}$, with partite sets $\{0, 1, \ldots, 2k-1\}$ and $\{2k, 2k+1, \ldots, 4k-1\}$, decomposes into 4-cycles by [14]. For each 4-cycle (x_1, x_2, x_3, x_4) of $K_{2k,2k}$, construct 2k edge-disjoint 4-cycles $(x_1(4k+i)x_2, x_2(4k+i)x_3, x_3(4k+i)x_4, x_4(4k+i)x_1)$ of H'_{2k} where $0 \le i \le 2k-1$. Thus, the k^2 edge-disjoint 4-cycles in $K_{2k,2k}$ will give rise to $2k^3$ edge-disjoint 4-cycles in H'_{2k} .

We now have all the tools necessary to show that the complete 3-uniform hypergraph $K_n^{(3)}$ decomposes into 4-cycles when $n \equiv 0 \pmod{6}$ with $n \geq 6$.

Theorem 3.4 For each positive integer $n \ge 6$ with $n \equiv 0 \pmod{6}$, the complete 3-uniform hypergraph $K_n^{(3)}$ decomposes into 4-cycles.

PROOF: Let $n \geq 6$ with $n \equiv 0 \pmod 6$, say n = 6k for some positive integer k. The case k = 1 is given in Lemma 3.1, and thus we may assume k > 1. Now, we may think of $K_n^{(3)}$ as k copies of $K_6^{(3)}$ with a copy of H_6 between any two of these copies of $K_6^{(3)}$, giving k(k-1)/2 copies of H_6 , and a copy of H_6' between any three of these copies of $K_6^{(3)}$, giving k(k-1)(k-2)/6 copies of H_6' . Since H_6' , H_6 and $H_6^{(3)}$ all decompose into 4-cycles, the desired result follows.

4 The $n \equiv 2 \pmod{6}$ case

In this section, we consider the case when $n \equiv 2 \pmod{6}$. We begin with a special case.

Lemma 4.1 The hypergraph $K_8^{(3)}$ decomposes into 4-cycles.

PROOF: A decomposition of $K_8^{(3)}$ into 4-cycles can be found in the Appendix. \Box

When $n \equiv 2 \pmod{6}$, say n = 6k + 2, it is helpful to think of the vertex set $V(K_n^{(3)})$ of $K_n^{(3)}$ as

$$\{\infty_1, \infty_2\} \cup \left(\bigcup_{0 < i < k-1} \{6i, 6i+1, \dots, 6i+5\}\right).$$

Then, a 3-edge has one of the following forms:

- 1. $\infty_1 \infty_2 c$ where $c \in \{6\ell, 6\ell + 1, \dots, 6\ell + 5\}$ for some $0 \le \ell \le k 1$;
- 2. $\infty_{j}bc$ where $j \in \{1, 2\}$ and $b, c \in \{6\ell, 6\ell + 1, \dots, 6\ell + 5\}$ for some $0 \le \ell \le k 1$;
- 3. $\infty_j bc$ where $j \in \{1, 2\}$, $b \in \{6\ell_1, 6\ell_1 + 1, \dots, 6\ell_1 + 5\}$ and $c \in \{6\ell_2, 6\ell_2 + 1, \dots, 6\ell_2 + 5\}$ where $0 < \ell_1 < \ell_2 < k 1$;
- 4. abc where $a, b, c \in \{6\ell, 6\ell + 1, \dots, 6\ell + 5\}$ for some $0 \le \ell \le k 1$;
- 5. abc where $a, b \in \{6\ell_1, 6\ell_1 + 1, \dots, 6\ell_1 + 5\}$ and $c \in \{6\ell_2, 6\ell_2 + 1, \dots, 6\ell_2 + 5\}$ for some $0 \le \ell_1, \ell_2 \le k 1$ with $\ell_1 \ne \ell_2$; and
- 6. abc where $a \in \{6\ell_1, 6\ell_1 + 1, \dots, 6\ell_1 + 5\}, b \in \{6\ell_2, 6\ell_2 + 1, \dots, 6\ell_2 + 5\}$ and $c \in \{6\ell_3, 6\ell_3 + 1, \dots, 6\ell_3 + 5\}$ where $0 \le \ell_1 < \ell_2 < \ell_3 \le k 1$.

Note that, for a fixed value of ℓ , the hypergraph with edges of types (1), (2), and (4) above is isomorphic to $K_8^{(3)}$ which decomposes into 4-cycles by Lemma 4.1. Next, the hypergraph with edges of type (5) for fixed values of ℓ_1 and ℓ_2 is isomorphic to the hypergraph H_6 given in Section 3 which decomposes into 4-cycles by Lemma 3.2, and the hypergraph with edges of type (6) for fixed values of ℓ_1 , ℓ_2 and ℓ_3 is the hypergraph H_6' given in Section 3 which decomposes into 4-cycles by Lemma 3.3. Thus, it remains to show that the hypergraph with edges of type (3) for fixed values of ℓ_1 and ℓ_2 decomposes into 4-cycles.

Define the hypergraph H''_m of order 2m+1 as follows: let $V(H''_m) = \{\infty, 0, 1, \ldots, 2m-1\}$ and let $E(H''_m)$ be the set of all 3-edges ∞ab where $a \in \{0, 1, \ldots, m-1\}$ and $b \in \{m, m+1, \ldots, 2m-1\}$. Note that $|E(H''_m)| = m^2$ and that for fixed values of ℓ_1 and ℓ_2 , the hypergraph with edges of type (3) above is isomorphic to H''_6 . We now show that H''_m decomposes into 4-cycles when m is even.

Lemma 4.2 For each positive integer $k \geq 1$, the 3-uniform hypergraph H_{2k}'' , as defined above, decomposes into 4-cycles.

PROOF: Let H_{2k}'' be the hypergraph with $V(H_{2k}'') = \{\infty, 0, 1, \dots, 4k-1\}$ and $E(H_{2k}'')$ is the set of all 3-edges ∞ab where $a \in \{0, 1, \dots, 2k-1\}$ and $b \in \{2k, 2k+1, \dots, 4k-1\}$. Note that $|E(H_{2k}'')| = 4k^2$. Now $K_{2k,2k}$ has $4k^2$ edges and decomposes into k^2 edge-disjoint 4-cycles by [14], say (x_1, x_2, x_3, x_4) is one such 4-cycle where the partite sets of $K_{2k,2k}$ are $\{0, 1, \dots, 2k-1\}$ and $\{2k, 2k+1, \dots, 4k-1\}$. Thus, for each 4-cycle of $K_{2k,2k}$, construct the 4-cycle $(x_1 \infty x_2, x_2 \infty x_3, x_3 \infty x_4, x_4 \infty x_1)$ of H_{2k}'' .

We now have all the tools necessary to show that the complete 3-uniform hypergraph $K_n^{(3)}$ decomposes into 4-cycles when $n \equiv 2 \pmod{6}$ with $n \geq 8$.

Theorem 4.3 For each positive integer $n \ge 8$ with $n \equiv 2 \pmod{6}$, the complete 3-uniform hypergraph $K_n^{(3)}$ decomposes into 4-cycles.

PROOF: Let $n \geq 8$ with $n \equiv 2 \pmod 6$, say n = 6k + 2 for some positive integer k. The case k = 1 is given in Lemma 4.1, and thus we may assume that k > 1. Now, we may think of $K_n^{(3)}$ as k copies of $K_8^{(3)}$, k(k-1)/2 copies of the hypergraph H_6 given in Section 3, k(k-1) copies of the hypergraph H_6'' given above, and k(k-1)(k-2)/6 copies of the hypergraph H_6'' given in Section 3. Since $K_8^{(3)}$, H_6 , H_6'' and H_6''' all decompose into 4-cycles by Lemmas 4.1, 3.2, 3.3, and 4.2, the desired result follows.

5 The $n \equiv 1 \pmod{8}$ case

In this section, we consider the case when $n \equiv 1 \pmod{8}$. We begin with a special case.

Lemma 5.1 The hypergraph $K_9^{(3)}$ decomposes into 4-cycles.

PROOF: A decomposition of $K_9^{(3)}$ into 4-cycles can be found in the Appendix. \Box

When $n \equiv 1 \pmod{8}$, say n = 8k + 1, it is helpful to think of the vertex set $V(K_n^{(3)})$ of $K_n^{(3)}$ as

$$\{\infty\} \cup \left(\bigcup_{0 \le i \le k-1} \{8i, 8i+1, \dots, 8i+7\}\right).$$

Then, a 3-edge abc has one of the following forms:

1. ∞bc where $b, c \in \{8\ell, 8\ell + 1, \dots, 8\ell + 7\}$ for some $0 \le \ell \le k - 1$;

- 2. ∞bc where $b \in \{8\ell_1, 8\ell_1 + 1, \dots, 8\ell_1 + 7\}$ and $c \in \{8\ell_2, 8\ell_2 + 1, \dots, 8\ell_2 + 7\}$ where $0 \le \ell_1 < \ell_2 \le k 1$;
- 3. *abc* where $a, b, c \in \{8\ell, 8\ell + 1, \dots, 8\ell + 7\}$ for some $0 \le \ell \le k 1$;
- 4. abc where $a, b \in \{8\ell_1, 8\ell_1 + 1, \dots, 8\ell_1 + 7\}$ and $c \in \{8\ell_2, 8\ell_2 + 1, \dots, 8\ell_2 + 7\}$ for some $0 < \ell_1, \ell_2 < k 1$ with $\ell_1 \neq \ell_2$; and
- 5. abc where $a \in \{8\ell_1, 8\ell_1 + 1, \dots, 8\ell_1 + 7\}$, $b \in \{8\ell_2, 8\ell_2 + 1, \dots, 8\ell_2 + 7\}$ and $c \in \{8\ell_3, 8\ell_3 + 1, \dots, 8\ell_3 + 7\}$ where $0 \le \ell_1 < \ell_2 < \ell_3 \le k 1$.

Note that, for a fixed value of ℓ , the hypergraph with edges of types (1)and (3) above is isomorphic to $K_9^{(3)}$ which decomposes into 4-cycles by Lemma 5.1. Next, the hypergraph with edges of type (5) for fixed values of ℓ_1, ℓ_2 and ℓ_3 is the hypergraph H_8' , given in Section 3 which decomposes into 4-cycles by Lemma 3.3 and the hypergraph with edges of type (2) for fixed values of ℓ_1 and ℓ_2 is the hypergraph H_8'' given in Section 4 which decomposes into 4-cycles by Lemma 4.2. The hypergraph with edges of type (4) for fixed values of ℓ_1 and ℓ_2 is the hypergraph H_8 defined in Section 3, and it remains to show that this hypergraph decomposes into 4-cycles.

Lemma 5.2 The 3-uniform hypergraph H_8 decomposes into 4-cycles.

PROOF: Note that H_8 is the 3-uniform hypergraph with $V(H_8) = \{0, 1, ..., 15\}$ groups as $G_0 = \{0, 2, 4, 6, 8, 10, 12, 14\}$ and $G_1 = \{1, 3, 5, 7, 9, 11, 13, 15\}$, every 3-edge abc has at least one element of G_0 and at least one element of G_1 . Note also that $|E(H_8)| = 448$. First, $K_{8,8}$ decomposes into 16 edge-disjoint 4-cycles and we seek a decomposition of H_8 into 112 edge-disjoint 4-cycles. Thus, we want to define a choice design on H_8 so that bc* is empty if b and c are in the same group or bc* has 7 elements if b and c are in different groups. Such a choice design is given in the Appendix.

As in the proof of Theorem 2.2, each 4-cycle in the decomposition of $K_{8,8}$ with partite sets $\{0, 2, ..., 10, 12, 14\}$ and $\{1, 3, ..., 11, 13, 15\}$ will give rise to 7 edge-disjoint 4-cycles in H_8 . Thus, the desired conclusion follows.

We now have all the tools necessary to show that the complete 3-uniform hypergraph $K_n^{(3)}$ decomposes into 4-cycles when $n \equiv 1 \pmod{8}$ with $n \geq 9$.

Theorem 5.3 For each positive integer $n \ge 9$ with $n \equiv 1 \pmod{8}$, the complete 3-uniform hypergraph $K_n^{(3)}$ decomposes into 4-cycles.

PROOF: Let $n \geq 8$ with $n \equiv 1 \pmod 8$, say n = 8k + 1 for some positive integer k. The case k = 1 is given in Lemma 5.1, and thus we may assume that k > 1. Now, we may think of $K_{8k+1}^{(3)}$ as k copies of $K_9^{(3)}$, k(k-1)/2 copies of the hypergraph H_8 , k(k-1)/2 copies of the hypergraph H_8'' , and k(k-1)(k-2)/6 copies of the hypergraph H_8' . Since $K_9^{(3)}$, H_8 , H_8' and H_8'' all decompose into 4-cycles by Lemmas 5.1, 5.2, 3.3, and 4.2, the desired result follows.

6 Appendix

```
Let V(K_6^{(3)}) be \{0,1,2,3,4,5\}. Then the following five 4-cycles decompose K_6^{(3)}:
```

(132, 243, 354, 421), (143, 325, 530, 041), (125, 502, 230, 051), (130, 024, 415, 531), (210, 034, 405, 542)

Let $V(K_8^{(3)})$ be $\{0, 1, 2, 3, 4, 5, 6, 7\}$. Then the following 14 4-cycles decompose $K_8^{(3)}$:

```
(041, 162, 203, 340), (051, 102, 213, 370), (072, 214, 416, 640), (062, 204, 426, 630), (045, 502, 217, 740), (065, 512, 237, 760), \\ (013, 305, 516, 601), (153, 325, 526, 671), (154, 465, 507, 701), (174, 425, 517, 731), (314, 427, 726, 613), (324, 437, 736, 623),
```

(354, 475, 576, 643), (527, 746, 653, 375).

Let $V(K_9^{(3)})$ be $\{0, 1, 2, 3, 4, 5, 6, 7, 8\}$. Then the following 21 4-cycles decompose $K_9^{(3)}$:

```
(021, 128, 803, 310), (132, 230, 054, 401), (243, 341, 125, 502), (354, 402, 216, 613), (425, 583, 317, 704), \\ (506, 604, 408, 805),
```

(657, 715, 570, 086), (728, 816, 651, 187), (870, 017, 742, 208), (061, 158, 813, 370), (142, 260, 043, 461), (253, 351, 145, 526),

(384, 462, 276, 623), (465, 573, 327, 714), (536, 684, 418, 825), (637, 785, 510, 036), (738, 836, 671, 127), (810, 067, 752, 238),

(586, 643, 347, 745), (687, 764, 428, 826), (748, 845, 530, 027).

The Representatives in a Choice Design on H_6 with |bc*|=5 for all $b\in\{0,2,4,6,8,10\}$ and $c\in\{1,3,5,7,9,11\}$:

```
01* = \{2, 6, 10, 5, 9\}
                            0.3* = \{4, 8, 5, 9, 11\}
                                                         0.5* = \{4, 8, 1, 7, 11\}
                            0.9* = \{4, 8, 10, 5, 11\} 0.11* = \{6, 8, 10, 1, 7\}
0.7* = \{2, 8, 1, 3, 9\}
21* = \{6, 10, 3, 7, 11\} 23* = \{0, 4, 8, 5, 9\}
                                                         25* = \{0, 4, 8, 1, 9\}
27* = \{6, 10, 3, 5, 9\}
                            29* = \{0, 6, 8, 1, 11\}
                                                         211* = \{0, 4, 3, 5, 7\}
41* = \{0, 2, 8, 5, 9\}
                            43* = \{6, 10, 1, 7, 11\}
                                                        45* = \{6, 10, 3, 7, 11\}
                            49* = \{2, 8, 10, 3, 5\}
47* = \{0, 2, 1, 9, 11\}
                                                        411* = \{0, 8, 10, 1, 9\}
61* = \{4, 8, 3, 7, 11\}
                            63* = \{0, 2, 8, 5, 9\}
                                                         65* = \{0, 2, 10, 1, 9\}
67* = \{0, 4, 8, 3, 5\}
                            69* = \{0, 4, 1, 7, 11\}
                                                         611* = \{2, 4, 3, 5, 7\}
81* = \{0, 2, 3, 7, 11\}
                            83* = \{4, 10, 5, 7, 11\}
                                                        85* = \{4, 6, 10, 1, 9\}
87* = \{2, 4, 10, 5, 9\}
                            89* = \{6, 10, 1, 3, 11\} 811* = \{2, 6, 10, 5, 7\}
101* = \{4, 6, 8, 5, 9\}
                            103* = \{0, 2, 6, 1, 5\}
                                                         10.5* = \{0, 2, 7, 9, 11\}
107* = \{0, 4, 6, 1, 3\}
                            10.9* = \{2, 6, 3, 7, 11\} 10.11* = \{2, 6, 1, 3, 7\}
```

The Representatives in a Choice Design on H_8 with |bc*|=7 for all $b \in \{0,2,\ldots,14\}$ and $c \in \{1,3,\ldots,15\}$:

```
0.1* = \{2, 6, 10, 14, 5, 9, 15\}
                                      0.3* = \{4, 8, 12, 5, 9, 11, 15\}
                                                                              0.5* = \{4, 8, 12, 1, 7, 11, 15\}
0.7* = \{2, 8, 14, 1, 3, 9, 13\}
                                      0.9* = \{4, 8, 10, 14, 5, 11, 15\}
                                                                              0.11* = \{6, 8, 10, 12, 1, 7, 13\}
0.13* = \{4, 8, 12, 1, 3, 5, 9\}
                                      0.15* = \{2, 6, 10, 14, 7, 11, 13\}
21* = \{6, 10, 14, 3, 7, 11, 15\}
                                      23* = \{0, 4, 8, 12, 5, 9, 13\}
                                                                              25* = \{0, 4, 8, 12, 1, 9, 15\}
27* = \{6, 10, 14, 3, 5, 9, 13\}
                                      29* = \{0, 6, 8, 14, 1, 11, 13\}
                                                                              211* = \{0, 4, 12, 3, 5, 7, 15\}
213* = \{0, 4, 12, 14, 1, 5, 11\}
                                      215* = \{6, 12, 14, 3, 7, 9, 13\}
41* = \{0, 2, 8, 12, 5, 9, 13\}
                                      43* = \{6, 10, 14, 1, 7, 11, 15\}
                                                                              45* = \{6, 10, 12, 3, 7, 11, 15\}
                                      49* = \{2, 8, 10, 14, 3, 5, 13\}
47* = \{0, 2, 12, 1, 9, 11, 13\}
                                                                              411* = \{0, 8, 10, 12, 1, 9, 15\}
413* = \{6, 8, 10, 3, 5, 11, 15\}
                                      415* = \{0, 2, 8, 10, 1, 7, 9\}
61* = \{4, 8, 12, 3, 7, 11, 15\}
                                      63* = \{0, 2, 8, 14, 5, 9, 13\}
                                                                              65* = \{0, 2, 10, 14, 1, 9, 13\}
67* = \{0, 4, 8, 12, 3, 5, 15\}
                                      69* = \{0, 4, 12, 1, 7, 11, 13\}
                                                                              611* = \{2, 4, 14, 3, 5, 7, 15\}
613* = \{0, 2, 8, 1, 7, 11, 15\}
                                      615* = \{4, 8, 10, 14, 3, 5, 9\}
81* = \{0, 2, 12, 3, 7, 11, 15\}
                                      83* = \{4, 10, 14, 5, 7, 11, 15\}
                                                                              85* = \{4, 6, 10, 12, 1, 9, 13\}
87* = \{2, 4, 10, 14, 5, 9, 15\}
                                      89* = \{6, 10, 12, 1, 3, 11, 13\}
                                                                              811* = \{2, 6, 10, 14, 5, 7, 13\}
813* = \{2, 10, 12, 14, 1, 3, 7\}
                                      815* = \{0, 2, 12, 5, 9, 11, 13\}
101* = \{4, 6, 8, 14, 5, 9, 13\}
                                      103* = \{0, 2, 6, 12, 1, 5, 13\}
                                                                              10.5* = \{0, 2, 14, 7, 9, 11, 15\}
107* = \{0, 4, 6, 12, 1, 3, 13\}
                                      10.9* = \{2, 6, 14, 3, 7, 11, 15\}
                                                                              1011* = \{2, 6, 12, 1, 3, 7, 15\}
1013* = \{0, 2, 6, 5, 9, 11, 15\}
                                      1015* = \{2, 8, 12, 14, 1, 3, 7\}
121* = \{0, 2, 10, 14, 3, 7, 11\}
                                      123* = \{4, 6, 8, 12, 5, 9, 11, 13\}
                                                                              125* = \{6, 10, 14, 1, 7, 11, 15\}
127* = \{0, 2, 8, 14, 3, 9, 15\}
                                      129* = \{0, 2, 4, 10, 1, 5, 13\}
                                                                              1211* = \{6, 8, 14, 7, 9, 13, 15\}
1213* = \{4, 6, 10, 14, 1, 5, 7\}
                                      1215* = \{0, 4, 6, 1, 3, 9, 13\}
141* = \{4, 6, 8, 3, 7, 11, 13\}
                                      143* = \{0, 2, 10, 12, 5, 9, 15\}
                                                                              145* = \{0, 2, 4, 8, 1, 7, 13\}
147* = \{4, 6, 10, 3, 9, 11, 13\}
                                      149* = \{6, 8, 12, 1, 5, 13, 15\}
                                                                              1411* = \{0, 2, 4, 10, 3, 5, 9\}
                                      1415* = \{4, 8, 12, 1, 5, 7, 11\}
1413* = \{0, 4, 6, 10, 3, 11, 15\}
```

References

- [1] P. Adams, D. Bryant and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des. 16 (2008), 373–410.
- [2] R. F. Bailey and B. Stevens, Hamiltonian decompositions of complete k-uniform hypergraphs, *Discrete Math.* **310** (2010), 3088-3095.
- [3] C. Berge, Graphs & Hypergraphs, North-Holland, Amsterdam, 1979.
- [4] J. C. Bermond, Hamiltonian decompositions of graphs, directed graphs and hypergraphs, *Ann. Discrete Math.* **3** (1978), 21–28.
- [5] J. C. Bermond, A. Germa, M. C. Heydemann and D. Sotteau, Hypergraphes hamiltoniens, in *Problèmes combinatoires et théorie des graphes, (Colloq. In-*

- ternat. CNRS, Univ. Orsay, Orsay, 1976), pp. 39–43, Colloq. Internat. CNRS, 260, CNRS, Paris, 1978.
- [6] D. Bryant and S. El-Zanati, Graph decompositions, in *The CRC handbook of Combinatorial Designs*, 2nd ed., (eds. C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton (2007), 477–486.
- [7] D. Bryant, S. Herke, B. Maenhaut and W. Wannasit, Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs, *Australas. J. Combin.* **60** (2) (2014), 227–254.
- [8] H. Hanani, On quadruple systems, Canad. J. Math. 12 (1960), 145–157.
- [9] H. Huo, L. Q. Zhao, W. Feng, Y. S. Yang and Jirimutu, Decomposing the complete 3-uniform hypergraphs $K_n^{(3)}$ into hamiltonian cycles, *Acta Math. Sinica* **58** (2015), 965-976.
- [10] G. Y. Katona and H. A. Kierstead, Hamiltonian chains in hypergraphs, *J. Graph Theory* **30** (1999), 205–212.
- [11] D. Kühn and D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, *J. Combin. Theory Ser. A* **126** (2014), 128-135.
- [12] M. Meszka and A. Rosa, Decomposing complete 3-uniform hypergraphs into Hamiltonian cycles, *Australas. J. Combin.* **45** (2009), 291-302.
- [13] P. Petecki, On cyclic hamiltonian decompositions of complete k-uniform hypergraphs, *Discrete Math.* **325** (2014), 74–76.
- [14] D. Sotteau, Decompositions of $K_{m,n}$ ($K_{m,n}^*$) into cycles (circuits) of length 2k, J. Combin. Theory Ser. B **29** (1981), 75–81.
- [15] H. Verrall, Hamilton decompositions of complete 3-uniform hypergraphs, *Discrete Math.* **132** (1994), 333–348.

(Received 31 Dec 2017)