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Abstract

A 3-uniform complete hypergraph of order n has vertex set {1,2,...,n}
and, as its edge set, the set of all possible subsets of size 3. A 4-cycle
in this hypergraph is vy, ey, v9, €3, V3, €3, vy, €4, v1 Where {vy, vg, v3,v4} are
distinct vertices and {ey, es, €3, e4 } are distinct 3-edges such that v;, v; 1 €
e; for 1 =1,2,3 and vy, v; € ey (also known as a Berge cycle). A decom-
position of a hypergraph is a partition of its edge set into edge-disjoint
subsets. In this paper, we give necessary and sufficient conditions for
a decomposition of the complete 3-uniform hypergraph of order n into
4-cycles.

1 Introduction

Problems concerning decompositions of graphs into edge-disjoint subgraphs have
been well-studied; see for example the survey in [6]. A decomposition of a graph G
is a set {Fy, Fy, ..., F}} of subgraphs of G such that E(Fy)U E(Fy)U---UE(F;) =
E(G) and E(F;,) N E(F;) =0 forall 1 <i < j < k. If Fis a fixed graph and
F ={F,Fy,..., F} is a decomposition such that F} = F, = ... = [, = F | then F
is called an F'-decomposition. The problem of determining all values of n for which
there is an F-decomposition of the complete graph K, of order n has attracted a lot
of interest for various graphs F' (see the survey [1]).
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The notion of decompositions of graphs naturally extends to hypergraphs. A
hypergraph H consists of a finite nonempty set V' of vertices and a set E = {ey, ea, .. .,
em} of hyperedges where each e; C E with |e;| > 0 for 1 <i < m. If |e;] = h, then
we call e; an h-edge. If every edge of H is an h-edge for some h, then we say that H is
h-uniform. The complete h-uniform hypergraph K is the hypergraph with vertex
set V, where |V| = n, in which every h-subset of V' determines an h-edge. It then
follows that K4 has (2) hyperedges. When h = 2, then K = K, the complete
graph on n vertices. We will use the notation K, — I to denote the complete graph
of order n with the edges of a 1-factor I removed.

As in the case of graphs, a decomposition of a hypergraph H is a partition of its
edge set into subsets. A decomposition of a hypergraph H is a set {Fy, F, ..., Fy}
of subhypergraphs of H such that E(Fy)UE(Fy)U---UE(Fy,) = E(H) and E(F;)N
E(F;)=0foralll <i<j <k IfFisa fixed hypergraph and F = {Fy, F5, ..., Fy}
is a decomposition such that F}, = F, = ... =2 [, = F, then F is called an
F-decomposition. In [7], necessary and sufficient conditions are given for an F-
decompostion of K for all 3-uniform hypergraphs F' with at most three edges and
at most six vertices.

A cycle of length k in a hypergraph H with vertex set V(H) = {vy,va,...,0,}
and hyperedge set E(H) = {ey, e, ..., e,} is a sequence of the form

V1, €1,0V2,€9,...,Vk, €, V1

where {vy, v, ..., v} are distinct vertices and {eq, e, . .., ex} are distinct hyperedges
satisfying v;,v;01 € e; for 1 < ¢ < k — 1 and vg,v; € ex. This cycle is known
as a Berge cycle, having been introduced by Berge in [3]. Decompositions of the
complete 3-uniform hypergraph into hamiltonian cycles were considered in [4, 5] and
the completion of the proof of their existence was completed in [15]. Decompositions
of the complete k-uniform hypergraph into hamiltonian cycles were considered in
[11, 13], where a complete solution was given in [11] for £ > 4 and n > 30 and
cyclic decompositions were considered in [13]. In [10], a different type of cycle in
a hypergraph was introduced: a tight (-cycle in a k-uniform hypergraph is a cyclic
ordering of ¢ vertices, ¢ > k, such that each consecutive k-tuple of vertices is a
hyperedge. Tight hamiltonian cycles of 3-uniform hypergraphs were investigated in
[2, 9, 12], and no complete resolution of the problem is known. As a consequence
of the results in [2, 9, 12], decompositions of K,(f)’) into tight hamiltonian cycles are
known for all admissible n < 46. Tight (not necessarily hamiltonian) cycles are
briefly considered in [12] where it is remarked that a decomposition of K into
tight 4-cycles exists if and only if n = 2,4 (mod 6) due to a classical result of Hanani
[8] regarding the existence of balanced incomplete block designs of order 4.

Thus, in this paper, we are interested in (Berge) 4-cycle decompositions of com-

plete 3-uniform hypergraphs. We seek to partition the edge set of K into subsets
of four hyperedges each such that each subset gives rise to a 4-cycle in K9, For
convenience, we will often write the 3-edge {a,b,c} as abc and cycles of length k in
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a 3-uniform hypergraph as

($1y1$2, TYa2X3, ..., Tp—1Yk—-1Tk, xkykffl)a

where x;y;2,41 is a 3-edge for 1 < i < k (addition modulo k), {x1,xs,...,x} are
distinct vertices, and all 3-edges in the cycle are different.

A necessary condition for the existence of a 4-cycle decomposition of K is that
4 must divide the number of hyperedges in K,(f)’), that is, 4 | (g) Clearly, if n is even,

then 4 | (3) and if n is odd and 4 | (5), then n = 1 (mod 8). Hence, we have the
following lemma.

Lemma 1.1 For n > 4, if there exists a 4-cycle decomposition of KT(L3), then either
n is even orn =1 (mod 8).

For n even, we handle the case in which n = 4,0, 2 (mod 6) in Sections 2, 3, and
4 respectively. The case in which n =1 (mod 8) is handled in Section 5.

2 The n =4 (mod 6) case

In this section, we consider the case when n =4 (mod 6). In this case, since 4 | (})
and n = 4 (mod 6), we know that 4 | [n(n — 2)/2] and 3 | (n — 1). Thus, since
K, — I has n(n — 2)/2 edges, we may use a decomposition of K, — I into 4-cycles,
and then blow up each 4-cycle of K,, — I exactly (n — 1)/3 times to obtain a 4-cycle
decomposition of K}(f). For the rest of this section, we will assume the vertex set of
K (or K,,) is Zy,, the integers modulo n. Without loss of generality, we consider a
specific 1-factor of K,,, namely,

I={{0,n/2},{1,n/2+1},....{n/2—1,n—1}}.

Note that K has n(n—1)(n—2)/6 hyperedges and K,, — I has n(n—2)/2 edges.
Now, as mentioned previously, if we have a decomposition of K, — I into 4-cycles,
we seek a procedure by which we can build each 4-cycle of K,, — I into (n — 1)/3
4-cycles in K. Thus, following [15], we define a choice design on a given 3-uniform
hypergraph H to be a choice of one vertex from each 3-edge of H to represent that 3-
edge. Given two vertices a and b, we define abx to be the set of all 3-edges containing
both a and b for which neither a nor b is the representative.

The following grouping of the elements of the vertex set V = Z,, of either K or
K,, will be used in the construction of a suitable choice design. Group the elements
of V' into n/2 groups G; = {i,n/2 + i} for 0 <i < n/2 — 1. The notation G(a) will
denote the subscript of the group containing element a, that is, G(a) =i if a € G;.
Let (g) denote the set of all 3-edges of K and define two types of 3-edges in (g)

Type 1: 3-edges abc in which a and b are in the same group and c is in a different
group; and
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Type 2: 3-edges abc in which a, b, and c are all in different groups.

The following lemma describes a choice design on K% in which given b and ¢ in
different groups, the set bex contains (n — 1)/3 elements.

Lemma 2.1 For every positive integer n = 4 (mod 6), there exists a choice design on
K with vertex set V = 7, grouped into sets G; = {i,i+n/2} fori =0,1,...,n/2—1
such that

1. if abc € (g) and a and b are in the same group, then c is not chosen as the

representative of this 3-edge; and

2. given b and c in different groups, the set bex contains (n — 1)/3 elements.

PROOF: Let n =4 (mod 6) be a positive integer, say n = 6k + 4 for some positive
)

integer k. We construct a choice design on K and then show it satisfies the two

conditions given above.
Let V = Z, be the vertex set of K1) and let G; = {i,i+n/2} fori=0,1,...,n/2—1.

Choosing representatives for 3-edges of Type 1: Order the 3-edge abc of Type 1 as
a,a+n/2,bso that a,a +n/2 € G; for some i with 0 < i <n/2 — 1. Then, choose
the representative for this 3-edge as follows:

e if b < a, choose a + n/2;
e if a < b < a+n/2, choose a; and
e if b > a+n/2 choose a + n/2.

Choosing representatives for 3-edges of Type 2: Order the 3-edge abe so that G(a) <
G(b) < G(c). Then, choose the representative for this 3-edge as follows:

e if a+b+c=0 (mod 3), choose a;
e ifa+b+c=1 (mod 3), choose b; and
e ifa+ b+ c=2 (mod 3), choose c.

We must now prove that this is indeed the desired choice design. Clearly, Condition
(1) follows immediately by the choice of representatives for Type 1 edges. We now
wish to show Condition (2) holds. Let b and ¢ belong to different groups and without
loss of generality assume b < ¢. We wish to show that bex contains (n—1)/3 elements.
Consider first the Type 1 edges containing b and ¢. There are only two: be(b+n/2)
or be(c + n/2) where all arithmetic is done modulo n. If ¢ < ¢+ n/2, then ¢+ n/2
represents bc(c + n/2) and b represents be(b + n/2). If ¢ > ¢+ n/2, then rewrite
be(c +mn/2) as (¢ —n/2)bc. If ¢ —n/2 < b < ¢, then ¢ — n/2 represents this edge
and b represents be(b+ n/2). On the other hand, if b < ¢ —n/2, then ¢ represents
(¢ = n/2)bc and b+ n/2 represents be(b + n/2). In all cases, we conclude that if b
and c are in different groups, then exactly one representative is added to bex from
the Type 1 edges.
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Now suppose abc is a Type 2 edge. With b and c fixed, the 3-edges abc of Type 2
are created by allowing a to run through each of the two elements in the remaining
3k groups, giving 6k possible choices for a. Thus, exactly 2k times a will be chosen
as the representative, 2k times b will be chosen at the representative, and 2k times
¢ will be chosen as the representative. Hence, bex will contain 2k + 1 = (n —1)/3
elements. O

We now show that K? decomposes into 4-cycles when n = 4 (mod 6).

Theorem 2.2 For each positive integer n > 10 with n = 4 (mod 6), the complete
3-uniform hypergraph K decomposes into 4-cycles.

PROOF: Let n > 10 be a positive integer with n =4 (mod 6). Then, 4 | [n(n —2)/2]
and it is well-known that K, — I decomposes into 4-cycles. Hence let V(K,,) = Z,
and decompose K, — I into 4-cycles. Consider the choice design on KS’) given by
Lemma 2.1. Let (xq,x2,23,24) be a 4-cycle in the decomposition of K, — I, and
let y; represent each of the (n — 1)/3 representatives in x;x; 1%, that is, z;z,41% =
{y},yjz-, . ,y]n 1)/3} for j = 1,2,3,4 and where all arithmetic is done modulo 4.
Then, for i = 1,2,...,(n — 1)/3 the 4-cycle (21, 2, x3,24) in the decomposition of
K, [ will give rise to (n—1)/3 edge-disjoint 4-cycles (z1yi s, Toybas, T3ysxs, T4yi71)
in K¢ . Thus, the n(n — 2)/8 edge-disjoint 4-cycles in the decomposition of K, — I

will give rise to n(n — 1)(n — 2)/24 edge-disjoint 4-cycles in K9, O

3 The n=0 (mod 6) case

In this section, we consider the case when n = 0 (mod 6). We begin with a few
special cases.

3)

Lemma 3.1 The hypergraph Ké decomposes into 4-cycles.

PROOF: A decomposition of K((j3)

into 4-cycles can be found in the Appendix. O

Define the 3-uniform hypergraph H,, of order 2m as follows: Let V(H,,) =
{0,1,...,2m — 1} grouped as Gy = {0,2,...2m — 2} and G; = {1,3,...,2m — 1}.
Let E(H,,) be the set of all 3-edges abc such that a, b, and ¢ are not all from the
same group, that is, at least one of a, b, ¢ is an element of GGy and at least one of a,
b, c is an element of G;. Note that |E(H,,)| = m?*(m — 1).

We now require a decomposition of Hg of order 12 into 4-cycles.

Lemma 3.2 The 3-uniform hypergraph Hg, as defined above, decomposes into 4-
cycles.
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PRrOOF: Note that Hg is the 3-uniform hypergraph with V(Hg) = {0,1,...,11}
groups as Gy = {0,2,4,6,8,10} and G; = {1,3,5,7,9,11}, every 3-edge abc has at
least one element of G and at least one element of G;. Note also that |E(Hg)| = 180.
First, K¢ decomposes into 9 edge-disjoint 4-cycles and we seek a decomposition of
Hg into 45 edge-disjoint 4-cycles. Thus, we want to define a choice design on Hg so
that bex is empty if b and ¢ are in the same group or bex has 5 elements if b and ¢
are in different groups. Such a choice design is given in the Appendix.

As in the proof of Theorem 2.2, each 4-cycle in the decomposition of K¢ with partite
sets {0,2,...,10} and {1,3,..., 11} will give rise to five edge-disjoint 4-cycles in Hs.
Thus, the desired conclusion follows. O

Next, define the 3-uniform hypergraph H/, of order 3m as follows: Let V(H] ) =
{0,1,...,3m — 1} and let E(H])) be the set of all 3-edges abc such that a €
{0,1,....om =1}, be {mm+1,....2m — 1}, and ¢ € {2m,2m + 1,...,3m — 1}.
Note that |E(H!,)| = m3. We now show that H/ decomposes into 4-cycles when m
is even.

Lemma 3.3 For each positive integer k > 1, the 3-uniform hypergraph Hj,, as
defined above, decomposes into 4-cycles.

Proor: Note that V(H,) = {0,1,...,6k — 1} and that E(H),) is the set of all
3-edges abc such that a € {0,1,...,2k — 1}, b € {2k,2k+1,...,4k — 1}, and ¢ €
{4k,4k+1,...,6k—1}. Note that |E(HJ,)| = 8k® and thus we seek to decompose Hj,
into 2k% edge-disjoint 4-cycles. Recall that Koy or, with partite sets {0, 1,...,2k—1}
and {2k,2k + 1,...,4k — 1}, decomposes into 4-cycles by [14]. For each 4-cycle
(21,2, x3,24) of Kook, construct 2k edge-disjoint 4-cycles (xq(4k + i)za, zo(4k +
i)z, v3(4k + i)xy, w4(4k + i)x1) of HYy where 0 < ¢ < 2k — 1. Thus, the k? edge-
disjoint 4-cycles in Koy o will give rise to 2k* edge-disjoint 4-cycles in Hj,. a

We now have all the tools necessary to show that the complete 3-uniform hyper-
graph K decomposes into 4-cycles when n = 0 (mod 6) with n > 6.

Theorem 3.4 For each positive integer n > 6 with n = 0 (mod 6), the complete
3-uniform hypergraph K decomposes into 4-cycles.

PROOF: Let n > 6 with n = 0 (mod 6), say n = 6k for some positive integer k.
The case k£ = 1 is given in Lemma 3.1, and thus we may assume k£ > 1. Now, we
may think of K as k copies of Ké3) with a copy of Hg between any two of these
copies of KéB), giving k(k — 1)/2 copies of Hg, and a copy of H{, between any three
of these copies of KéB), giving k(k —1)(k —2)/6 copies of Hf. Since Hf, Hg and Kég)
all decompose into 4-cycles, the desired result follows. O
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4 The n =2 (mod 6) case

In this section, we consider the case when n = 2 (mod 6). We begin with a special
case.

)

Lemma 4.1 The hypergraph Ks(;3 decomposes into 4-cycles.

PRrROOF: A decomposition of K, 5(53) into 4-cycles can be found in the Appendix. a

When n = 2 (mod 6), say n = 6k + 2, it is helpful to think of the vertex set
V(KT(L3)) of K& as

{ool,OOQ}LJ( U {6i,6i+1,...,6i+5}).

0<i<k—1

Then, a 3-edge has one of the following forms:

1. 001009¢ where ¢ € {60,604+ 1,...,6¢+ 5} for some 0 < ¢ < k — 1;
2. oojbc where j € {1,2} and b,c € {6/,60+1,...,60+5} forsome 0 < ¢ < k—1;

3. oojbe where j € {1,2}, b € {6(,,60; + 1,...,6(; +5} and ¢ € {602,605 +
1,...,60,+ 5} where 0 < {; < Uy <k —1;

4. abc where a,b,c € {60,604+ 1,...,60+ 5} for some 0 < ¢ <k —1;

5. abc where a,b € {601,601 +1,...,6(;1 +5} and ¢ € {605,605 + 1,...,605 + 5}
for some 0 < ¢1,0y < k — 1 with ¢, # {5; and

6. abc where a € {601,60; +1,...,60; +5}, b € {605,605+ 1,...,605 + 5} and
CG{6€3,6€3+1,...,6£3+5} where 0 < /4 <£2<€3§k’—1

Note that, for a fixed value of ¢, the hypergraph with edges of types (1), (2), and
(4) above is isomorphic to K, ég) which decomposes into 4-cycles by Lemma 4.1. Next,
the hypergraph with edges of type (5) for fixed values of ¢; and ¢ is isomorphic to
the hypergraph Hg given in Section 3 which decomposes into 4-cycles by Lemma
3.2, and the hypergraph with edges of type (6) for fixed values of ¢, {5 and /5 is the
hypergraph H given in Section 3 which decomposes into 4-cycles by Lemma 3.3.
Thus, it remains to show that the hypergraph with edges of type (3) for fixed values
of /1 and /5 decomposes into 4-cycles.

Define the hypergraph H/ of order 2m + 1 as follows: let V/(H/) = {c0,0,1,...,
2m — 1} and let E(H])) be the set of all 3-edges occab where a € {0,1,...,m — 1}
and b € {m,m +1,...,2m — 1}. Note that |E(H")| = m? and that for fixed values
of ¢, and /s, the hypergraph with edges of type (3) above is isomorphic to Hf. We
now show that H/ decomposes into 4-cycles when m is even.
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Lemma 4.2 For each positive integer k > 1, the 3-uniform hypergraph Hy,., as
defined above, decomposes into 4-cycles.

PRrOOF: Let HY, be the hypergraph with V(HY},) = {00,0,1,...,4k—1} and E(HY,)
is the set of all 3-edges coab where a € {0,1,...,2k—1} and b € {2k, 2k+1,... 4k —
1}. Note that |E(HY,)| = 4k*. Now Koy o has 4k? edges and decomposes into k?
edge-disjoint 4-cycles by [14], say (x1, z2, 3, x4) is one such 4-cycle where the partite
sets of Kog o, are {0,1,...,2k—1} and {2k,2k+1,...,4k—1}. Thus, for each 4-cycle
of Koy ok, construct the 4-cycle (z100x2, x200x3, x300xy, 400x1) of HY,. O

We now have all the tools necessary to show that the complete 3-uniform hyper-
graph K'Y decomposes into 4-cycles when n = 2 (mod 6) with n > 8.

Theorem 4.3 For each positive integer n > 8 with n = 2 (mod 6), the complete
3-uniform hypergraph K decomposes into 4-cycles.

PROOF: Let n > 8 with n = 2 (mod 6), say n = 6k + 2 for some positive integer k.
The case k = 1 is given in Lemma 4.1, and thus we may assume that £ > 1. Now, we
may think of K as k copies of Kég), k(k —1)/2 copies of the hypergraph Hg given
in Section 3, k(k — 1) copies of the hypergraph H{ given above, and k(k — 1)(k —
2)/6 copies of the hypergraph H{ given in Section 3. Since KS(B), Hg, H and H{ all
decompose into 4-cycles by Lemmas 4.1, 3.2, 3.3, and 4.2, the desired result follows.

([

5 The n=1 (mod 8) case

In this section, we consider the case when n = 1 (mod 8). We begin with a special
case.

Lemma 5.1 The hypergraph KéB) decomposes into 4-cycles.

)

PROOF: A decomposition of Kg’ into 4-cycles can be found in the Appendix. a

When n = 1 (mod 8), say n = 8k + 1, it is helpful to think of the vertex set
V(KT(L3)) of K& as

{oo}u< U {8i,8z’+1,...,8i+7}>.
0<i<k—1

Then, a 3-edge abc has one of the following forms:

1. oobc where b,c € {8(,8(+1,...,804+ 7} for some 0 < ¢ < k —1;
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2. oobc where b € {801,8(1 +1,...,801 + 7} and ¢ € {805,805+ 1,...,8(5+ 7}
where 0 </ <ty < k —1;

3. abc where a,b,c € {8(,8(+1,...,80+ T} for some 0 < ¢ <k —1;

4. abc where a,b € {801,801 +1,...,801 + 7} and ¢ € {8(5,8(5+1,...,8l5+ T}
for some 0 < ¢q,0; < k — 1 with ¢; # {5; and

5. abc where a € {801,801 +1,...,8(1 + 7}, b € {805,805+ 1,...,805 + 7} and
CG{863,8€3+1,...,8£3+7}WheI’eOSEl<£2<€3§k’—1.

Note that, for a fixed value of ¢, the hypergraph with edges of types (1)and (3)
above is isomorphic to Kg(f’) which decomposes into 4-cycles by Lemma 5.1. Next,
the hypergraph with edges of type (5) for fixed values of ¢;, ¢ and /3 is the hyper-
graph H, given in Section 3 which decomposes into 4-cycles by Lemma 3.3 and the
hypergraph with edges of type (2) for fixed values of ¢; and /(5 is the hypergraph HY
given in Section 4 which decomposes into 4-cycles by Lemma 4.2. The hypergraph
with edges of type (4) for fixed values of ¢; and ¢ is the hypergraph Hg defined in
Section 3, and it remains to show that this hypergraph decomposes into 4-cycles.

Lemma 5.2 The 3-uniform hypergraph Hg decomposes into 4-cycles.

ProOF: Note that Hg is the 3-uniform hypergraph with V(Hg) = {0,1,...,15}
groups as Go = {0,2,4,6,8,10,12,14} and G; = {1,3,5,7,9,11,13,15}, every 3-
edge abc has at least one element of Gy and at least one element of G;. Note also
that |F(Hg)| = 448. First, Kgg decomposes into 16 edge-disjoint 4-cycles and we
seek a decomposition of Hg into 112 edge-disjoint 4-cycles. Thus, we want to define
a choice design on Hg so that bex is empty if b and ¢ are in the same group or bcx
has 7 elements if b and c are in different groups. Such a choice design is given in the
Appendix.

As in the proof of Theorem 2.2, each 4-cycle in the decomposition of Kgg with partite
sets {0,2,...,10,12,14} and {1,3,...,11,13,15} will give rise to 7 edge-disjoint 4-
cycles in Hg. Thus, the desired conclusion follows. O

We now have all the tools necessary to show that the complete 3-uniform hyper-

graph K decomposes into 4-cycles when n =1 (mod 8) with n > 9.

Theorem 5.3 For each positive integer n > 9 with n = 1 (mod 8), the complete
3-uniform hypergraph K decomposes into 4-cycles.

PROOF: Let n > 8 with n = 1 (mod 8), say n = 8k + 1 for some positive integer
k. The case £ = 1 is given in Lemma 5.1, and thus we may assume that £ > 1.
Now, we may think of Kéi)ﬂ as k copies of Kég), k(k —1)/2 copies of the hypergraph
Hg, k(k — 1)/2 copies of the hypergraph H{, and k(k — 1)(k — 2)/6 copies of the
hypergraph H{. Since Kg(f’), Hg, Hi and H{ all decompose into 4-cycles by Lemmas
5.1, 5.2, 3.3, and 4.2, the desired result follows. a
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6 Appendix

Let V(Kég)) be {0,1,2,3,4,5}. Then the following five 4-cycles decompose Ké?’):

(132,243,354, 421), (143, 325, 530, 041), (125, 502, 230, 051), (130, 024, 415, 531), (210, 034, 405, 542)

Let V(KéS)) be {0,1,2,3,4,5,6,7}. Then the following 14 4-cycles decompose K§3):

(041,162, 203, 340), (051, 102, 213, 370), (072, 214, 416, 640), (062, 204, 426, 630), (045, 502, 217, 740),
(065,512, 237, 760),

(013,305,516, 601), (153, 325, 526, 671), (154, 465, 507, 701), (174, 425, 517, 731), (314, 427, 726, 613),
(324,437, 736,623),

(354,475,576, 643), (527, 746, 653, 375).

Let V(Ké?’)) be {0,1,2,3,4,5,6,7,8}. Then the following 21 4-cycles decompose K9(3):

(021,128,803, 310), (132, 230, 054, 401), (243, 341, 125, 502), (354, 402, 216, 613), (425, 583, 317, 704),
(506, 604, 408, 805),

(657,715,570, 086), (728,816, 651, 187), (870,017, 742, 208), (061, 158,813, 370), (142, 260, 043, 461),
(253,351, 145, 526),

(384,462, 276, 623), (465, 573, 327, 714), (536, 684, 418, 825), (637, 785, 510, 036), (738, 836, 671, 127),
(810,067, 752, 238),

(586, 643,347, 745), (687,764,428, 826), (748,845, 530, 027).

The Representatives in a Choice Design on Hg with |bex | =5 for all b € {0,2,4,6,8,10} and
ce{1,3,57,9, 11}

01 = {2,6,10,5,9}
07+ ={2,8,1,3,9}

21 = {6,10,3,7,11}
27+ = {6,10,3,5,9}

41% = {0,2,8,5,9}
47% ={0,2,1,9,11}

81x = {0,2,3,7,11}
87+ ={2,4,10,5,9}

101 = {4,6,8,5,9}
107+ = {0,4,6,1,3}

03+ = {4,8,5,9,11}
09+ = {4,8,10,5,11}

23+ = {0,4,8,5,9}
29+ = {0,6,8,1,11}

43+ = {6,10,1,7,11}
49% = {2,8,10,3,5}
63% = {0,2,8,5,9}
69+ = {0,4,1,7,11

05+ = {4,8,1,7,11}
011% = {6,8,10,1,7}

25+ = {0,4,8,1,9}
211x = {0,4,3,5,7}

45% = {6,10,3,7,11}
411% = {0,8,10,1,9}

65+ = {0,2,10,1,9}
611% = {2,4,3,5,7}

85% = {4,6,10,1,9}
811 = {2,6,10,5,7}

105+ = {0,2,7,9,11}
1011% = {2,6,1,3,7}
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The Representatives in a Choice Design on Hg with |be* | = 7 for all b € {0,2,...,14} and
cef{l,3,..., 15}
01x={2,6,10,14,5,9,15} 03« = {4,8,12,5,9,11,15} 05% = {4,8,12,1,7,11, 15}

07+ ={2,8,14,1,3,9,13}
013+ = {4,8,12,1,3,5,9}

21 = {6,10,14,3,7,11, 15}
27+ = {6,10,14,3,5,9,13}
213+ = {0,4,12,14,1,5,11}

41 ={0,2,8,12,5,9,13}
47+ ={0,2,12,1,9,11,13}
413« = {6,8,10,3,5,11,15}

61x = {4,8,12,3,7,11, 15}
67+ ={0,4,8,12,3,5,15}
613+ = {0,2,8,1,7,11,15}

81x = {0,2,12,3,7,11,15}
87+ = {2,4,10,14,5,9, 15}
813+ = {2,10,12,14,1,3,7}

101 = {4,6,8,14,5,9, 13}
107+ = {0,4,6,12,1,3,13}
1013+ = {0,2,6,5,9,11,15}

121x = {0,2,10,14,3,7,11}
127+ = {0,2,8,14,3,9,15}
1213 = {4,6,10,14,1,5,7}

141% = {4,6,8,3,7,11,13}
147+ = {4,6,10,3,9,11,13}

1413+ = {0,4,6,10,3,11,15}
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