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Abstract

A method is described for the construction of all geometrically non-
isomorphic ternary OAs in 18 runs. One representative from each ge-
ometric isomorphism class is provided in the electronic appendix.

1 Introduction

A symmetric orthogonal array, OA[N, s™], of strength 2 is an array of order N x m
where the set of m columns contain elements from a distinct set of s symbols arranged
such that, for any pair of columns, every pair of level combinations appears equally
often. Orthogonal arrays are a subset of the class of fractional factorial designs
and are frequently used as designs in various areas (Prvan and Street [10]). When
choosing a design to use in practice, it is important to confirm that the design
chosen can be used to fit the model being proposed. Identifying equivalent designs
depends on whether the factors are qualitative or quantitative. If all of the factors are
qualitative then two designs are said to be equivalent (combinatorially isomorphic) if
one can be constructed from the other through any combination of row permutations,
column permutations or level permutations of one or more factors. Quantitative
factors, however, have an inherent ordering in the levels, and any permutation of
levels that disrupts this order may result in a design that does not retain the same
statistical properties. Thus, two designs are said to be geometrically isomorphic if
one can be constructed from the other through any combination of row or column
permutations or the reversal of the levels in one, or more, factors.



E.M. BIRD AND D.J. STREET / AUSTRALAS. J. COMBIN. 71 (3) (2018), 336-350 337

For binary factors the two sorts of isomorphism are the same and there are many
results available on non-isomorphic binary factorial designs; see, for instance, Kat-
saounis et al. [6] and references cited therein for a summary of the results. In view of
our approach below, it is interesting to observe that Shrivastava and Ding [14] used a
graphical representation of two-level regular fractional factorial designs to determine
the isomorphism properties of the designs.

For three or more levels the two equivalences are clearly different. In this paper
we focus on the determination of all the geometrically non-isomorphic symmetric
ternary designs in 18 runs, as having such a complete enumeration is the only way to
choose the best design for a given situation. For 18 runs, the combinatorially non-
isomorphic designs with 8 or fewer factors were enumerated by Evangelaras et al. [4]
and independently by Schoen [11] using a classification method based on two different
definitions of the generalised word length pattern of the original arrays, and of their
projections into fewer factors. Schoen and Nguyen [13] and Schoen et al. [12] give
an algorithm for complete enumeration of pure-level and mixed level combinatorially
inequivalent orthogonal arrays of given strength ¢, and run-size N.

There have been three earlier papers that have considered the determination of the
geometrically non-isomorphic symmetric ternary designs in 18 runs, and three dif-
ferent numbers of designs have been obtained; see Table 1.1. All three methods
are based on a columnwise extension procedure, where the set of geometrically non-
isomorphic designs with m — 1 factors are extended to designs with m factors. These
are checked for geometrically isomorphic designs and only the geometrically non-
isomorphic designs are retained for use in the next step of the procedure.

Table 1.1: Number of Geometrically Non-Isomorphic OA[18,3™]s
m
Authors 3 4 5 6 7
Tsai et al. [16] 13 129 320 440 253
Tsai et al. [15] 13 133 332 478 284
Pang and Liu [9] 13 137 333 485 291
This paper 13 137 333 485 291

In Tsai et al. [16] two designs are said to be in the same “design family” (that is, the
same geometric isomorphism class) if a design criterion based on an approximation
to the average A, efficiency of the models considered, Q(I'™), is the same for both
designs. They state that “Although it is possible that some designs will be missed,
there is no certain way to avoid this without looking at every possible design, when
the problem soon becomes unmanageable”. The number of designs that they found
is shown in Table 1.1. The same authors (Tsai et al. [17]) studied the statistical
properties of the geometrically non-isomorphic three-level designs with three factors
in 18 runs that can be obtained from Latin Squares.

The other two approaches are based on the use of indicator functions. These func-
tions were introduced by Cheng and Ye [3], who show that a design is uniquely
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represented by its indicator function. In an unpublished manuscript, Tsai et al. [15]
claim to have enumerated all geometrically non-isomorphic 18-run three-level OAs
using an algorithm for checking geometric isomorphism based on the indicator func-
tion calculated using the orthogonal polynomial basis. Pang and Liu [8], however,
show that an indicator function based on orthogonal complex contrasts may retain
more information about the projection properties of the design. Pang and Liu [9]
give an algorithm for checking geometric isomorphism based on an indicator function
calculated using the orthogonal complex contrasts given by Bailey [1]. The number
of designs said to have been found in each of these papers is shown in Table 1.1.
Unfortunately the actual OAs are not available.

Chapter 10 of Kaski and Ostergard [5] stresses the importance of using multiple
methods to address enumeration problems. They suggest systems for checking the
validity of computational results such as “consistency checking” in which “some
relationships among the results—preferably involving the whole computation—are
checked” (p.299). As three different enumerations have given inconsistent results, it
is prudent to either confirm or otherwise the reported counts of geometric isomor-
phism classes with an independent enumeration. In this paper, we also use a colum-
nwise extension procedure (although we have halved the number of columns that
need to be considered at each step compared to the papers mentioned above), but
we use a graph-based method, implemented in the software package Nauty (McKay
and Piperno [7]), to determine if two designs are geometrically non-isomorphic. We
show that our method is exhaustive, and hence we have enumerated all geometrically
non-isomorphic OA[18,3™]s. We provide one representative from each class in the
electronic appendix (Bird and Street [2]).

A ternary array in N = 18 runs, with equal replication of levels in each column,
will satisfy the properties of an OA of strength 2 if the 32 = 9 ordered pairs of
level combinations appear exactly 18/9 = 2 times in every pair of columns. When
3™ < 18, there is only one design to consider, that is, all 3™ runs in the full factorial,
each repeated 18/3™ times. Thus there is a unique O[18,3%]. In the following section
we will begin by constructing all non-isomorphic designs with m = 3 factors. In
Section 3 we extend this process to designs with m = 4 factors and in Section 4, we
generalise the process to m factors. We close with some further remarks.

2 Three Factors

As geometric isomorphism is invariant to row permutations, we always order the rows
of an OA lexicographically. In the case of OA[18,3™]s, this means we can assume
without loss of generality, that the first two columns of the OA are:

,=[0000001T11111222222]

c=[001122001122001T12 2]
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With these two columns fixed, the task of enumerating all OAs with m = 3 factors
has two stages:

1. Enumerate all possible third columns, which we denote by c3, such that all 9
pairs of treatment combinations appear exactly twice in each of the pairs of
columns [¢; c¢3] and [cy c3).

2. Compare all of the OAs defined by [c; ¢y c3], and discard any geometrically
isomorphic designs.

We will now outline a method for enumerating all possible third columns, c3, and
we will then use the software package Nauty (McKay and Piperno [7]) to discard
isomorphic designs.

2.1 All Possible Third Columns

We can represent the entries in c3 as an incidence matrix of each level of c3 with
each level of cy for each level of ¢;. The following example illustrates this.

Example 2.1. Consider the following potential third column:

¢;=[01120222001101120 2]

For each level of c1, the incidence of each level of c3 appearing in the same row as
each level of cy 1s given in the Table 2.1 below. L

Table 2.1: Incidence matrix of levels of c3 vs. levels of ¢y for each level of ¢

ci =0 cp=1 cL=2
Co Co Co
C3 0 1 2| Tota C3 0 1 2| Total C3 0 1 2| Total
O (1 0 1| 2 0O |0 2 0] 2 O (1 0 1] 2
1 |1 1 0] 2 1 |0 0 2| 2 1 |1 1 0 2
2 10 1 1] 2 2 12 0 0] 2 2 /01 1] 2
Total | 2 2 2| 6 Total | 2 2 2| 6 Total | 2 2 2| 6

Notice that the marginal totals for each square incidence matrix in Table 2.1 is equal
to 2 for every row and column. The row totals for each matrix record the number of
times that each level of ¢; appears with each level of c3 (here exactly twice), and the
column totals for each square record the number of times that each level of ¢, appears
with each level of ¢y (again exactly twice, which is implicit given the specification of
c; and cy).

Finally, for the columns [c; ¢y c¢3] to be an OA, we must ensure that each level of
c, appears with each level of c3 exactly twice. We check this by superimposing all
three incidence matrices and calculating the sum of the entries in each of the cells,
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Table 2.2: Matrices within Table 2.1 superimposed

Co
C3 0 1 2
0 | 1+40+1=2 0+240=2 140+1=2
1 | 140+1=2 140+1=2 0+240=2
2 | 0+240=2 140+1=2 140+1=2

as illustrated in Table 2.2 below. As all counts in this superimposed matrix equal 2,
each level of cy appears with each level of c3 exactly twice, as required.

The first step in enumerating all possible vectors of c3 is to enumerate all possible
incidence matrices. As the required marginal totals are 2, this gives us an upper
bound for the entries in these matrices. Thus we can restrict our search to matrices
in which in each cell is one of 0, 1 and 2. After considering each of the 3° = 19, 683
potential matrices and discarding any that do not have the required marginal totals,
we are left with 21 valid incidence matrices, and these are given in Table 2.3.

Table 2.3: All valid incidence matrices

200 0 0 2 020 020 2 00 0 0 2 110
0 0 2 2 00 0 20 2
020 2 00 200 0 0 2 0 0 2 020 110

(a]
[a]
[\
(@]
[\
(@]
(@]
(@]
[\

1 01 2 1 10 0 2 200 011 011
1 01 1 01 1 10 1 10 011 2 011
0 20 0 0 0 2 1 0 011 011 2 00
1 01 1 0 1 10 0 1 011 1 01 1 01
0 20 011 1 01 1 01 110 1 10 011
1 01 1 1 011 11 1 01 011 110

We now need to consider all 213 = 9,261 sets of three of these matrices to check
whether the sum in each entry of the superimposed matrix is equal to 2. Doing
that, we find that there are 132 valid sets of three matrices. Each of the 132 sets
is associated with a column vector, c3. Of these 132 column vectors, 6 remain
unchanged when their levels are reversed and the resulting rows of [c; co c3] are
ordered lexicographically. The remaining 126 columns can be split into two groups
with a one-to-one mapping when the levels are reversed. The next two examples
illustrate these two types of columns.

Example 2.2. Consider the column cg in OAy in Table 2.4. If we reverse the levels
of this column we obtain OAs. We then re-order the rows of OAs lexicographically to
obtain OAs, which is exactly the same as OAy. Hence, this OA remains unchanged
when the levels of c3 are reversed. ]
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Table 2.4: OA which remains unchanged after reversing levels of c3

OA1 — OA2 — OA3

O
-
<)
N\
O
-
<)
N\
O
-
<)
N\

NN NNNNFRRFRFERFEREFEAAEOOOOOOO
NN NRR P OO NNRFR, P OONINDEF —~OO
NOFR PO, R, INONONONOSRFR~@
NN NNDNNFRRFRFERFEREFEAEOOOOO OO
NN NP, P OO NNRFR, P OONINDEF E—~OO
O R, PO, R, ONONONONR @
NN NNNNFRRFRFERFEREFEAEOO0OOO OO
N NP, P OO NNRFR, P OONINDREF —~OO
NOFRPFNOR,EFRL,INONONONORF @

Example 2.3. Consider the column cz in OAy in Table 2.5. If we reverse the levels
of this column we obtain OAs. We then re-order the rows of OAy lexicographically to
obtain OAs, which is not exactly the same as OAy. Since the operations performed to
construct OAs from OAy are allowed under geometric isomorphism, these two designs
are in the same geometric isomorphism class. Hence, the two columns labelled c3 in
each of OAy and OAs give rise to equivalent arrays and so we say that the columns
are isomorphic. ]

We require only one representative from each geometric isomorphism class, so we
can discard the 126/2 = 63 columns that can be generated by reversing the levels of
another column. Hence we are left with 63 + 6 = 69 potential vectors for c3. These
69 columns are given in Table A1 of the Appendix.

2.2 Geometric Isomorphism

Although we were able to discard some vectors in the enumeration of all potential
columns of c3 above, this process alone is not enough to guarantee that the remaining
69 columns will each belong to their own isomorphic class when appended to [¢; cs.

Suppose we intend to establish whether a pair of designs, OA; and OAs,, are non-
isomorphic via exhaustive checking of all allowable operations under geometric iso-
morphism. We must first generate all designs in the geometric isomorphism class of
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Table 2.5: OA which changes after reversing levels of c3
OA1 — OA2 — OA3

Ci Co C3 Ci Co C3 Ci Co C3
0 0 0 0 0 2 0 0 0
0 0 2 0 0 0 0 0 2
0O 1 1 0O 1 1 0 1 0
0 1 2 0O 1 0 0O 1 1
0 2 0 0 2 2 0 2 1
0o 2 1 0o 2 1 0 2 2
1 0 1 1 0 1 1 0 0
1 0 2 1 0 0 1 0 1
1 1 0 1 1 2 1 1 0
1 1 2 1 1 0 1 1 2
1 2 0 1 2 2 1 2 1
1 2 1 1 2 1 1 2 2
2 0 0 2 0 2 2 0 1
2 0 1 2 0 1 2 0 2
2 1 0 2 1 2 2 1 1
2 1 1 2 1 1 2 1 2
2 2 2 2 2 0 2 2 0
2 2 2 2 2 0 2 2 0

OA1, say, and then compare each of these designs to OAs. If none of the generated
designs match OA,, only then can we conclude that OA; and OA, are geometrically
non-isomorphic. For a single design, the construction of all designs in the same iso-
morphism class would require reversing the levels of all Z?:o (f) = 23 = 8 possible
subsets of columns for each of the 3! = 6 permutations of columns. Hence, there
are 8 X 6 = 48 designs in a geometric isomorphism class for a three-factor design,
assuming the rows of each design are ordered lexicographically. Since we have nar-
rowed our search down to 69 OAs, there are potentially (629) = 2,346 pairs of designs
to consider, each of which requires the construction of 48 designs. While this task
may be manageable for three-factor designs, this naive approach quickly becomes
computationally prohibitive when m > 3.

Instead we use nauty (McKay and Piperno [7]), a program for computing automor-
phism groups of graphs and digraphs, to determine whether a pair of designs are
isomorphic. Algorithm 1 below gives details on how we use nauty to filter out any
isomorphic OAs within a set.

A Python implementation of Algorithm 1, run on a x64 PC with Intel Core i5, on
the set of 69 three-factor OAs identified previously took approximately 35 seconds!.

We determined that there are 13 geometric isomorphism classes, which is consistent

'We note that nauty is written in C, hence the efficiency of this algorithm could be improved
with an implementation in C that calls the nauty functions directly.
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Algorithm 1: Keep one representative from each geometric isomorphism
class from a set of OAs
Input: Set of i OAs, A = (0OA;,0A,,...,04;)
Output: Set of j non-isomorphic OAs, B = (OA;,OA,,...,0A4)), j <1
1 Initialise B <— empty set
2 for each OA4 in A do
matched <+ FALSE
for each OAg in B do
Execute Nauty to determine isomorhpism between OA 4 and OApg
if OA4 and OAg are isomorphic then
L matched <— TRUE

Exit inner loop

o N O ook W

9 if matched = FALSE then
10 L Append OA,4 to B

11 Output B

with earlier work. Both Tsai et al. [16] and Pang and Liu [9] give one representative
from each of the 13 geometric isomorphism classes that they found, and we have
confirmed that exactly one of our designs is geometrically isomorphic to exactly one
of each of these sets of designs. For convenience, we have arbitrarily labelled these
classes from 1 to 13, as given in Table A1 of the Appendix.

We note that despite there being 48 allowable permutations under geometric isomor-
phism for three-factor designs, the resulting designs will not necessarily be distinct,
as illustrated in Example 2.2. This explains why the complete enumeration of all
possible c3 in Section 2.1 only uncovered 132 columns rather than 13 x 48 = 624
which we would expect if all 48 designs within each isomorphism class were distinct.
To confirm this finding, we have exhaustively generated all 48 designs for each of the
13 isomorphism classes and confirmed that when duplicates are removed only 132
remain across all classes.

3 Four Factors

In this section we will enumerate all four-factor OAs by appending a column to one
representative from each of the 13 three-factor classes. The following Lemma shows
that this will be sufficient for finding all geometrically non-isomorphic four-factor
designs in the design space provided that the set of potential columns we consider is
complete.

Lemma 3.1. Let {c,,} be a complete set of all possible columns to append to an OA
with m — 1 factors. Let OA; and OAs be geometrically isomorphic OAs with m — 1
factors. Then every m-factor OA constructed by appending a column from {c,,} to
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OA; will be geometrically isomorphic to an m-factor OA that can be constructed by
appending a column from {c,,} to OAs.

Proof. Let P(-) denote the geometric operations that transforms OA; to OAs. Sup-
pose we append a particular column from {c,,}, ¢, to OA; and then perform P(-)
on the resulting m-factor design so that the first m — 1 columns now resemble OA,.
If there are any row permutations in P(-), then the corresponding entries in c,,, will
also be permuted. We will label this permuted column c,,,. Since {c,,} is a complete
set of all possible columns, c¢,,, must be in {c,,}. Hence, the OA constructed by ap-
pending c,,, to OA; is geometrically isomorphic to the OA constructed by appending
Crns to OA2 L]

Following Lemma 3.1, the first step in enumerating all geometric isomorphism classes
for four-factor OAs is the generation of a complete set of fourth columns, {c,}. We
can use the results from Section 2.1, where we enumerated all possible vectors of
c3, as a starting point for finding all possible vectors cs. However we will also need
to consider some additional permutations to ensure that this set is complete. The
following example illustrates why this is the case.

Example 3.1. The three-factor OA comprised of columns [c; ¢y c3] in Table 3.1
below is a representative of the first three-factor isomorphism class, where c3 is col-
umn #7 from Table A1 of the Appendix. The two potential columns to be appended,
c4, and cy,, are identical except for the pairs of rows (9, 10) and (17, 18) in which
the order of the entries differs between cy, and cy4,. It can be shown that the pair of
Jour-factor OAs [c1 c2 c3 ¢4, and [c1 €2 c3 c4,] are geometrically non-isomorphic,
yet ¢4, and cy, have the same incidence matrices versus the levels in co for each level
of c1, as shown in Table 3.2. O

As the previous example illustrates, it is not sufficient to consider a single column
associated with each of the 132 sets of incidence matrices identified in Section 2.1
since two non-isomorphic designs can be constructed from the same set of matrices.
This was not an issue when m = 3 since the order of the levels in ¢3 within each pair
of [c; cy] is irrelevant. For example, note that rows 9 and 10 of Table 3.1 are both
associated with the pair of levels (1, 1) in [c; cg], and the levels of c3 in these rows are
0 and 2 respectively. Suppose we switch the order of the levels in c3. When the rows
of the entire design are ordered lexicographically, these two rows will be swapped,
hence the initial order does not influence the final design from the perspective of cs.
The same logic cannot be applied to pairs of entries in ¢4, however, as this column is
not necessarily used in the lexicographical ordering of the rows?. Hence, for each of
the 132 sets of matrices enumerated in Section 2.1, we need to consider all potential
permutations within each pair of [c; cp]. In a worse-case scenario, this means we
will need to consider 2° = 512 representations for a single incidence matrix. However

2¢, may be used in the lexicographical ordering of the rows if two triples in [c; ¢z ¢3] happen
to be the same. In that case, the method we describe in this section will produce two columns that
are essentially the same, and we will let Algorithm 1 filter them out
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Table 3.1: Append c4 to a three-factor OA
C1 C3 | Cy

@]
N
0

=)
—
=)

10

11

12

13

14

15

16

17

NN R OONNR P, OONNFR RO O

(NI NI NI NI N I o B e =l e R en R e R e
N O R P NOFRPFRPNONONDONO -
O R N R ONNORFRORFRNDNRFDNORF
H O NP ONNDNODOF RF NNDREFEDNNDO O

18

Table 3.2: Incidence matrix of levels of ¢, (either ¢4, or cy,) vs. levels of ¢y for each
level of ¢,

ci =0 cp=1 cp =2
Co Co Co
Cy 0 1 2| total Cy 0 1 2| Total Cy 0 1 2| Total
0O |1 1 0] 2 0O |0 1 1] 2 0O |1 0 1] 2
1 |1 0 1] 2 1 |1 1 0 2 1 /0 1 1| 2
2 |0 1 1] 2 2 |1 0 1] 2 2 |1 1 0] 2
Total | 2 2 2| 6 Total | 2 2 2| 6 Total | 2 2 2| 6

in some cases some pairs of entries are equal, and permuting within these pairs will
result in a duplicated column.

We exhaustively constructed all permutations within the 9 pairs for each of the 132
sets of matrices and this resulted in 23,436 plausible columns for ¢, after duplicates
were removed. We note that this matches the number of columns quoted in Tsai et al.
[16] for their columnwise procedure, as well as the number of “balanced columns”
used in Pang and Liu [9]’s algorithm. We can discard exactly half of these columns
as they have a one-to-one mapping with the retained columns when the levels within
the column are reversed. Hence, we are left with 11,718 columns in the complete set
of {c4} to append, in turn, to one representative from each of the 13 three-factor OA
isomorphism classes. Before we use Algorithm 1 to determine the non-isomorphic
arrays, we first need to determine whether each array is an OA.
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Since all of the 11,718 columns in the complete set {cy} are representatives of one of
the sets of squares enumerated in the Section 2.1, we know that all pairs of levels will
appear equally often in the pairs of columns [¢; ¢4] and [cy ¢4]. What remains to
be checked is whether all pairs of levels appear equally often in the pair of columns
[c3 c4]. Hence, the list of arrays to be inputed into Algorithm 1 may be smaller
than 13 x 11,718 = 152,334 once invalid arrays have been discarded. In fact, the
number of potential OAs to be fed into Algorithm 1 was reduced to 1,944, and took
less than an hour to run. This resulted in 137 geometric isomorphism classes, which
matches the number quoted in Pang and Liu [9]. Although Pang and Liu [9] do
not provide representatives of the classes they found when m > 4, Tsai et al. [16]
give electronic copies of one representative from each of the OA[18,3™] geometric
isomorphism classes that they found for all m. When m = 4 they have 129 classes
and we have confirmed each of these is geometrically isomorphic to exactly one of
our 137 designs.

4 m Factors

The process described in the previous section for generating all four-factor isomor-
phism classes is a specific example of the method we have applied for all m-factor
isomorphism classes when m > 3. That is, we can view the 11,718 columns in the
complete set of {c4} identified in the previous section as 11,718 columns in the com-
plete set of {c,,}, which can be appended to one representative from each of the
geometric isomorphism classes with m — 1 factors. When we generate an m-factor
design by appending an additional column from {c,,} to an OA with m — 1 factors,
we only need to check the m — 3 pairs of columns [c3 €, [Cs €], .-+, [C1 Cml.

We summarise the process of generating a single representative from each of the
geometric isomorphism classes of m-factor OAs, m > 3, below.

1. Find all geometric isomorphism classes for m — 1 factors.
2. Generate an initial set of OAs:
(a) Append each of the 11,718 columns in the complete set {c,,} to one rep-

resentative from each of the classes for m — 1 factors.

(b) Discard any designs that do not have all pairs of level combinations ap-
pearing exactly twice in each of the pairs of columns [c3 ¢,,], [c4 €, - - -,

[Cm—l Cm]~
3. Input the set of OAs into Algorithm 1 to filter out isomorphic designs.
We found the same number of geometrically non-isomorphic designs as reported in

Pang and Liu [9] for all m. Table 1.1 summarises our findings for all OA[18,3™]
geometric isomorphism classes compared to other authors. Since we used a different
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method to those authors, we have successfully carried out “consistency checking” as

defined by Kaski and Ostergard [5).

One representative from each geometric isomorphism class is given in the electronic
appendix (Bird and Street [2]). We have confirmed for all m that each of the designs
given by Tsai et al. [16] is geometrically isomorphic to exactly one of our designs.

5 Concluding Remarks

The approach that we have taken in this paper can be extended in principle but
the problem rapidly becomes very large. For instance, when increasing the number
of levels from 3 to 4, and considering 2 x 4> = 32 runs, the number of incidence
matrices for two factors that needs to be considered to determine all possible valid
third columns is 282, and the number of valid third columns is 22,695, none of which
are geometrically isomorphic. If we keep ternary factors but instead increase the
number of runs to 27 then the number of incidence matrices is 55, giving 847 valid
triples of incidence matrices, and 424 valid third columns. To extend this to approach
to larger m would require the consideration of 6 x 847 potential fourth columns.
For N = 36 there are 120 incidence matrices, 3921 valid triples corresponding to
1971 possible third columns. The number of combinatorially non-isomorphic designs
for these cases are given at the website based on Schoen et al. [12] and located at
http://pietereendebak.nl/oapage/.
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Appendix

Table Al: All possible c3

*

*

*

*

*

*

22221122m221222122222m211222222121m2211
00101000“111110010100_010222111100_1010
21022211“102212221121_122110212222_0222
11OO0111“000000200010_002000101202_0000
12212222“222121112212_221111020011_2122
| | |
00110000_010001001001_100001000010_1101
SN A NN A A AN AN A NN A NN A HO A AN O NN NN NN N
1001021O_OOOOOO000001_000000010012_0002
302222022_221112122222_121122112121_1111
COOQOOOOle10001011111m010011001010m1111
21121121_222222221220_222222222201_2220
21001100“101210110000_112210201100_0000
21222122“222212221221_122111202211_1121
01000001m100001111010m122010001000m0100
22111220“222221112202_211222220111_2222
10111100_01112O000000_200201020000_2000
12222212“111112222122_011122112222_1212
OOOO0011“000000000111_000000111122_0011
| | |
P I [ [
m11111111“222222222222_333333333333_4444
- “ | |
flram o0 D dR IS N2 SRARI RS NERRRARIBE
0 !

continued. ..
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. Table A1 continued

2122m010022m022 N~ N~ o™ o —
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arrays,

of ternary 18-run orthogonal

experiments, J. R. Stat. Soc. Ser. B Stat. Methodol. 44 (1982), 63-70.
Table

http://preview.tinyurl.com/yb3onyxy (2017).

Columns marked with * remain unchanged after the levels have been reversed
[1] R. Bailey, The decomposition of treatment degrees of freedom in quantitative factorial

2] E. Bird and D.J. Street,
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