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Abstract

Let v;(G) denote the independent domination number of G. A graph G
is said to be k-v;-vertex-critical if v;(G) = k and for each z € V(G),
7i(G — x) < k. In this paper, we show that for any k-+;-vertex-critical
graph H of order n with k£ > 3, there exists an n-connected k-v;-vertex-
critical graph Gy containing H as an induced subgraph. Consequently,
there are infinitely many non-isomorphic connected k-v;-vertex-critical
graphs. We also establish a number of properties of connected 3-v;-vertex-
critical graphs. In particular, we derive an upper bound on w(G — S), the
number of components of G — S when G is a connected 3-7;-vertex-critical
graph and S is a minimum cutset of G with |[S| > 3.
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1 Introduction

All graphs in this paper are finite simple undirected. Let G be a graph with vertex
set V(G) and edge set E(G). The complement of G is denoted by G. For a vertex
u of G, the neighborhood of u in G, denoted by Ng(u), is the set of all vertices of
G that are adjacent to u. The closed neighborhood of w which is Ng(u) U {u} is
denoted by Nglu]. For S C V(G), Ng(u) = Ng(u) N S. For simplicity, if H is a
subgraph of G, we write Ng(u) instead of Ny (gy(u). The degree of a vertex u in
G, denoted by degq(u), is |Ng(u)| while degg(u) denotes |Ng(u)|. Further, A(G)
denotes max{deg.(u)|u € V(G)}.

A subset S of V(@) is independent if no two vertices of S are adjacent. The
number of components of G and the number of odd components of G are denoted by
w(G) and wy(G), respectively. A subset S C V(G) is called a cutset if w(G — S) >
w(G). If S = {u}, then the vertex u is called a cutvertex and we shall write w(G —u)
instead of w(G — {u}).

A graph G is said to be k-factor-critical if G — S has a perfect matching for
every S C V(G) with |S| = k. It is easy to see that |V(G)| = k( mod 2). For
k =1 and k = 2, k-factor-critical graphs are also called factor-critical and bicritical,
respectively. The concept of k-factor-critical graphs was introduced by Favaron [3]
in 1996.

For subsets S and T of V(G), S is called a dominating set of T', denoted by
S > T, if each vertex of T either belongs to S or is adjacent to some vertex of
S. For simplicity, we write s = T if S = {s} and S = G if T = V(G). The
minimum cardinality of a dominating set of GG is called the domination number of
G and denoted by 7(G). A dominating set S of G which is also an independent
set is called an independent dominating set of G and is denoted by S >; G. The
independent domination number of GG is the minimum cardinality of an independent
dominating set of G and is denoted by 7;(G). It is easy to see that y(G) < v(G)
and if v(G) = 1, then v,(G) = 1.

A graph G is said to be k-7-vertex-critical if 4;(G) = k and for each z € V(G),
7i(G — x) < k. In fact, it is easy to see that if G is k-v;-vertex-critical, then ~;(G —
xr) = k — 1 for each x € V(G). Further, |V(G)| > k. The concept of k-v;-vertex-
critical graphs was first introduced by Ao [1] in 1994. The problem that arises is
that of characterizing connected k-v;-vertex-critical graphs. Ao [1] characterized
the case k = 1 and k = 2. More specifically, she proved that the only 1-v;-vertex-
critical graphs are K7, and the only 2-v;-vertex-critical graphs are K5, with a perfect
matching deleted for some positive integer n. The following two simple results are
useful in studying k-v;-vertex-critical graphs. In what follows, for a vertex = of a
k-v;-vertex-critical graph G, we denote by I, any minimum independent dominating
set of G — .

Lemma 1.1. [1] Suppose G is a k-y;-vertex-critical graph for k > 2. Then for each
reV(Q), |I,|=k—1.
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Lemma 1.2. [5] Suppose G is a k-y;-vertex-critical graph for k > 2. Then for each
z € V(G), I, N Nglz] = 0.

The following result follows directly from the definition.

Lemma 1.3. Suppose G is a k-y;-vertex-critical graph for k > 2. For x,y € V(G)
such that x #y, I, # 1.

For k > 3, very few results on k-v;-vertex-critical graphs are known. In the
next section, we establish that for £ > 3, if H is a k-v;-vertex-critical graph on n
vertices, then there exists an n-connected k-v;-vertex-critical graph on kn+1 vertices
containing H as an induced subgraph. This suggests that characterizing connected
k-v;-vertex-critical graphs for k£ > 3 is a very difficult task. The focus of this paper
is the case k = 3.

We establish a number of properties of connected 3-+;-vertex-critical graphs. In
Section 4, we derive an upper bound on the number of components w(G — S) where
G is a connected 3-v;-vertex-critical graph and S is a minimum cutset of G with
|S| > 3. Section 3 provides some preliminary results that we make use of in our
work.

We conclude this section by pointing out that critical concepts, in both edge-
critical and vertex-critical graphs, are studied for various kinds of domination num-
bers such as ordinary domination number, connected domination number and total
domination number. For more details of these, the reader is directed to the books
by Haynes et al. [4] and Dehmer [2] and also references therein.

2 A family of connected k-v;-vertex-critical graphs

In this section, we provide a construction of a family of connected k-+;-vertex-critical
graphs for k > 3. For a k-v;-vertex-critical graph H, we show that there are infinitely
many connected k-v;-vertex-critical graphs containing H as an induced subgraph.
Before presenting the construction, we make an observation that there are infinitely
many k-7;-vertex-critical graphs. For positive integers k > 3 and n, Ky_o U (Ky,—a
perfect matching) is a simple example of k-v;-vertex-critical graph. Moreover, for
positive integers m and n;, |J;~, (Ks,,—a perfect matching), and K; U J]", (Ko, —a
perfect matching) are examples of k-v;-vertex-critical graphs when k = 2m is even
and k = 2m+ 1 is odd, respectively. For case k = 3, K; U (K5, — a perfect matching)
is the only disconnected 3-7;-vertex-critical graphs. Some examples of connected
3-vi-vertex-critical graphs are K33, C7: a cycle of order 7 and the graphs shown in
Figure 2.1 for any positive integers n and m. Note that “+4” in our diagrams denotes
the join and the dash line denotes a missing edge between vertices.

Our next result establishes a class of connected k-v;-vertex-critical graphs.

Theorem 2.1. For k > 3, let H be a k-vy;-vertez-critical graph of order n. Then
there exists an n-connected k-vy;-vertex-critical graph Gy such that H is an induced
subgraph of Gp.
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Figure 2.1: Connected 3-v;-vertex-critical graphs.

Proof. Put V(H) = {x1,22,...,2,}. Now let Gy be a graph of order kn + 1
where V(G) = {u} U {1, 29,...,2,} U Uf;ll Y; where Y; = {y;1,9j2,-..,Yjn} and
E(G) = {uzi|]l < i < n}UEBH) VU {zyull <i<nl <1< ni+#lpU
U?;ll{yﬂyﬂ/\l <1 <n,1 <l <n,l#1'}. Figure 2.2 illustrates our construction.

Figure 2.2: The graph Gp.

It is easy to see that H is an induced subgraph of Gy and Gy is n-connected. We
only need to show that Gy is k-v;-vertex-critical. Let I be a minimum independent
dominating set of H. Clearly, I =; Gg. Then v;(Gy) < k. It is easy to see that no
vertex of Gy dominates Gy, thus v;(Gy) > 2. Suppose there exists an independent
dominating set I of Gy where |I;| < k—1. We first show that u ¢ I;. Suppose this is
not the case. Since I is independent, (I;—{u})NV(H) = 0. Thus I;—{u} C Uf;ll Y;.
Since |I; —{u}| < k—2and Gy [Uf;ll Y;] consists of k—1 components, it follows that
no vertex of [; dominates Yy, for some 1 < j° < k—1, a contradiction. Hence, u ¢ I
as required. Since |I;| < k—1, I} ¢ V(H) otherwise v;(H) < k. Then there exists
we L N (Uf;ll Y;). We may assume without loss of generality that w = y;;. Since
w ¢ I, and I, is independent, it follows that I, N V(H) = {x1} by our construction.
Then I — {x1,y11} C Uf;QlYJ Because |I; — {x1,y11}| < k — 3 and GH[Uf;Ql Y]]
consists of & — 2 components, it follows that no vertex of /; dominates Y~ for some
2 < j”" <k —1, again a contradiction. Hence, v;(Gy) = k.
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We next show that Gy is k-v;-vertex-critical. It is easy to see that I, = {y11, Yoo,
Y- k-1t Further, for 1 < j <k —1,1<1<n, I,, = {z} U{ymll <j <
k—1,7" # j}. Since H is k-y-vertex-critical, |I,| = k — 1 for 1 <i < n and it is
easy to see that I, dominates Gy — z;. This proves that Gy is k-7;-vertex-critical
and completes the proof of our theorem. |

In view of Theorem 2.1, we may recursively construct a connected k-v;-vertex-
critical graph for £ > 3. Beginning with a k-v;-vertex-critical graph H of order n,
put G = Gy, Gy = Gy, Gs = Gay, ..., Gy = Ga, . ... Then |V(Gy)| = kin + 5=
and Gy is a |V (Gy_1)|-connected k-v;-vertex-critical graph for any positive integer t.
Further, each G; contains H as an induced subgraph. By this recursive construction
and examples of k-7;-vertex-critical graphs given at the beginning of this section,

there are infinitely many non-isomorphic connected k-+;-vertex-critical graphs.

We next establish some matching properties of the graph G'. For the rest of this
section, Fz denotes a perfect matching in Gy[Z] where Z C V(Gpg).

Proposition 2.2. For k > 3, let H be a k-v;-vertex-critical graph of order n and let
Gy be the graph defined in the proof of Theorem 2.1. Then we have:

1. If H is K, s-free, then Gy is K ,-free where r = max{s, k + 1}.
2. If k and n are odd and n > k + 2, then Gy is bicritical.

3. If either k or n is even, then Gy is factor-critical.

Proof. (1) This follows immediately from the construction.
(2) Let wy and ws be distinct vertices of G. We need to show that Gy — {wy, wy}

has a perfect matching. We first suppose that {wy,wy} C V(H). We may assume
without loss of generality that w; = z;, for 1 <7 < 2. We now let

F = {uxs} U{rayor, Tsys1, - - - Thr1¥e-01} U{2Y1s1)|k +2 < s <nj U
k—1

U FYZ_{yll} U FYl—{y1(3+1)|k+2§8§n}

1=2

where our subscript is read modulo n. It is easy to see that F'is a perfect matching in
Gy — {wi,ws}. By similar arguments, it is not difficult to show that Gy — {w1, ws}
contains a perfect matching if {wy, we} € V(H). This proves (2).
(3) Let w be a vertex of Ggx. We need to show that Gy — w contains a perfect
matching. We first suppose that w = y;;. If n is even, then
k—1
Fiy = {uz,} U{zsys4|l < s <n—1}U U Fy,
1=2
is a perfect matching in Gg — w. We now suppose that n is odd. Thus k is even by
our hypothesis. Put

F, = {zu} U{zoysi, ¥3ya1, - - -, ThaYe—11} U {@sloeqny |k — 1 < s <n}
k-1

UFYl*{yll} U FYQ*{?JQ(SH)VC*lSSS"} U U FYZ*{yu}
=3
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where our subscript is read modulo n. It is easy to see that F; is a perfect matching
in Gg — y11. By similar arguments, it is not difficult to show that Gy — w has a
perfect matching if w ¢ U;:ll Y;. This proves (3) and completes the proof of our
result. |

Note that the lower bound on 1 n > k + 2 in the part 2 of the above result is sharp
since the graph Gy, where H is K}, is not bicritical.

3 Some preliminary results

In this section, we establish some basic results that we make use of in establishing
our results in the next section. Recall that, for a vertex x of a k-v;-vertex-critical
graph G, I, denotes any minimum independent dominating set of G — x. Our first
result concerns a simple property of a graph with a cutset. It follows immediately
from the fact that our cutset is minimum.

Lemma 3.1. Let G be a connected graph and S a minimum cutset of G. Further,
let C' be a component of G —S. Then we have:

1. If there is a vertex x € V(C') such that x is not adjacent to some vertex of S,
then |V (C)| > 2.

2. For each u € S, Nc(u) # 0.

The following two results concern simple properties of connected 3-v;-vertex-
critical graphs with a minimum cutset.

Lemma 3.2. Let G be a connected 3-y;-vertex-critical graph and S a minimum cutset

of G. If w(G —S) >4, then

1. No vertex of V(G) dominates S. Consequently, A(G[S]) <|S| =2 and G — S

has no singleton components.

2. I, NS #0, for each x € V(G).

Proof. (1) Suppose to the contrary that there is a vertex y € V(G) such that
y = S. By Lemma 1.2, I, nS = (. Thus I, C V(G) — S. Since |I,| = 2 and
w(G — 8S) > 4, it follows that there is a vertex of V(G) — S which is not dominated
by I,, a contradiction. This settles (1).

(2) It is easy to see that if I, NS = (), for some = € V(G), then I, C V(G) — S.

Thus I, does not dominate at least one component of G — S since |I,| = 2 and
w(G = 8) > 4. Hence, I, NS # ) for each x € V(G). This settles (2) and completes
the proof of our result. |

Lemma 3.3. Let G be a connected 3-v;-vertex-critical graph and S a cutset of G
where t = w(G — S) > 4. Let C1,Cy,...,Cy be the components of G — S. Suppose
there exist y; € V(C;) and y; € V(Cjr) for 1 < j <t,1 <j <t j#j such that
I,NS=1,,N8={u} for someu € S. Then
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1.ou=U_,V(C) — {yj,yy}. Consequently, Iy, ={u,yy} and I, = {u,y;}.
2 u ¢ I for any v € Ui, V(Ci) = {y;, vy}

Proof. (1) Since {u} = I,, NS =1,,NS, it follows by Lemma 1.2 that uy;, uy; ¢
E(G). Put {z} = I,, — {u} and {w} = Iy, —{u}. Then uz,uw ¢ E(G) since

I, and I, are independent. It is easy to see that z € V(Cy) and w € V(Cj).

Then u = (Ji_, V(Ci) — (V(Cy) U {y;}) and w = y; since u € I,,. Further, u >
Ui, V(Cy) — (V(C}) U {y;}) and 2 = y; since u € I,,,. This settles (1).

(2) This follows by (1) and Lemma 1.2. This completes the proof of our lemma.

|

As a consequence of Lemmas 1.2 and 3.3, we have:

Corollary 3.4. Let G,S and Cy,Cs,...,C; be defined as in Lemma 3.5. If there
is {wy,wa, ... w,y € U, V(Cy), where w; = S — {u} for some u € S and for
1 <1<, such that [{wy,ws,...,w,} N V(C;)| <1 for1 <j<t, thenr < 2.

4 Results on minimum cutsets of connected 3-v;-vertex-crit-
ical graphs

In this section, we provide an upper bound on w(G — S), where G is a connected
3-yi-vertex-critical graph and S is a minimum cutset of G. For 1 < |S] < 2, Ru-
angthampisan and Ananchuen [5] showed that w(G — S) < [S|+ 1:

Theorem 4.1. [5] Let G be a connected 3-vy;-vertez-critical graph and S a minimum
cutset of G. Then

2, for|S| =1,
w(G=5) < { 3, for |S| = 2.

We now establish that if 3 < |S| < 4, then w(G — S) < 3 and if |S| > 5, then
w(G — 85) <|S| — 1 with some condition on S. We begin with some lemmas.

Lemma 4.2. Let G be a connected 3-v;-vertex-critical graph and S a minimum
cutset of G. If A(G[S]) <1 andt = w(G — S) > |S| > 5, then for each x € V(G),
|1, NS|=1.

Proof. Since |I,| = 2, it is easy to see that the result holds for A(G[S]) = 0. So we
may now assume that A(G[S]) = 1 and suppose to the contrary that there exists a
vertex u € V(@) such that |I, N S| = 2. Put I, NS = {uy,us}. Since A(G([S]) =1
and |S| > 5, it is easy to see that u € S and |S| = 5. Without loss of generality, we
let E(G[S]) = {uiug, ugus} where {us,us} =S — {u, us,us}. Thus u is not adjacent
to any of vertex of S — {u}. Consequently, we have proven the following claim.

Claim 1. For each x € V(G) — {u}, [, NS| = 1.
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Consider G — uz. Clearly, u; ¢ I, since wyus € E(G). Further, I,, NS C
{u,ug,us}. Put {z} = I, — S. Thus zus ¢ E(G). Let C1,Cy,...,C; be the
components of G —S. We may assume that z € V(C;). We now establish the
following claim.

Claim 2. [fu3€I NS for somex € V(C;), 2 <i <t thenl, —{u3}CV( 1)—{z}.
Further, uz = \J'_, V(C;) — {z} and thus uz ¢ I,NS for eachy € | J._, V(C;) — {z}.

Proof. Suppose uz € I, NS. Since zuz ¢ E(G), it follows that the only vertex of
I, —{u3} dominates z € V(C}). By Claim 1, I, — {us} C V(C4). If I, — {us} = {z},
then no vertex of I, is adjacent to the vertex of I,, — {z}, a contradiction. This
proves that I, — {us} C V(Cy) — {z}. Consequently, uz = (J'_,V(Ci) — {z}. Tt
follows by Lemma 1.2 that ug ¢ I, NS for each y € |J!_, V(C;) — {x}. This settles
our claim. O

We now distinguish three cases according to I,,, NS.

Case 1. [,, NS = {u}.

Then uz ¢ E(G) and u = |JI_, V(Ci). For 2 < i < t, choose y; € N, (uy).
Such a y; exists by Lemma 3.1(2). Observe that y; € Ng,(u) N Ng,(uyg). Then
I, NS C {uy,ug,uz} and |1, S| =1 by Lemma 1.2 and Claim 1. Thus, by Lemma
3.3(2), {willy, NS = {w}}| < 2 and [{yi|l,, NS = {uz}}| < 2. But, by Claim 2,
Hyilly: 05 = {us}}| < 1.

Case 1.1. [{y;|l,, NS = {us}}| =0.

Since [{y2,y3,...,y:}| = t —1 > 4, it follows that [{y;|,, N S = {u1}}| =
H{yilly,, NS = {us}}| = 2 and t = 5. We may assume that [,, N S = I,, NS = {u1}
and ] ,NS =1, NS ={uy}. Then ULy, Urys, Unla, UzYs ¢ E(G). By Lemma 3.3(1),
Uy > UZ V(i ) {y2,ys} and uy = U?_, V(C;)— {4, ys}. Now, for 2 < i < t, choose
w; € V(Cy)—{y;}. Then w; € Ne, (u)NNg,; (u1) N Ne, (ug). Such a w; exists by Lemma
3.1(1) and the fact that wiya, u1ys, uoys, usys ¢ E(G). Thus I,,, NS C {ug, us}. By
Claims 1 and 2, [{w;|l,, NS = {us}}| <1 and thus [{w;|l,, NS = {us}}| > 3. But
this contradicts Lemma 3.3(2). Hence, Case 1.1 cannot occur.

Case 1.2. [{y;|l,, NS ={us}}| =1.

Without loss of generality we may assume that [,, NS = {us}. Put {#} =

— {usz}. By Claim 2, z; € V(C) — {z} and us > Ui, V(Ci) — {ya}. Since
E(G[S]) = {uyus, ugus}, 21 is adjacent to every vertex of {u, ug, u4} Thus I,, NS C
{uy,uz}. I I, NS = {u3}, then the only vertex of I, —{uz} C Ui_, V(C;) is adjacent
toz € V(Cy) and yo € V(Cs) since usz, usy: ¢ E(G). But this is not possible. Hence,
I, NS = {u}. It then follows by Lemma 3.3(2) that [{y;|l,, NS = {ui}} <1
and [{y;|l,, NS = {uz}}| < 2. Since |[{y2,93,...,y}| =t —1 > 4, it follows that
Hvill,,NS = {u1}}| = Land |{y;|[,,NS = {uz2}}| =2. In fact, t = 5. We may assume
without loss of generahty that 1,,NS = {u; } and Iy4ﬂS = I,,NS = {uz}. By Lemma
3.3(1), wy = U2, V(Cy) — {zl,yg} and uy = |J_, V(Ci) — {y4,y5} For 2 < i < 5,
choose w; € V(C;) —{y;}. Then w; € N¢,(u) N N, (ug) N Ne, (ug) N Ne, (u3). But this
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contradicts Corollary 3.4 since |{ws, w3, wy, ws}| = 4. Hence, Case 1.2 cannot occur
and therefore Case 1 cannot occur.

Case 2. [,, NS = {ua}.
By applying similar arguments as in the proof of Case 1, Case 2 cannot occur.

Case 3. 1,, NS = {uy}.

For 2 < i <'t, choose y; € N¢,(uz). Then applying similar arguments as in the
proof of Case 1, Case 3 cannot occur. This completes the proof of our result. ]

Lemma 4.3. Let G be a connected 3-y;-vertex-critical graph and S a minimum cutset
of G. Suppose A(G[S]) <1 andt =w(G—S) >|S| > 5. Let Cy,Cy,...,Cy be the
components of G — S. Then forx € V(C;), 1 <i<t, [, —SCV(C;) — {x}

Proof. For 1 <i<t, let x € V(C;). Assume that I, = {u, z}. By Lemma 4.2, we
may assume that v € S and z ¢ S. Clearly, zu ¢ E(G). Suppose to the contrary
that z ¢ V(C;). Then z € V(Cj) for some j, j # i. Because A(G[S]) < 1, =
dominates at least |S| — 2 vertices of S. Without loss of generality we may assume
that i = 1 and j = 2. Since I, = {u, 2}, u = J._, V(C;) — (V(C2) U{z}). By Lemma
4.2, |I,NS| = 1. We first show that {u} # I,NS. Suppose this is not the case. Then
{u} = 1.NS. By Lemma 3.3(1), u = U._, V(Ci) — {z, 2} and I, = {u,z}. It follows
by Lemma 1.2 that I, — S C {z,z}. Put {w} = [, N S. Then wu ¢ E(G). Since
I, = {u,z}, wz € E(G). Consequently, I, = {w,z}. Then wx ¢ E(G). But this
contradicts the fact that I, = {u,x} since wu ¢ E(G). This prove that {u} # I.NS.

Put I, = {uy,y} where u; € S — {u} and y ¢ S. Then zu; ¢ E(G) but uu; €
E(G) since I, = {u, z}. Because A(G[S]) < 1, no vertex of {u, u,} is adjacent to any
vertex of S — {u,u;}. Thus y dominates S — {u,u;}. We next show that y € V(Cs).
Suppose to the contrary that y ¢ V(C3). Consider G — y. Since y dominates
S —A{u,ur}, I, NS C {u,u;} by Lemma 1.2. By Lemma 4.2, either [, N S = {u}
or I, NS = {w}. If I, NS = {u}, then the only vertex of I, — {u} C UJi_, V(C)
dominates x € V(Cy) and z € V(C5) which is not possible. Hence, I, NS = {u}.
Since I, NS = {uy}, by Lemma 3.3(1), we have u; = J'_, V(Ci) — {z,y} and
I, = {u1,z}. Thus z dominates S — {u,u;}. It then follows by Lemma 1.2 that
I, — S C{zy} and u ¢ I,,. But this contradicts the fact that I,, is independent
since both z and y dominates S — {u,u;} and |I,, N S| = 1 by Lemma 4.2. This
proves that y € V(Cy). Tt then follows that u, = |J/_, V(C;i) — V(Ca).

Now choose z; € V(Cy) — {z}. Such an x; exists by Lemma 3.1(1) since zu ¢
E(G). Further, for 3 <1 <t, choose v; € V(C;). Put A = {x1,v3,v4,...,0:}. It is
easy to see that if a € A, a € Ng,(u) N Ng, (u1). By Lemma 1.2, I, N {u,u;} = 0 for
each a € A. Since |A| =t—12>4and |S — {u,u1 }| =1|5| —2 < t—1, by Lemma 4.2
and Pigeonhole Principle, it follows that there is ug € S — {u, ul} such that {us} =
I, NS = 1,,NS where {a;,a,} C A. By Lemma 3.3(1), uy = U._, V(C:) — {a1, as},
I, = {ug,as} and I,, = {ug, a;}. Further, I, — S C {ay,as}. Put {uz} = I,,NS for
some uz € S — {ug}. Then uguz ¢ E(G). Since 1,, = {ug,as} and I,, = {u,a;}, it
follows that ugay, usas € E(G). But this contradicts the fact that I, is independent.
This completes the proof of our lemma. ]
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Theorem 4.4. Let G be a connected 3-v;-vertex-critical graph and S a minimum
cutset of G. If A(G[S]) <1 and |S| > 5, then w(G — S) < |S| — 1.

Proof. Let C1,Cy,...,Cy be the components of G — S, where t = w(G — 9).
Suppose to the contrary that ¢ > |S|. For 1 < i < t, choose z; € V(C;). By
Lemma 4.2, |I,, N S| = 1. Put {w;} = I, N S. It then follows by Lemma 4.3 that
u; = Uj_, V(C)) — V(C;) and thus u; # u; for i # j. Consequently, each vertex
of V(C;) is adjacent to every vertex of S — {u;}. Moreover, I,, — S C V(C;) by
Lemma 1.2. But then [,, is not independent since |I,, NS| = 1 by Lemma 4.2, a
contradiction. This settles our theorem. |

Even though we do not give an upper bound on w(G — S) when A(G[S]) > 2 for
|S| > 5, we can provide an upper bound on w(G — S) for 3 < |S| < 4. We now turn
our attention to these cases.

Theorem 4.5. Let G be a connected 3-v;-vertex-critical graph and S a minimum
cutset of G. If |S| =3, then w(G — S) < 3. Further, the bound is best possible.

Proof. Let S = {uy,us,u3z} and let C1,Cs, ..., C; be the components of G — S.
Suppose to the contrary that ¢ > 4. Consider G — u;. By Lemma 3.2(2), we may
assume that uy € I,, N S. Put {z} = I,, — {us}. We first show that z = us.
Suppose this is not the case. Then z € J'_, V(C;). We may assume that z € V(C).
Then uy = |J_,V(C;). For 2 < i < t choose v; € Ng,(uz). Such a v; exists
by Lemma 3.1(2). Now v; € Ng,(u2) N Ne,(us). But this contradicts Corollary
3.4 since t — 1 > 3. This proves that z ¢ (J'_, V(Ci). Hence, z = uz and thus
I, = {us,us}. For 1 < i < t, choose w; € Ng¢,(u1). Since I,, = {ug,us} and
{w;|1 <i < t}] > 4, it follows by Pigeonhole Principle that either u, or us is adjacent
to at least two vertices of {w;|1 <i < t}. We may assume without loss of generality
that wiug, wous € E(G). Then, by Lemmas 1.2 and 3.2(2), [,, NS = [,, NS =
{uz}. Then wyuz, wouz ¢ E(G). By Lemma 3.3(1), uz = _, V(Ci) — {wy, ws}.
Consequently, {ws, ws} € Ng(ui) N Ng(uz) and thus I,,, NS = I, NS = {uz}. Then
Wiy, wty ¢ E(G). Again, by Lemma 3.3(1), ug = Ji._, V(Ci) — {ws,w,}. Tt then
follows by Lemmas 3.1(2) and 3.2(1), that ¢ = 4. By Lemma 3.1(1), |V(C;)| > 2, for
1 <i<4. For1<1i<4, wenow choose z; € V(C;) — {w;}. Clearly, z; = S — {u1}.
But this contradicts Corollary 3.4 since |{wy, wq, w3, wys}| = 4. This proves the first
part of our theorem.

For a positive integer n, let G be the graph in Figure 4.1. It is easy to see
that G is connected 3-v;-vertex-critical with {uy, us, uz} a minimum cutset. Clearly,

w(G — {uq,uz,uz}) = 3. This shows that the bound in our theorem is best possible.
|

Theorem 4.6. Let G be a connected 3-v;-vertex-critical graph and S a minimum
cutset of G. If |S| =4, then w(G — S) < 3. Further, the bound is best possible.

Proof. Let S = {ug,us,us,us}. Put t = w(G — 5). Let C1,Cy,...,Cy be the
components of G — S. Suppose to the contrary that ¢t > 4.
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K a2 perfect matching

Figure 4.1: A 3-v;-vertex-critical graph with a minimum cutset of order 3.

Claim 1. G[S] contains an edge.

Proof. Suppose this is not the case. Then S is independent. Thus |7,,NS| = 1for 1 <
i < 4 by Lemma 3.2(2). We may assume that [,, NS = {us}. Put I, — {us} = {2}.
Assume that z € V(Cy). Then uy = |J/_, V(C;). By Lemma 1.2, I, — S C V(C)).
Then the only vertex of I, NS dominates | J,_, V/(C;). Now let w € S — (I, U{uy}).
For 2 < i <'t, choose y; € N¢,(w). Such a y; exists by Lemma 3.1(2). Observe that
|Ns(y:)| > 3. In fact, Ng(vi) = ((Lu, N S) U {w, us}) for 2 < ¢ <t by Lemma 3.2(1).
But this contradicts Corollary 3.4 since [{ya,¥s,..., 4} =t —1 > 3. This settles
our claim.

O

We may now assume that degg(u;) = A(G[S]). By Claim 1, degg(ui) > 1.
Further, by Lemma 3.2(1), degg(u;) < 2. Thus 1 < degg(u;) < 2. Let {uy} C
Ng(uy). Consider G — u;. We may assume that [,, NS = {ug} by Lemmas 1.2
and 3.2(2). Put {z} = I,, — {ug}. Then wus,uiz ¢ E(G). We first show that
z # uy. Suppose this is not the case. Then I, = {ug,us}. Thus ujusz, uyus ¢ E(G)
but either usug € E(G) or ugus € E(G). Consequently, degg(ug) > 2 > degg(uy).
This contradicts the fact that degg(u1) = A(G[S]). Hence, z # uy. Assume that
z € V(Cy). Then uz = |J'_,V(C;). For 2 < i < t, choose y; € Ng,(uy). Such a
y; exists be Lemma 3.1(2). Observe that y; € N¢,(u3) N Ng, (uy) for 2 < i < ¢. It
follows by Lemma 1.2 that I,, NS C {u,us} for 2 <4 < t. Since ujuy € E(G),
|I, N S| = 1. By Lemma 3.3(2), {vill,, NS = {wi}} < 2 and {yi|l,, NS =
{us}}| < 2. Because zuy ¢ E(G), {vill,, NS = {u1}}| < 1 by Lemma 3.3(1).
Consequently, [{y;|I,, N S = {ui}} =1, {willy, NS = {u2}}| = 2 and thus ¢ = 4.
We may assume that [,, NS = {w}, [, NS =1, NS = {us}. By Lemma 3.3(1),
ug = Ui_, V(Ci) = {ys, ya}. Since zuy ¢ E(G), the only vertex of I, — {u;} C V(C).
Thus u; = Ui, V(Ci) — {y2}. By Lemma 3.1(1), |V(C;)| > 2 for 2 < i < 4 since
U1Y2, U3, Usys & E(G). For 2 < i < 4, we now choose w; € V(C;) — {y;}. Observe
that w; € Ng,(u1) N N, (ug) N N, (uz). But this contradicts Corollary 3.4 since
[{wa, w3, ws}| = 3. This proves the first part of our theorem.

We now show that the bound is best possible. Let G be a graph in Figure 4.2.
It is easy to see that G is connected 3-;-vertex-critical with S = {uy, us, us, us} is a
minimum cutset. Clearly, w(G — S) = 3. |

We conclude our paper by making the following conjecture.
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Figure 4.2: A 3-v;-vertex-critical graph with a minimum cutset of order 4.

Conjecture. Let G be a connected 3-v;-vertex-critical graph and S a minimum

cutset of G. If |S| > 5, then w(G — S) < |S| — 1.

If the conjecture is true, then it follows by Theorems 4.1, 4.5 and 4.6 that every
connected 3-v;-vertex-critical graph of even order contains a perfect matching.
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