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Abstract

We introduce three types of directed triple systems. Two of these, Mendel-
sohn directed triple systems and Latin directed triple systems, have previ-
ously appeared in the literature but we prove further results about them.
The third type, which we call skewed directed triple systems, is new and
we determine the existence spectrum to be v ≡ 1 (mod 3), v �= 7, except
possibly for v = 22, as well as giving enumeration results for small orders.

1 Introduction

In this paper we will be concerned with different types of directed triple systems.
This concept and that of a Mendelsohn triple system are well known. Let V be
a set of cardinality v and B a collection of ordered triples of distinct elements of



D.M. DONOVAN ET AL. /AUSTRALAS. J. COMBIN. 71 (3) (2018), 485–500 486

V . The pair (V,B) is said to be a directed triple system DTS(v) or a Mendelsohn
triple system MTS(v) if every ordered pair of distinct elements of V is contained
in precisely one ordered triple; the two types of system being distinguished by the
definition of containment. In a directed triple system containment is transitive; an
ordered triple, denoted by [x, y, z], contains the ordered pairs (x, y), (y, z) and (x, z).
In a Mendelsohn triple system containment is cyclic; an ordered triple, denoted by
(x, y, z) contains the ordered pairs (x, y), (y, z) and (z, x). A DTS(v) exists if and
only if v ≡ 0 or 1 (mod 3) [14] and an MTS(v) exists if and only if v ≡ 0 or 1 (mod
3) v �= 6, [19].

Let D = (V,B) be a directed triple system of order v. Denote by Sa,b the set of
ordered pairs (x, y) in positions a and b respectively of the triples of B. Then trivially
the sets S1,2, S2,3 and S1,3 are mutually disjoint and S1,2 ∪ S2,3 ∪ S1,3 = U = {(x, y) :
x ∈ V, y ∈ V, x �= y}. Further, since reversing all the triples in a directed triple
system gives a (not necessarily isomorphic) directed triple system, the sets S2,1, S3,2

and S3,1 are also mutually disjoint and S2,1∪S3,2∪S3,1 = U . The cardinalities of the
sets Sa,b are the same, namely v(v − 1)/3 the number of triples in a DTS(v). The
possibility exists therefore that the sets S1,2, S2,3 and S1,3 may be equal to the sets
S2,1, S3,2 and S3,1 in some order. There appear to be six possibilities.

S1,2 = S2,1 S2,1 S3,2 S3,2 S3,1 S3,1

S2,3 = S3,2 S3,1 S2,1 S3,1 S3,2 S2,1

S1,3 = S3,1 S3,2 S3,1 S2,1 S2,1 S3,2

#1 #2 #3 #4 #5 #6

However option #4 is not a viable possibility since S1,2 = S3,2 ⇒ S2,3 = S2,1, and
nor is option #6 since S1,2 = S3,1 ⇒ S1,3 = S2,1. Now consider a directed triple system
which satisfies the equations of option #2. If all the triples of the system are reversed
then the equations of option #5 are satisfied. The converse is also true and thus
these two options are effectively the same and we are left with just three possibilities,
options #1, #2 and #3. The first and last of these have already appeared in the
literature with the names Mendelsohn directed triple systems, MDTS(v) [12] and
Latin directed triple systems, LDTS(v) [9, 6, 7, 8, 10, 15, 16] respectively. However
directed triple systems satisfying option #2 appear to be new and it is the main
purpose of this paper to discuss these systems. We will refer to them as skewed
directed triple systems, SDTS(v). But before doing this we will briefly recap on some
basic results about Mendelsohn and Latin directed triple systems, and in both cases
prove new results about these systems too.

In particular, in Section 2 we extend known existence results on Mendelsohn
directed triple systems by considering k-rotational systems. In this context we must
have that k ≡ 0 (mod 3) and we prove that there exists a 3-rotational MDTS(v) for
all v ≡ 4 or 10 (mod 18) except possibly for v = 28. Section 3 is concerned with
Latin directed triple systems. Unlike the other two types of directed triple systems,
LDTS(v) are not necessarily regular. In this section we deal with the situation where
they are, a topic which has hitherto not been studied. We determine the existence
spectrum with six possible exceptions. But the main results are in Section 4 which
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deals with the new skewed directed triple systems. We prove that these systems exist
for all v ≡ 1 (mod 3), v �= 7, except possibly for v = 22 and also give enumeration
results for small orders.

2 Mendelsohn directed triple systems

These systems were studied in [12] for general λ. They are so named because they
are characterised by the property that any cyclic shift of all triples results again in a
directed triple system, a property that they have in common with Mendelsohn triple
systems. The systems are regular, i.e. if ci(x), i = 1, 2, 3, denotes the number of
times element x ∈ V appears in position i of a triple of B then c1(x) = c2(x) = c3(x)
for all x ∈ V . The latter concept was introduced by Colbourn and Colbourn [5] who
proved that there exists a regular DTS(v) if and only if v ≡ 1 (mod 3).

The construction of MDTS(v) for v ≡ 1 (mod 3) is straightforward. A (v,K)
pairwise balanced design, PBD(v,K), is a pair (V,B) where V is a set of cardinality
v and B is a collection of subsets of V , called blocks, with the property that the
cardinality of every block is in the set K and every pair of elements of V is contained
in precisely one block. Given a set K of positive integers the PBD-closure of K is
the set B(K) = {v : ∃ PBD(v,K)}. Since the PBD-closure of {4, 7} is {v : v ≡ 1
(mod 3), v �= 10, 19} [2] see also [1], the entire spectrum follows from the existence
of MDTS(v) for v = 4, 7, 10 and 19. These are given below.

An MDTS(4) is given by the triples [0, 2, 1], [2, 0, 3], [1, 3, 0], [3, 1, 2]. An MDTS(7)
is given by the triples generated by [0, 1, 3] and [0, 6, 4] under the action of the
mapping i �→ i + 1 (mod 7) and an MDTS(19) by the triples generated by [0, 1, 5],
[0, 18, 14], [0, 2, 8], [0, 17, 11], [0, 3, 10] and [0, 16, 9] under the action of the mapping
i �→ i + 1 (mod 19). The triples, with brackets and commas removed for clarity, of
an MDTS(10) are

021 054 087 347 593 836 274 952 628 203
506 809 158 671 914 385 763 439 130 460
790 269 482 725 196 841 517 312 645 978

We thus have

Theorem 2.1 (Grannell, Griggs & Quinn) There exists an MDTS(v) if and
only if v ≡ 1 (mod 3).

In [12] the same authors further consider MDTS(v) with a cyclic automorphism,
i.e. an automorphism consisting of a v-cycle, and prove a further result.

Theorem 2.2 (Grannell, Griggs & Quinn) There exists a cyclic MDTS(v) if
and only if v ≡ 1 (mod 6).

Turning now to rotational automorphisms, recall that a triple system is k-rota-
tional if it has an automorphism consisting of a single fixed point and k cycles all
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of the same length (v − 1)/k. Easy arguments, see for example [3], give necessary
conditions for a k-rotational DTS(v) to be either (i) k ≡ 1 or 2 (mod 3), v ≡ 0 (mod
3) and v ≡ 1 (mod k) or (ii) k ≡ 0 (mod 3) and v ≡ 1 (mod k). But from Theorem
2.1, for an MDTS(v) only the second option is possible. Now observe that if α is a 3-
rotational automorphism, then αm, where m divides (v−1)/3 is 3m-rotational. Thus
to show that the necessary condition for the existence of a k-rotational MDTS(v) is
also sufficient, it is enough to construct 3-rotational MDTS(v) for v ≡ 1 (mod 3).
We are not able to prove the existence of such systems for all values of v in this
residue class but below we present a construction which in arithmetic set density
terms deals with 1/3rd of the possible values.

Theorem 2.3 There exists a 3-rotational MDTS(v) for all v ≡ 4 or 10 (mod 18),
except possibly for v = 28.

Proof. Let v = 18s+4. Trivially the unique MDTS(4), given above, is 3-rotational.
Now assume that s ≥ 1. There exists a cyclic Steiner triple system of order u,
STS(u), for all u = 6s + 1 [20]. Suppose that the base set of such a system is
Zu. The triples of the STS(u) can then be obtained from a set of starter blocks
{0, ai, bi}, i = 1, 2, . . . , s (when s = 0, there are no such blocks) under the action of
the mapping i �→ i+ 1 (mod u). Let V = (Zu × Z3) ∪ {∞}.

Let Bu = {[(0, j), (ai, j), (bi, j + 1)], [(0, j), (bi − ai, j), (u− ai, j + 1)], [(0, j), (u−
bi, j), (u+ai−bi, j+1)], [(ai, j), (0, j), (bi, j+2)], [(bi−ai, j), (0, j), (u−ai, j+2)], [(u−
bi, j), (0, j), (u + ai − bi, j + 2)] : i = 1, 2, . . . , s, j = 0, 1, 2}. Further let B∞ =
{[∞, (0, 0), (0, 1)], [(0, 0),∞, (0, 2)], [(0, 1), (0, 2),∞], [(0, 2), (0, 1), (0, 0)]}.

Then the set of directed triples generated from the blocks of the set Bu ∪B∞, by
the mapping (i, j) �→ (i + 1, j) (mod u), ∞ �→ ∞ form a 3-rotational Mendelsohn
directed triple system on the set V .

Let v = 18s+ 10. There exists a cyclic Steiner triple system of order u, STS(u),
for all u = 6s + 3, s �= 1 [20]. As in the previous case, suppose that the base set
of such a system is Zu. The triples of the STS(u) can then be obtained from a set
of starter blocks {0, ai, bi}, i = 1, 2, . . . , s (when s = 0, there are no such blocks)
and a further block {0, u/3, 2u/3} under the action of the mapping i �→ i + 1 (mod
u). Let V = (Zu × Z3) ∪ {∞} and let Bu and B∞ be as defined above. Further
let Bu/3 = {[(0, j), (u/3, j), (2u/3, j + 1)], [(u/3, j), (0, j), (2u/3, j+ 2)] : j = 0, 1, 2}.
Then the set of directed triples generated from the blocks of the set Bu ∪Bu/3 ∪B∞,
by the mapping (i, j) �→ (i+1, j) (mod u), ∞ �→ ∞ form a 3-rotational Mendelsohn
directed triple system on the set V .

3 Latin directed triple systems

These systems were introduced in [9]. Given a DTS(v), (V,B), we can define an
operation on the set V by the following rules. For [x, y, z] ∈ B let x · y = z, x · z = y
and y · z = x. Further for all x ∈ V let x · x = x. However the algebraic structure
thus obtained is not necessarily a quasigroup; if [u, x, y] and [y, v, x] ∈ B then u ·x =
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v · x = y. The condition for (V, ·) to be a quasigroup is [x, y, z] ∈ B ⇒ [w, y, x] ∈ B
for some w ∈ V . The system is then called a Latin directed triple system, LDTS(v),
because the operation table forms a Latin square, and the quasigroup so formed is
called a DTS-quasigroup.

Latin directed triple systems have a rich and interesting structure which is ex-
plored in further papers. One feature of particular interest is the following. Idem-
potent totally symmetric and idempotent semi-symmetric quasigroups obtained re-
spectively from Steiner and Mendelsohn triple systems are in one-one correspondence
with the systems from which they come. This is not the case for DTS-quasigroups
and Latin directed triple systems. Non-isomorphic LDTS(v) can yield isomorphic,
indeed actually identical, DTS-quasigroups [9, Example 2.4]. A directed triple sys-
tem (V,B) is said to be pure if [x, y, z] ∈ B ⇒ [z, y, x] /∈ B. Pure LDTS(v) give
anti-commutative DTS-quasigroups and these are in one-one correspondence. At
the other extreme commutative DTS-quasigroups correspond to idempotent totally
symmetric quasigroups.

Another feature is concerned with the property of flexibility. Both idempotent
totally symmetric quasigroups and idempotent semi-symmetric quasigroups satisfy
the flexible law, i.e. x · (y · x) = (x · y) · x for all x, y ∈ V . DTS-quasigroups need
not. A necessary and sufficient condition for a DTS-quasigroup obtained from an
LDTS(v), (V,B), to be flexible is given in [9], [x, y, z] ∈ B ⇒ [x, z · x, y · x] ∈ B.
The existence spectrum for non-flexible DTS-quasigroups is determined in [9] and
for flexible DTS-quasigroups in [10].

Theorem 3.1 (Drápal, Kozlik & Griggs) There exists a non-flexible LDTS(v)
if and only if v ≡ 0 or 1 (mod 3), v �= 3, 4, 6, 7, 10.

Theorem 3.2 (Drápal, Kozlik & Griggs) There exists a flexible LDTS(v) if and
only if v ≡ 0 or 1 (mod 3), v �= 4, 6, 10, 12.

Unlike MDTS(v), LDTS(v) are not necessarily regular even when the necessary
condition v ≡ 1 (mod 3) is satisfied. A Latin directed triple system may be obtained
by taking a Steiner triple system and replacing each triple {x, y, z} by one of the pairs
of directed triples [x, y, z] and [z, y, x], [y, z, x] and [x, z, y], or [z, x, y] and [y, x, z].
Such systems are called improper. Cyclic Steiner triple systems of order v exist for all
v ≡ 1 (mod 6), v ≥ 7 [20]. Hence it follows immediately that regular, but improper,
LDTS(v) exist for the same values. However, in [16] a stronger result is proved.

Theorem 3.3 (Kozlik) If v ≡ 1 (mod 6), v ≥ 13, then there exists a pure cyclic
LDTS(v).

This leaves the case v ≡ 4 (mod 6) to be considered and we do this below in
the proof of the next theorem, part of which uses a standard technique known as
Wilson’s fundamental construction. We assume that the reader is familiar with this
construction but briefly the basic idea is as follows.
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A k-group divisible design, k-GDD, is an ordered triple (V ,G,B) where V is a
set of points of cardinality v, G is a partition of V into groups and B is a family
of subsets of V , called blocks, each of cardinality k, such that every pair of distinct
points is contained in either precisely one group or one block, but not both. If
v = a1g1+a2g2+ . . .+asgs and if there are ai groups of cardinality gi, i = 1, 2, . . . , s,
then the k-GDD is said to be of type ga11 ga22 . . . gass . The construction proceeds as
follows. Begin with a k-GDD of type gu or gum1, usually called the master GDD.
Each point is then assigned a weight, usually the same weight, say w. In effect, each
point is replaced by w points. Each block of the master GDD is then replaced by a
k-GDD of type wk, called a slave GDD. We will only need to use the values k = 3
or k = 4 and w = 2 or w = 3, and instead of slave GDDs we will use partial regular
Latin directed triple systems. To complete the construction we then “fill in” the
groups of the expanded master GDD, sometimes adjoining an extra point, say ∞,
to all of the groups. Thus we may need pure regular Latin directed triple systems of
orders gw, mw, gw + 1 or mw + 1 as appropriate. For a more detailed explanation
of this construction see, for example, the proof of Proposition 4.3 in [9].

Theorem 3.4 There exists a regular LDTS(v) for all v ≡ 4 (mod 6), v ≥ 16, except
possibly for v = 70, 82 and 106.

Proof. We will use both 3-GDDs and 4-GDDs.

When working with the former, we will use the partial regular LDTS(9)whose
blocks are

[x, a, p], [p, a, x], [y, b, q], [q, b, y], [z, c, r], [r, c, z], [c, p, y], [y, p, c], [a, q, z],

[z, q, a], [b, r, x], [x, r, b], [q, x, c], [c, x, q], [r, y, a], [a, y, r], [p, z, b], [b, z, p],

and the sets {a, b, c}, {p, q, r}, {x, y, z} play the role of the groups.

When working with the latter, we will use the partial regular LDTS(12) whose
blocks are

[p, a, x], [s, a, p], [x, a, s], [q, b, y], [u, b, q], [y, b, u], [r, c, z], [t, c, r], [z, c, t], [c, p, u],

[u, p, y], [y, p, c], [a, q, t], [t, q, z], [z, q, a], [b, r, s], [s, r, x], [x, r, b], [c, s, y], [q, s, c],

[y, s, q], [b, t, x], [p, t, b], [x, t, p], [a, u, z], [r, u, a], [z, u, r], [c, x, q], [q, x, u], [u, x, c],

[a, y, r], [r, y, t], [t, y, a], [b, z, p], [p, z, s], [s, z, b],

and the sets {a, b, c}, {p, q, r}, {s, t, u}, {x, y, z} play the role of the groups.

Schema of the master GDDs and Latin directed triple systems needed to construct
the regular LDTS(v) are given in the two tables below. In all cases we weight with 3
and adjoin the point ∞. Regular Latin directed triple systems for the orders needed
come either from Theorem 3.3 or are given in the Appendix. Existence of the relevant
group divisible designs can be verified by reference to [11].

Note that, since all the constituent parts used in Table 1 are pure, the systems
constructed for the values v ≡ 4 or 10 (mod 18) are also pure. Finally, pure regular
LDTS(v) for the missing values v = 46, 58, 64, 76 and 112 in Table 1 and 88 in Table
2 are also given in the Appendix.
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Type of Orders of Residue classes Missing
master 4-GDD LDTS(v) needed covered modulo 36 values
43s71, s ≥ 2 13, 22 22 58
43s131, s ≥ 3 13, 40 4 76, 112
6s91, s ≥ 4 19, 28 10, 28 46, 64, 82

Table 1: Schema for regular LDTS(v), v ≡ 4 or 10 (mod 18).

Type of Orders of Residue classes Missing
master 3-GDD LDTS(v) needed covered modulo 54 values
92s51, s ≥ 2 28, 16 16 70
92s111, s ≥ 2 28, 34 34 88
92s171, s ≥ 2 28, 52 52 106

Table 2: Schema for regular LDTS(v), v ≡ 16 (mod 18).

4 Skewed directed triple systems

First, observe that skewed directed triple systems, SDTS(v), are regular. Hence a
necessary condition for their existence is v ≡ 1 (mod 3). We show that with the
exception of v = 7 and the possible exception of v = 22, this condition is also
sufficient. But first it will be convenient to give enumeration results for small orders.

Proposition 4.1 There is a unique SDTS(4).

Proof. The triples are [0, 1, 2], [1, 0, 3], [2, 3, 1], [3, 2, 0].

Proposition 4.2 There is no SDTS(7).

Proof. An SDTS(7) contains 14 directed triples and therefore, since it is regular,
each point occurs precisely twice in each of the positions of the directed triples. Now
suppose that any SDTS(7) contains a configuration consisting of a set of six directed
triples which take the form

[x, y, ·], [y, x, ·], [y, z, ·], [z, y, ·], [z, x, ·], [x, z, ·].

Then to complete these triples we need an extra six distinct points, so nine points in
total. Thus the above configuration is not possible. Moreover any SDTS(7) cannot
contain a configuration consisting of a set of eight directed triples which cycle round
as above, since if this were so then it must also contain the above configuration of
six directed triples. Therefore on the base set Z7 and without loss of generality, any
SDTS(7) must have the structure below.

Now consider the point 0. It cannot be placed in the final position of directed
triples 0 to 3 or 10 to 13. So it must occur twice in this position in directed triples 4
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Block number Directed triple Block number Directed triple
0 [0, 1, ·] 1 [1, 0, ·]
2 [1, 2, ·] 3 [2, 1, ·]
4 [2, 3, ·] 5 [3, 2, ·]
6 [3, 4, ·] 7 [4, 3, ·]
8 [4, 5, ·] 9 [5, 4, ·]
10 [5, 6, ·] 11 [6, 5, ·]
12 [6, 0, ·] 13 [0, 6, ·]

to 9. But if we place 0 in triple 6 or 7 then it cannot be placed in any of the triples
4, 5, 8 or 9. Thus the point 0 must be placed once in directed triple 4 or 5 and once
in directed triple 8 or 9. Using the same argument for each of the remaining points
we see that point i, 0 ≤ i ≤ 6, must be placed once in directed triples 2i+4 or 2i+5
and once in directed triples 2i+ 8 or 2i+ 9, arithmetic modulo 14, i.e. we have the
following situation.

Point Once in Block number Once in Block number
0 4 or 5 8 or 9
1 6 or 7 10 or 11
2 8 or 9 12 or 13
3 10 or 11 0 or 1
4 12 or 13 2 or 3
5 0 or 1 4 or 5
6 2 or 3 6 or 7

So we have two choices for the block number 0, directed triples [0, 1, 3] or [0, 1, 5].
Consider the former. Using the fact that S1,3 = S3,2 and the information on the
placement of the points given above, we have the sequence of implications
Block 0 is [0,1,3] ⇒ Block 4 is [2,3,0] ⇒ Block 12 is [6,0,2] ⇒ Block 2 is [1,2,6] ⇒
Block 10 is [5,6,1] i.e. the situation is as follows.

Block number Directed triple Block number Directed triple
0 [0, 1, 3] 1 [1, 0, ·]
2 [1, 2, 6] 3 [2, 1, ·]
4 [2, 3, 0] 5 [3, 2, ·]
6 [3, 4, ·] 7 [4, 3, ·]
8 [4, 5, ·] 9 [5, 4, ·]
10 [5, 6, 1] 11 [6, 5, ·]
12 [6, 0, 2] 13 [0, 6, ·]

But now since Block 10 is [5, 6, 1], we must have that Block 3 is [2, 1, 5] but this
violates where point 5 can be placed and we have a contradiction.
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Now consider the latter. Again using the fact that S1,3 = S3,2 and the information
on the placement of the points given above, we have the sequence of implications
Block 0 is [0,1,5] ⇒ Block 8 is [4,5,0] ⇒ Block 12 is [6,0,4] ⇒ Block 6 is [3,4,6] ⇒
Block 10 is [5,6,3] ⇒ Block 4 is [2,3,5] i.e. the situation is as follows.

Block number Directed triple Block number Directed triple
0 [0, 1, 5] 1 [1, 0, ·]
2 [1, 2, ·] 3 [2, 1, ·]
4 [2, 3, 5] 5 [3, 2, ·]
6 [3, 4, 6] 7 [4, 3, ·]
8 [4, 5, 0] 9 [5, 4, ·]
10 [5, 6, 3] 11 [6, 5, ·]
12 [6, 0, 4] 13 [0, 6, ·]

But now since Block 4 is [2, 3, 5], we must have that Block 11 is [6, 5, 2] but this
again violates where point 2 can be placed and we have a contradiction. Thus there
is no SDTS(7).

Proposition 4.3 There are precisely 4 pairwise non-isomorphic SDTS(10)s.

Proof. This result was obtained by exhaustive computer search using the package
Mace4 [18]. Two of the SDTS(10)s are 3-rotational. Let V = (Z3 × Z3) ∪ {∞}.
The systems are generated from the directed triples below by the mapping (i, j) �→
(i+ 1, j) (mod 3), ∞ �→ ∞.

System #1.

[∞, (0, 0), (0, 1)], [(1, 0),∞, (0, 2)], [(0, 2), (2, 1),∞], [(0, 0), (1, 0), (2, 1)],
[(0, 0), (2, 0), (0, 2)], [(0, 1), (1, 1), (0, 2)], [(0, 1), (2, 1), (0, 0)], [(0, 2), (1, 2), (1, 1)],
[(0, 2), (2, 2), (2, 0)], [(2, 1), (0, 2), (1, 0)].

System #2.

[∞, (0, 0), (0, 1)], [(1, 0),∞, (0, 2)], [(0, 2), (2, 1),∞], [(1, 0), (0, 0), (2, 1)],
[(2, 0), (0, 0), (0, 2)], [(0, 1), (1, 1), (0, 2)], [(0, 1), (2, 1), (1, 0)], [(0, 2), (1, 2), (1, 1)],
[(0, 2), (2, 2), (0, 0)], [(2, 1), (0, 2), (2, 0)].

The other two systems are automorphism-free. The triples, with brackets and com-
mas removed for clarity, are

System #3.

012 086 094 103 164 179 236 241 258 320
348 357 427 439 456 529 531 540 618 673
695 715 760 782 805 874 891 907 962 983

System #4.

012 076 098 103 174 196 236 241 287 320
348 359 425 437 460 531 562 580 649 657
683 705 718 793 829 854 861 904 915 972
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The following enumeration results for cyclic skewed directed triple systems were
also obtained using Mace4 [18].

Proposition 4.4 There are precisely 2 pairwise non-isomorphic cyclic SDTS(13)s.

Proof. Altogether, the computer found 24 realisations of cyclic SDTS(13). Testing
for isomorphism using the Bays-Lambossy Theorem [17] (see also section 2.27 of [4]),
gives the two pairwise non-isomorphic systems described below.

Let V = Z13. The systems are generated from the directed triples below by the
action of the mapping i �→ i+ 1 (mod 13).

System #1.
[0, 3, 1], [1, 9, 3], [3, 0, 9], [9, 1, 0].

System #2.
[0, 3, 9], [1, 9, 0], [3, 0, 1], [9, 1, 3].

Proposition 4.5 There are precisely 7 pairwise non-isomorphic cyclic SDTS(16)s.

Proof. Altogether, the computer found 56 realisations of cyclic SDTS(16). Testing
for multiplier isomorphisms reduces this to 7 systems listed below, each generated
from the directed triples given by the action of the mapping i �→ i+ 1 (mod 16).

System #1.
[2, 0, 9], [6, 0, 11], [8, 0, 12], [10, 0, 13], [14, 0, 15].

System #2.
[1, 0, 11], [7, 0, 12], [8, 0, 6], [9, 0, 13], [15, 0, 2].

System #3.
[3, 0, 9], [5, 0, 12], [8, 0, 10], [11, 0, 15], [13, 0, 14].

System #4.
[2, 0, 7], [4, 0, 13], [8, 0, 11], [12, 0, 6], [14, 0, 15].

System #5.
[2, 0, 1], [4, 0, 10], [8, 0, 3], [12, 0, 9], [14, 0, 5].

System #6.
[2, 0, 11], [4, 0, 1], [8, 0, 7], [12, 0, 6], [14, 0, 3].

System #7.
[2, 0, 5], [4, 0, 10], [8, 0, 15], [12, 0, 13], [14, 0, 9].

In order to prove that the above seven systems are pairwise non-isomorphic we
proceed as follows. By ignoring the order of the triples of an SDTS(v), we obtain
a twofold triple system, TTS(v), (V,B′). For each point x ∈ V , determine the
neighbourhood Nx, defined as the set of pairs {{y, z} : {x, y, z} ∈ B′}. Clearly Nx

consists of a union of cycles on the base set V \ {x}. In each of the above systems,
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because they are cyclic, the neighbourhoods about each point are isomorphic. For
each point of the systems #1, #2 and #3 the neighbourhood consists of two 6-cycles
and a 3-cycle. For each of the systems #4, #5, #6 and #7 the neighbourhood
is a 15-cycle. This in itself proves that none of the systems #1, #2 or #3 can
be isomorphic to any of the systems #4, #5, #6 or #7. It is now easy to check
isomorphism between two systems. Because they are cyclic, if they are isomorphic
then there exists an isomorphism which maps point 0 in one system to point 0 in
the other system. Hence the neighbourhoods about point 0 must also map from one
system to the other. This leaves a relatively small number of possibilities which it
is easy to check by computer. We find that the above seven systems are pairwise
non-isomorphic.

Proposition 4.6 There are precisely 6 pairwise non-isomorphic cyclic SDTS(19)s.

Proof. Altogether, the computer found 84 realisations of cyclic SDTS(19). Testing
for isomorphism using the Bays-Lambossy Theorem [17] (see also section 2.27 of [4]),
gives the six pairwise non-isomorphic systems described below.

Let V = Z19. The systems are generated from the directed triples below by the
action of the mapping i �→ i+ 1 (mod 19).

System #1.
[2, 0, 8], [4, 0, 16], [9, 0, 14], [10, 0, 13], [15, 0, 7], [17, 0, 18].

System #2.
[2, 0, 7], [3, 0, 13], [8, 0, 14], [11, 0, 15], [16, 0, 9], [17, 0, 18].

System #3.
[4, 0, 7], [5, 0, 18], [9, 0, 2], [10, 0, 8], [14, 0, 6], [15, 0, 16].

System #4.
[4, 0, 1], [5, 0, 11], [9, 0, 17], [10, 0, 12], [14, 0, 13], [15, 0, 3].

System #5.
[4, 0, 18], [6, 0, 8], [9, 0, 12], [10, 0, 17], [13, 0, 5], [15, 0, 16].

System #6.
[4, 0, 1], [6, 0, 11], [9, 0, 7], [10, 0, 3], [13, 0, 2], [15, 0, 14].

Systems #1 to #4 each give rise to 18 realisations, while systems #5 and #6 each
give rise to 6 realisations and are not only cyclic but 6-rotational with the mapping
i �→ 7i as an automorphism.

We are now in a position to prove the main result of this section.

Theorem 4.7 There exists an SDTS(v) for all v ≡ 1 (mod 3), v �= 7, except possi-
bly v = 22.

Proof. Let v ≡ 1 or 4 (mod 12). There exists a Steiner system S(2, 4, v) for all v in
these residue classes [13]. Replace each block of the Steiner system by the SDTS(4)
given in Proposition 4.1.
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Let v ≡ 7 or 10 (mod 12). There exists a PBD(v, {4, 10}) containing exactly one
block of cardinality 10 for all v in these residue classes and v ≥ 31 [21]. Replace
each block of cardinality 4 of the pairwise balanced design by the SDTS(4) given
in Proposition 4.1 and the block of cardinality 10 by one of the designs given in
Proposition 4.3. Skewed directed triple systems of order 19 are given in Proposition
4.6.

The existence of an SDTS(22) remains elusive. We have run lengthy computer
searches assuming possible automorphisms but with no success. It would be good to
find such a system to close the annoying gap in the above theorem.

Appendix

In the systems below for ease of reading, points (i, j) are denoted by ij .

Pure regular LDTS(16).

V = Z8 × Z2.
The triples are obtained from the following starter blocks under the action of the
mappings ij �→ (i+ 1)j and ij �→ ij+1.

[20, 00, 61], [61, 00, 31], [31, 00, 71], [71, 00, 70], [70, 00, 20].

Pure regular LDTS(22).

V = Z11 × Z2.
The triples are obtained from the following starter blocks under the action of the
mapping ij �→ (i+ 1)j.

[10, 00, 50], [50, 00, 101], [101, 00, 61], [61, 00, 71], [71, 00, 01], [01, 00, 30], [30, 00, 10],
[20, 01, 90], [90, 01, 61], [61, 01, 20], [80, 01, 100], [100, 01, 31], [31, 01, 21], [21, 01, 80].

Pure regular LDTS(28).

V = Z14 × Z2.
The triples are obtained from the following starter blocks under the action of the
mappings ij �→ (i+ 1)j and ij �→ ij+1.

[10, 00, 50], [50, 00, 121], [121, 00, 41], [41, 00, 61], [61, 00, 131], [131, 00, 91], [91, 00, 31],
[31, 00, 30], [30, 00, 10].

Pure regular LDTS(34).

V = Z17 × Z2.
The triples are obtained from the following starter blocks under the action of the
mapping ij �→ (i+ 1)j.

[10, 00, 50], [50, 00, 70], [70, 00, 30], [30, 00, 10], [60, 00, 11], [11, 00, 80], [80, 00, 21],
[21, 00, 71], [71, 00, 51], [51, 00, 01], [01, 00, 60], [30, 11, 71], [71, 11, 40], [40, 11, 141],
[141, 11, 100], [100, 11, 91], [91, 11, 30], [50, 11, 81], [81, 11, 90], [90, 11, 151], [151, 11, 01],
[01, 11, 50].
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Pure regular LDTS(40).

V = Z20 × Z2.
The triples are obtained from the following starter blocks under the action of the
mappings ij �→ (i+ 1)j and ij �→ ij+1.

[10, 00, 50], [50, 00, 11], [11, 00, 110], [110, 00, 181], [181, 00, 81], [81, 00, 120], [120, 00, 31],
[31, 00, 51], [51, 00, 140], [140, 00, 141], [141, 00, 70], [70, 00, 30], [30, 00, 10].

Pure regular LDTS(46).

V = Z23 × Z2.
The triples are obtained from the following starter blocks under the action of the
mapping ij �→ (i+ 1)j.

[10, 00, 50], [50, 00, 70], [70, 00, 30], [30, 00, 10], [60, 00, 31], [31, 00, 121], [121, 00, 191],
[191, 00, 151], [151, 00, 150], [150, 00, 60], [140, 20, 161], [161, 20, 150], [150, 20, 151],
[151, 20, 191], [191, 20, 140], [60, 11, 131], [131, 11, 41], [41, 11, 160], [160, 11, 221],
[221, 11, 150], [150, 11, 161], [161, 11, 140], [140, 11, 191], [191, 11, 200], [200, 11, 60],
[60, 41, 171], [171, 41, 110], [110, 41, 101], [101, 41, 31], [31, 41, 60].

Pure regular LDTS(52).

V = Z26 × Z2.
The triples are obtained from the following starter blocks under the action of the
mappings ij �→ (i+ 1)j and ij �→ ij+1.

[40, 00, 191], [191, 00, 61], [61, 00, 121], [121, 00, 160], [160, 00, 251], [251, 00, 250],
[250, 00, 230], [230, 00, 40], [100, 20, 231], [231, 20, 190], [190, 20, 101], [101, 20, 121],
[121, 20, 140], [140, 20, 251], [251, 20, 230], [230, 20, 170], [170, 20, 100].

Pure regular LDTS(58).

V = Z29 × Z2.
The triples are obtained from the following starter blocks under the action of the
mapping ij �→ (i+ 1)j.

[10, 00, 50], [50, 00, 150], [150, 00, 70], [70, 00, 30], [30, 00, 10], [10, 240, 261], [261, 240, 101],
[101, 240, 91], [91, 240, 131], [131, 240, 01], [01, 240, 121], [121, 240, 110], [110, 240, 130],
[130, 240, 10], [61, 280, 271], [271, 280, 211], [211, 280, 91], [91, 280, 101], [101, 280, 61],
[00, 01, 90], [90, 01, 71], [71, 01, 230], [230, 01, 101], [101, 01, 181], [181, 01, 210],
[210, 01, 51], [51, 01, 250], [250, 01, 80], [80, 01, 91], [91, 01, 151], [151, 01, 170], [170, 01, 261],
[261, 01, 100], [100, 01, 00], [60, 11, 31], [31, 11, 70], [70, 11, 270], [270, 11, 60].
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Pure regular LDTS(64).

V = Z32 × Z2.
The triples are obtained from the following starter blocks under the action of the
mappings ij �→ (i+ 1)j and ij �→ ij+1.

[80, 00, 251], [251, 00, 61], [61, 00, 220], [220, 00, 90], [90, 00, 51], [51, 00, 200], [200, 00, 311],
[311, 00, 310], [310, 00, 290], [290, 00, 250], [250, 00, 80], [30, 80, 290], [290, 80, 181],
[181, 80, 201], [201, 80, 220], [220, 80, 261], [261, 80, 01], [01, 80, 171], [171, 80, 211],
[211, 80, 51], [51, 80, 30].

Pure regular LDTS(76).

V = Z38 × Z2.
The triples are obtained from the following starter blocks under the action of the
mappings ij �→ (i+ 1)j and ij �→ ij+1.

[60, 00, 161], [161, 00, 341], [341, 00, 290], [290, 00, 100], [100, 00, 181], [181, 00, 240],
[240, 00, 371], [371, 00, 370], [370, 00, 350], [350, 00, 310], [310, 00, 230], [230, 00, 120],
[120, 00, 311], [311, 00, 250], [250, 00, 121], [121, 00, 141], [141, 00, 160], [160, 00, 211],
[211, 00, 291], [291, 00, 210], [210, 00, 111], [111, 00, 151], [151, 00, 351], [351, 00, 330],
[330, 00, 60].

Pure regular LDTS(88).

V = Z44 × Z2.
The triples are obtained from the following starter blocks under the action of the
mappings ij �→ (i+ 1)j and ij �→ ij+1.

[60, 00, 181], [181, 00, 401], [401, 00, 51], [51, 00, 251], [251, 00, 331], [331, 00, 230],
[230, 00, 120], [120, 00, 351], [351, 00, 81], [81, 00, 300], [300, 00, 130], [130, 00, 71],
[71, 00, 280], [280, 00, 431], [431, 00, 430], [430, 00, 410], [410, 00, 370], [370, 00, 290],
[290, 00, 141], [141, 00, 161], [161, 00, 180], [180, 00, 241], [241, 00, 340], [340, 00, 250],
[250, 00, 131], [131, 00, 171], [171, 00, 411], [411, 00, 390], [390, 00, 60].

Pure regular LDTS(112).

V = Z56 × Z2.
The triples are obtained from the following starter blocks under the action of the
mappings ij �→ (i+ 1)j and ij �→ ij+1.

[50, 00, 31], [31, 00, 351], [351, 00, 391], [391, 00, 161], [161, 00, 221], [221, 00, 260],
[260, 00, 321], [321, 00, 421], [421, 00, 151], [151, 00, 231], [231, 00, 511], [511, 00, 470],
[470, 00, 370], [370, 00, 181], [181, 00, 201], [201, 00, 220], [220, 00, 481], [481, 00, 390],
[390, 00, 180], [180, 00, 461], [461, 00, 111], [111, 00, 271], [271, 00, 360], [360, 00, 551],
[551, 00, 550], [550, 00, 530], [530, 00, 490], [490, 00, 410], [410, 00, 250], [250, 00, 121],
[121, 00, 420], [420, 00, 130], [130, 00, 71], [71, 00, 311], [311, 00, 440], [440, 00, 110],
[110, 00, 50].
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