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Abstract

Let G be a finite group and S a subset of G. Then S is product-free if
S ∩ SS = ∅, and complete if G∗ ⊆ S ∪ SS. A product-free set is locally
maximal if it is not contained in a strictly larger product-free set. If S
is product-free and complete then S is locally maximal, but the converse
does not necessarily hold. Street and Whitehead [J. Combin. Theory Ser.
A 17 (1974), 219–226] defined a group G as filled if every locally maximal
product-free set S in G is complete (the term comes from their use of the
phrase ‘S fills G’ to mean S is complete). They classified all abelian filled
groups, and conjectured that the finite dihedral group of order 2n is not
filled when n = 6k + 1 (k ≥ 1). The conjecture was disproved by two of
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the current authors [C.S. Anabanti and S.B. Hart, Australas. J. Combin.
63 (3) (2015), 385–398], where we also classified the filled groups of odd
order. In this paper we classify filled dihedral groups, filled nilpotent
groups and filled groups of order 2np where p is an odd prime. We use
these results to determine all filled groups of order up to 2000.

1 Preliminaries

Let S be a non-empty subset of a group G. We say S is product-free if S ∩ SS = ∅,
where SS = {ab : a, b ∈ S} (in particular a and b are not necessarily distinct). A
product-free set S is said to be locally maximal if whenever Σ is product-free in G
and S ⊆ Σ, then S = Σ. A product-free set S of G is complete (or, equivalently, fills
G) if G∗ ⊆ S ∪SS (where G∗ is the set of all non-identity elements of G). Complete
product-free sets have cropped up in many areas; some of these were described by
Cameron in [5]; see also [6]. For example, complete product-free symmetric subsets
of groups give rise in a natural way to regular triangle-free graphs of diameter 2.
In an investigation of these graphs, Hanson and Seyffarth [9] showed, by exhibiting
small complete product-free sets of cyclic groups, that the smallest valency of such
a graph on n vertices is within a constant factor of the trivial bound of

√
n. In

the abelian case the term sum-free is used. Complete sum-free sets have also been
investigated by Payne [10], Calkin and Cameron [4], amongst others.

There is also a link to finite geometry: complete sum-free sets in the elementary
abelian group of order 2n correspond to complete caps in the projective space PG(n−
1, 2); that is, collections of points, maximal by inclusion, with no three collinear.
However there does not seem to have been much work done for non-abelian groups,
where of course we speak of product-free sets. It is easy to see that all complete
product-free sets are locally maximal. The converse often holds in that many locally
maximal product-free sets are complete. In the extreme case we say G is a filled group
if every locally maximal product-free set in G is complete (or, using the notation of
Street and Whitehead [11], every locally maximal product-free set in G fills G). The
definition of a filled group, due to Street and Whitehead, was motivated by the
observation that a product-free set in an elementary abelian 2-group A is locally
maximal if and only if it fills A, and hence the elementary abelian 2-groups are filled
groups. They asked which other groups, if any, are filled. In [11] they classified the
filled abelian groups and the first few dihedral groups.

In this paper, we classify filled groups of various kinds. In Section 2 we deal with
dihedral groups. Section 3 covers nilpotent groups. Section 4 looks at groups of
order 2np where p is an odd prime and n is a positive integer. Finally in Section 5 we
describe algorithms which we have implemented in GAP [7], that allow us to check
for filled non-nilpotent groups of all orders up to 2000. In the rest of this section we
establish notation and state some known results.

Throughout this paper, we write Cn for the cyclic group of order n and D2n for
the dihedral group of order 2n. All groups in this paper are finite.
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Notation 1.1. Let S be a subset of a group G. We define S−1, T (S) and
√
S as

follows:

S−1 = {s−1 : s ∈ S};
T (S) = S ∪ SS ∪ SS−1 ∪ S−1S;√

S = {x ∈ G : x2 ∈ S}.

We end this section with the following result, which gathers together some useful
facts that we will need.

Theorem 1.2. (i) [8, Lemma 3.1] Let S be a product-free set in a finite group G.
Then S is locally maximal if and only if G = T (S) ∪√S.

(ii) [11, Lemma 1] If G is a filled group, and N is a normal subgroup of G, then
G/N is filled.

(iii) [11, Theorem 2] A finite abelian group is filled if and only if it is C3, C5 or an
elementary abelian 2-group.

(iv) [2, Lemma 2.3] The only filled group with a normal subgroup of index 3 is C3.

(v) [2, Lemma 2.5] If G is a filled group with a normal subgroup N of index 5 such
that not every element of order 5 is contained in N , then G ∼= C5.

(vi) [2, Theorem 2.6] The only filled groups of odd order are C3 and C5.

(vii) [2, Prop 2.8] For n ≥ 2, the generalized quaternion group of order 4n is not
filled.

2 Dihedral groups

A list of non-abelian filled groups of order less than or equal to 32 was given in
[2]. There are eight such groups: six are dihedral, and the remaining two are non-
dihedral 2-groups. The dihedral groups on the list are those of order 6, 8, 10, 12,
14 and 22. Our aim in this section is to show that these are in fact the only filled
dihedral groups.

Notation 2.1. We write D2n = 〈x, y| xn = y2 = 1, xy = yx−1〉 for the dihedral
group of order 2n (where n > 2). In D2n, the elements of 〈x〉 are called rotations and
the elements of 〈x〉y are called reflections. For any subset S of D2n, we write A(S)
for S ∩ 〈x〉, the set of rotations of S, and B(S) for S ∩ 〈x〉y, the set of reflections of
S.

Observation 2.2. Suppose S is a subset of D2n. Let A = A(S) and B = B(S).
Then, because of the relations in the dihedral group, we have AA−1 = A−1A, AB =
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BA−1, BA = A−1B, and B−1 = B. Therefore

SS = AA ∪ BB ∪ AB ∪ BA;

SS−1 = AA−1 ∪BB ∪AB;

S−1S = AA−1 ∪BB ∪BA;

T (S) = A ∪ B ∪ AA ∪ AA−1 ∪ BB ∪ AB ∪ BA

= S ∪ SS ∪ AA−1.

We also note that
√
S =
√
A ⊆ 〈x〉.

Proposition 2.3. Let n be an odd integer, with n ≥ 17. Then D2n is not filled.

Proof. Let n be an odd integer with n ≥ 17 and G ∼= D2n. If n = 17, then a quick
check shows that the set S = {x, x3, x8, x14, xy, x3y, x5y, x7y} is a product-free subset
of G. Moreover we see that S ∪ SS = G \ {x7, x10, x12} and G = S ∪ SS ∪ SS−1.
Thus S is a locally maximal product-free set that does not fill G, meaning that G is
not filled. For the rest of the proof, assume n > 17. Then there is an odd number k
for which n is either 5k − 6, 5k − 4, 5k − 2, 5k, or 5k + 2.

Suppose first that n = 5k. Since n > 17 we have k ≥ 5. Now consider the
following subset S of G:

S = {xk, xk+2, . . . , x3k−2; y, xy, . . . , xk−1y}.
We calculate that

A(SS) = {x2k, x2k+2, . . . , xn−1} ∪ {1, x, . . . , xk−1} ∪ {x4k+1, x4k+2, . . . , 1}
and B(SS) = {xky, xk+1y, . . . , xn−1y}. Thus S is product-free. Observe that x3k /∈
S ∪ SS; so S does not fill G.

Let A = A(S) and T = T (S). Then AA−1 = {1, x2, x4, . . . , x2k−2}∪{x3k+2, x3k+4,
. . . , xn−2}. This means T = G \ {x3k}. Finally

√
S = {x3k, x3k+1, . . . , x4k−1}. By

Theorem 1.2(i) therefore, S is locally maximal product-free in G, but we have noted
that S does not fill G.

For the remaining cases, the calculations are very similar. We summarise the
outcomes in Table 1 overleaf, giving S, SS, AA−1 and

√
S \ T , where as above

A = A(S) and T = T (S). In each case a quick check shows that S ∩ SS = ∅ and
T ∪ √S = G, but x3k /∈ S ∪ SS. Thus S is locally maximal and product free but
does not fill G.

We have now covered all possibilities for n, and have shown that in each case D2n

is not filled.

Theorem 2.4. The only filled dihedral groups are D6, D8, D10, D12, D14 and D22.
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n S SS AA−1
√
S \ T

5k − 2

{
xk, xk+2, . . . , x3k−2

y, xy, . . . , xk−1y

} ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2k, x2k+2, . . . , xn−1

1, x, . . . , xk−1

x4k−1, x4k, . . . , 1

xky, xk+1y, . . . , xn−1y

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

{
1, x2, x4, . . . , x2k−2

x3k, x3k+2, . . . , xn−2

}
∅

5k − 4

{
xk−2, xk, . . . , x3k−4

y, xy, . . . , xk−3y

} ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2k−4, x2k−2, . . . , xn−1

1, x, . . . , xk−3

x4k−1, x4k, . . . , 1

xk−2y, xk−1y, . . . , xn−1y

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

{
1, x2, x4, . . . , x2k−2

x3k−2, x3k, . . . , xn−2

}
∅

5k − 6

{
xk−2, xk, . . . , x3k−6

y, xy, . . . , xk−3y

} ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2k−4, x2k−2, . . . , xn−1

1, x, . . . , xk−3

x4k−3, x4k−2, . . . , 1

xk−2y, xk−1y, . . . , xn−1y

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

{
1, x2, x4, . . . , x2k−4

x3k−2, x3k, . . . , xn−2

}
{x3k−4}

5k + 2

{
xk−2, xk, . . . , x3k−2

y, xy, . . . , xk−3y

} ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2k−4, x2k−2, . . . , xn−1

1, x, . . . , xk−3

x4k+5, x4k+6, . . . , 1

xk−2y, xk−1y, . . . , xn−1y

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

{
1, x2, x4, . . . , x2k

x3k+2, x3k+4, . . . , xn−2

}
{x3k}

Table 1: Non-filling product-free sets in D2n

Proof. Let G be dihedral of order 2n. By the results of [2], the only filled dihedral
groups of order up to 32 are D6, D8, D10, D12, D14 and D22. Suppose n ≥ 17. By
Proposition 2.3, if n is odd then D2n is not filled, so we can assume n is even. We
will show by induction on m that if G ∼= D4m for some integer m > 8, then G is not
filled.

If G is filled, then by Theorem 1.2(ii), the quotient G/Z(G) of G by its centre
must be filled. But G/Z(G) is dihedral of order 2m. If m is odd, then by Proposition
2.3, and our assumption that m > 8, we have m = 9 or m = 11. We know that D18

is not filled, so m = 11, meaning G is D44. However a straightforward calculation
shows that {x2, x5, x8, x18, x21, x5y, x16y} is locally maximal product-free in D44, but
does not fill D44. Thus if m is odd, then G is not filled. Suppose m is even, so m = 2t
for some t with t > 4. Inductively D4t is not filled, so G is not filled. This completes
the proof.

3 Nilpotent Groups

In this section we classify the filled nilpotent groups. The bulk of the work involved
here is in determining the filled 2-groups, as it will turn out that there are only
two filled nilpotent groups that are not 2-groups. We briefly recap some notation
and facts around extraspecial groups. For a group G we write G′ for the derived
group (so G′ = [G,G]) and Φ(G) for the Frattini subgroup (the intersection of the
maximal subgroups of G). A 2-group G is extraspecial if Z(G) = G′ = Φ(G) ∼= C2.
The order of any extraspecial 2-group is an odd power of 2, and there are exactly
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two nonisomorphic extraspecial 2-groups of order 22n+1 for each positive integer n.
To describe these, recall the construction of a central product. A central product
A ∗ B is the quotient of the direct product A × B by a central subgroup of A and
B. A group G is isomorphic to a central product A ∗ B if and only if it has normal
subgroups, which we may identify with A and B, such that AB = G, [A,B] = 1 and
A ∩ B ≤ Z(G). The extraspecial groups of order 8 are D8 and Q8. If E1 and E2

are the extraspecial groups of order 22n−1, for n ≥ 2, then the extraspecial groups of
order 22n+1 are isomorphic to E1 ∗Q8 and E2 ∗Q8.

Our first result classifies the 2-groups all of whose quotients are elementary
abelian. This is relevant because every quotient of a filled group must be filled,
and it will turn out that all but finitely many filled 2-groups are elementary abelian.

Theorem 3.1. Suppose every proper nontrivial quotient of a finite nontrivial 2-group
G is elementary abelian. Then G is either elementary abelian, extraspecial, C4 or of
the form E ∗ C4 where E is extraspecial and |G| = 2|E|.

Proof. It is straightforward to see that the only abelian 2-groups all of whose proper
nontrivial quotients are elementary abelian are elementary abelian or cyclic of order
4. We may therefore assume that G is nonabelian. Standard results from group
theory tell us that G′ is the smallest normal subgroup of G with abelian quotient,
and that, since G is a p-group, Φ(G) is the smallest normal subgroup with elementary
abelian quotient. In particular, G′ ≤ Φ(G). In this case though, by hypothesis
G/G′ is elementary abelian. Therefore Φ(G) = G′. As G is a 2-group, G has a
nontrivial centre and hence at least one central involution z. If G = 〈z〉 then we
are done. Otherwise by hypothesis G/〈z〉 is elementary abelian. Hence G′ ≤ 〈z〉.
Since G is nonabelian, we have G′ = 〈z〉. Moreover, were G to contain another
central involution z′, it would follow that G′ = 〈z′〉, a contradiction. Therefore Z(G)
contains a unique involution and is therefore cyclic. If Z(G) = 〈z〉 then we have
Z(G) = G′ = Φ(G) ∼= C2, which is the definition of extraspecial.

The remaining case to consider is that Z(G) is cyclic of order greater than 2. Now
G/〈z〉 is elementary abelian, so the square of every element of G lies in 〈z〉. Therefore
Z(G) is cyclic of order 4, with 〈z〉 = G′ = Φ(G). Now Φ(G) is the intersection of
the maximal subgroups of G, so there must exist a subgroup N of G, of index 2,
which does not contain Z(G). This forces N ∩ Z(G) = 〈z〉. Writing Z = Z(G), we
have NZ = G, N ∩ Z ≤ Z(G), [N,Z] = 1. So G is a central product of N and Z,
with |G| = 2|N |. Since [N,Z] = 1 we have Z(N) ≤ Z(G), and so Z(N) = 〈z〉. Thus
N is not abelian. Hence N ′ is nontrivial, which forces N ′ = Φ(N) = 〈z〉 = Z(N).
In other words, N is extraspecial. That is, G is the required central product of an
extraspecial group and a cyclic group of order 4.

Lemma 3.2. Let G be a group of the form E ∗ C4 where E is extraspecial and
|G| = 2|E|. Then G is not filled.

Proof. We may suppose that G has an extraspecial subgroup E of index 2 and that
Z(G) is generated by an element x of order 4, where E ∩Z(G) = 〈x2〉. Observe that
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Z(E) = 〈x2〉, and G′ = Φ(G) = 〈x2〉. Now {x2} is product-free. So there is a locally
maximal product-free set S of G with x2 ∈ S. If an element g of G has order 4, then
g2 = x2, which means S contains no elements of order 4. So S consists of involutions.
Thus S = S−1 and G = S ∪ SS ∪√S. Now G = E ∪Ex. If h ∈ E has order 4, then
(hx)2 = h2x2 = x4 = 1. If h has order 2, then (hx)2 = x2. So hx is an involution
if and only if o(h) = 4. Thus S = A ∪ Bx where A and B are subsets of E such
that the elements of A are involutions and the elements of B have order 4. We have
SS = AA ∪ABx ∪BAx ∪BBx2. Now x /∈ E, so if x ∈ S ∪ SS, then we must have
x ∈ Bx ∪ABx ∪BAx. Hence 1 ∈ B ∪ AB ∪BA which implies 1 ∈ AB ∪ BA. This
would mean that there are elements a of order 2 and b of order 4 with ab = 1, which
is impossible. Therefore x /∈ S ∪ SS. Hence S is a locally maximal product-free set
of G which does not fill G. Therefore G is not filled.

A group G of order pm is said to be of maximal class if m > 2 and the nilpotence
class of G is m− 1. It is well known (for example see Theorem 1.2 and Corollary 1.7
of [3]) that the 2-groups of maximal class are dihedral, semidihedral and generalised
quaternion. Moreover, by [3, Theorem 1.2], if G is a 2-group of maximal class of
order at least 16, then G/Z(G) is dihedral of order 1

2
|G|. A detailed examination of

locally maximal product-free sets in 2-groups of maximal class, which among other
things results in an alternative proof of Lemma 3.3, appears in [1]. However, since
we need the result here we thought it would be useful to include a short proof for
ease of reference.

Lemma 3.3. The only filled 2-group of maximal class is D8.

Proof. We see from Theorem 2.4 that D8 is the only filled dihedral 2-group. It is
easy to check that there are no other filled 2-groups with maximal class and order 8
or 16 (in fact by [2] the only nonabelian filled group of order 8 is D8 and the only
nonabelian filled group of order 16 is D8 × C2). If G is maximal class of order 32 or
above, then inductively G/Z(G) is a non-filled dihedral group of order 1

2
|G|, meaning

G is not filled.

For a p-group G, we define cn(G) to be the number of subgroups of G of order
pn.

Theorem 3.4 (Theorem 1.17 of [3]). Suppose a 2-group G is neither cyclic nor of
maximal class. Then c1(G) ≡ 3 mod 4 and for n > 1, cn(G) is even.

Corollary 3.5. Suppose G is a filled group of order 2n, where n > 1. If the only
filled groups of order 2n−1 are elementary abelian or extraspecial, then G is either
elementary abelian, extraspecial or the direct product of a filled extraspecial group of
order 2n−1 with a cyclic group of order 2. If the only filled groups of order 2n−1 are
elementary abelian, then G is either elementary abelian or extraspecial.

Proof. Note first that if G is a filled 2-group, then by Theorem 1.2(ii) all its quotients
are filled; by Theorem 1.2(iii) any nontrivial abelian quotients of G must therefore
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be elementary abelian. Since G′ is contained in any normal subgroup with abelian
quotient, and Φ(G) is contained in any normal subgroup with elementary abelian
quotient, it follows immediately that G′ = Φ(G). In particular, if G is abelian, then
G is elementary abelian, so we assume from now on that G is a non-abelian filled
group of order 2n with n > 1.

Suppose the only filled groups of order 2n−1 are elementary abelian or extraspecial.
If n is 2 or 3, then the result holds, so we may assume n ≥ 4. Now G is clearly not
cyclic. Moreover, by Lemma 3.3, G is not of maximal class. Therefore G has an even
number of subgroups of order 4. The size of any conjugacy class of subgroups of
order 4 is either 1 or even. The composition factors of any 2-group are cyclic of order
2, and hence G has at least one normal subgroup of order 4. Therefore G has at least
two normal subgroups, H and K say, of order 4. Any nontrivial normal subgroup
intersects the centre of G nontrivially, and so H contains a central involution z. The
quotient G/〈z〉 is filled of order 2n−1 and so, by hypothesis, either elementary abelian

or extraspecial. Hence G/H , which is isomorphic to G/〈z〉
H/〈z〉 , is a nontrivial quotient of

an extraspecial or elementary abelian 2-group, and is therefore elementary abelian.
Similarly G/K is elementary abelian. This implies that G′ = Φ(G) ≤ H ∩K. Since
G is not abelian, G′ is nontrivial. Hence G′ = Φ(G) = 〈z〉, where z is a central
involution.

If Z(G) contains an involution t other than z, then since t is not contained in
Φ(G), there is a maximal subgroup N which does not contain t. Thus G ∼= N × 〈t〉.
Now G/〈t〉 ∼= N , which forces N to be filled of order 2n−1. So G is elementary
abelian unless there is a filled extraspecial group E of order 2n−1, in which case we
also have the possibility that G ∼= E × C2. We now deal with the case that z is
the only central involution. In that case, since every nontrivial normal subgroup
intersects Z(G) nontrivially, every nontrivial normal subgroup contains z and hence
every proper quotient is elementary abelian. Therefore, by Theorem 3.1 and Lemma
3.2, G is either elementary abelian or extraspecial.

We have shown that G is either elementary abelian or extraspecial, except in the
case where there is a filled extraspecial group E of order 2n−1, in which case we have
the further possibility that G ∼= E × C2.

Lemma 3.6. Let S be a locally maximal product-free set in a group G. If a ∈ S but
a−1 /∈ S, then a−1 ∈ SS ∪ √S.

Proof. Since S is a locally maximal product-free set, we have G = S ∪ SS ∪ SS−1 ∪
S−1S ∪ √S. By assumption a−1 /∈ S. If a−1 ∈ SS−1, then there are b, c ∈ S
with a−1 = bc−1. But this implies ab = c, contradicting the fact that S is product-
free. If a−1 = b−1c ∈ S−1S, then b = ca, another contradiction. Therefore a−1 ∈
SS ∪ √S.
Lemma 3.7. Suppose G is a group of exponent 4 all of whose elements of order 4
square to the same central involution z. If S is a locally maximal product-free set
that does not fill G, then S contains z and every element of S is an involution.
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Proof. Suppose some element a of S is not an involution, and assume for a contra-
diction that a−1 /∈ S. Now a2 = z, where z is the central involution of G. Hence
z /∈ S. Therefore a−1 /∈ √S. Hence, by Lemma 3.6, a−1 ∈ SS. This means a−1 = bc
for some b, c,∈ S. Now if b is an involution then, taking the inverse of both sides,
we have a = c−1b, which forces ca = b, contradicting the fact that S is product-free.
Therefore b has order 4, which implies that a2 = b2 = z. From za−1 = zbc we then
get a = b−1c, whence ba = c, another contradiction. Therefore our assumption was
false, and a−1 ∈ S. This is true for all non-involutions in S, and so S−1 = S. Because
S is locally maximal product-free, we know S ∪ SS ∪ SS−1 ∪ S−1S ∪ √S = G. But√
S = ∅ because z /∈ S, and SS−1 = SS = S−1S because S = S−1. Therefore

G = S ∪ SS and S fills G.

We have shown so far that if S is locally maximal and does not fill G, then every
element of S must be an involution. If S consists of involutions, then S = S−1; so
S ∪ SS ∪ SS−1 ∪ S−1S = S ∪ SS. If

√
S = ∅ then we would have S ∪ SS = G,

meaning S fills G. Hence
√
S cannot be empty. Thus S contains z and every element

of S is an involution.

Proposition 3.8. If G is a non-abelian filled 2-group of order up to 128, then G is
either D8, D8 × C2, D8 ∗Q8 or (D8 ∗Q8)× C2.

Proof. Corollary 3.5 tells us that if G is a non-abelian filled group of order 2n, for
n > 1, then either G is extraspecial, or there is a filled extraspecial group E of order
2n−1 and G ∼= E ×C2. Computer search allows us to show that the only nonabelian
filled 2-groups of order up to 32 are D8, D8 × C2 (fitting in with Corollary 3.5) and
D8 ∗Q8. By Corollary 3.5, the only candidate for a non-abelian filled group of order
64 is (D8 ∗Q8)×C2 (in particular (D8 ∗D8)×C2 is not a candidate because D8 ∗D8

is not filled). Lemma 3.7 allows us to reduce the work involved in checking that
(D8 ∗Q8)×C2 is filled, by checking only sets of involutions. By this means, it is then
possible to check by machine that (D8 ∗Q8)×C2 is indeed the only filled non-abelian
group of order 64. By restricting the search to non-abelian groups whose quotients
are filled and looking only at product-free sets consisting of involutions, computer
search also confirmed that there are no non-abelian filled groups of order 128. See
Section 5 for more details on the algorithms used.

Notation 3.9. Let G be extraspecial of order greater than 128, so that |G| = 22n+5

for some n > 1. Then G has subgroups H1, . . . , Hn and Q, all isomorphic to Q8, and
a subgroup K isomorphic to either D8 or Q8, such that

G = KH1 · · ·HnQ

where [K,Hi] = [Hi, Hj] = [Hi, Q] = [K,Q] = 1 for all distinct i, j. Furthermore
there is an involution z of G such that for all distinct i, j we have K∩Hi = Hi∩Hj =
Hi ∩Q = K ∩Q = 〈z〉 = Z(G) ∼= C2.

Write E = KH1 · · ·Hn, so that E is an extraspecial subgroup of index 4 in G.
We may write Hi = 〈ai, bi : a4i = 1, b2i = a2i , biai = a−1

i bi〉, Q = 〈a, b : a4 = 1, b2 =
a2, ba = a−1b〉 and K = 〈α, β〉 where α4 = 1, βα = α−1β. If K ∼= D8 then β2 = 1;
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otherwise β2 = α2. Note that z = α2 = a21 = · · · = a2n = a2. Elements g of G can be
written canonically as g = dh1 · · ·hnq where hi ∈ {1, ai, bi, aibi}, q ∈ {1, a, b, ab} and
d ∈ K. Observe that an element g of G has order 4 if and only if an odd number of
d, h1, . . . , hn and q have order 4.

The next theorem will show that there are no extraspecial filled groups of order
greater than 32. The method, using the notation just described, is to break G into
the four cosets E, Ea, Eb and Eab. Then we form a set S by taking the union
of a suitable locally maximal product-free set of involutions of K, with (a carefully
chosen) half of the involutions in Ea and half of the involutions in Eb. We show
that this set S is product-free and then that S is locally maximal, but does not fill
G. (In particular, S ∪ SS cannot contain either a or b.)

Theorem 3.10. If G is an extraspecial group of order greater than 128, then G is
not filled.

Proof. Let G be extraspecial of order greater than 128. Writing G as described in
Notation 3.9, let

U = {g ∈ E : o(g) = 4 and g = dh1 · · ·hn with d ∈ {1, α, β, αβ}}.

Notice that for any g ∈ U we have g−1 = zg, and so U ∩U−1 = ∅. Moreover U ∪U−1

comprises every element of order 4 in E. We next define a certain subset X of K as
follows.

X =

{ {z, zβ, zαβ} if K ∼= D8;
{z} if K ∼= Q8.

In each case X is a locally maximal product-free set of involutions in K. Finally, let

S = X ∪ Ua ∪ Ub.

We claim that S is a locally maximal product-free set of G that does not fill G. We
have

SS = (XX ∪ UUz) ∪ (XU ∪ UX)a ∪ (XU ∪ UX)b ∪ (UU ∪ UUz)ab.

Our first goal is to show that S is product-free. We do this by noting that
G = E ∪ Ea ∪ Eb ∪ Eab and considering the intersection of S ∩ SS with each of
these cosets in turn. Consider (S ∩ SS) ∩ E. This is equal to X ∩ (XX ∪ UUz).
Now X is locally maximal product-free in K. Thus X ∩ XX = ∅. Suppose x ∈
X∩UUz. Then there are elements g, g′ of U with gg′z = x, or equivalently gg′zx = 1.
If x = z then g′ = g−1, but U ∩ U−1 = ∅, a contradiction. So x �= z. This
implies we are in the case K ∼= D8, and furthermore that x ∈ {zβ, zαβ}. Writing
g = dh1 · · ·hn and g′ = d′h′

1 · · ·h′
n in the canonical way we have that gg′zx = 1,

and so (dd′zx)(h1h
′
1) · · · (hnh

′
n) = 1. Thus hh′

i ∈ {1, z} for all i. Since {hi, h
′
i} ⊆

{1, ai, bi, aibi}, this implies hi = h′
i for all i. Thus g = dh and g′ = d′h, where
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h = h1 · · ·hn. As they are elements of U , both g and g′ must have order 4, which
implies that d has order 4 if and only if d′ has order 4. Since we are in the caseK ∼= D8

we note that α has order 4 and αjβ has order 2 for all j. Now {d, d′} ⊆ {1, α, β, αβ}.
So either d = d′ = α or {d, d′} ⊆ {1, β, αβ} = zX . In the former case, g = g′ so
gg′z = 1 /∈ X, a contradiction. In the latter case, h must have order 4 (otherwise g
would be an involution) and so gg′z = dd′h2z = dd′ ∈ (zX)(zX) = XX. But X is
product-free, so gg′z /∈ X, a contradiction again. Therefore (SS ∩ S) ∩ E = ∅.

Next we look at (S∩SS)∩Ea. This is equal to ((XU∪UX)∩U)a. Suppose there
are x inX and u in U such that xu ∈ U or ux ∈ U . If x = z then xu = ux = u−1 /∈ U ,
so again we are reduced to the case K ∼= D8 and x ∈ {zβ, zαβ}. We can write
u = dh1 · · ·hn where d ∈ {1, α, β, αβ} and hi ∈ {1, ai, bi, aibi}. Let h = h1 · · ·hn.
If d = α then u = αh, ux = (αx)h and xu = (xα)h. Since u has order 4, it
follows that h2 = 1. But αx ∈ {zαβ, β} and xα ∈ {αβ, zβ}, whence ux and xu
both have order 2 and so are not contained in U , a contradiction. Therefore d is
contained in {1, β, αβ} = zX . In particular d is an involution, which implies h has
order 4. From the fact that d ∈ zX we get that dx ∈ zXX , which intersects zX
trivially as X is product-free. Thus dx ∈ K \ zX = {z, α, zα, zβ, zαβ}. Thus either
dx /∈ {1, α, β, αβ}, meaning (dx)h does not have the right first component to be an
element of U , or dx = α which means dxh has order 2. The same argument applies to
xd. Thus, either way, xu and ux are not elements of U . Thus (S∩SS)∩Ea = ∅. Since
(S∩SS)∩Eb = ((XU∪UX)∩U)b, the same argument shows that (S∩SS)∩Eb = ∅.
Finally, S ∩ Eab = ∅, so clearly (S ∩ SS) ∩ Eab = ∅. Therefore we have shown that
S ∩ SS = ∅. Hence S is product-free.

In order to show that S is locally maximal, we need to examine UUz more
carefully. We will show that E \ K ⊆ UUz. Let g ∈ E, and write (canonically)
g = dh1 · · ·hn where d ∈ K and hi ∈ {1, ai, bi, aibi}. Suppose there is some i for
which hi �= 1. Without loss of generality we can assume i = 1. Suppose g has order
4. We use the value of h1 to define elements v1 and w1 of H1 as follows.

h1 v1 w1

a1 a1b1 b1
b1 a1 a1b1
a1b1 b1 a1

In each case v1w1 = h1z and w1v1 = h1. Now set g′ = dv1h2 · · ·hn. Exactly one of g′

and g′z is in U , and also w1 ∈ U . Now g′w1z = w1(zg
′)z = g. Exactly one of these

expressions is in UUz. Thus g ∈ UUz.

Now suppose g has order 2, and we are still assuming g = dh1 · · ·hn where h1 �= 1
and d ∈ K = {1, α, β, αβ, z, zα, zβ, zαβ}. If d ∈ {z, zα, zβ, zαβ} then let u1 = h1

and u2 = (zd)h2 · · ·hn. Then u1, u2 ∈ U and g = u1u2z ∈ UUz. If d = 1 then
α, αg ∈ U and g = (α)(αg)z ∈ UUz. Suppose d ∈ {α, β, αβ} and that d has order 4.
If hj = 1 for any j, then without loss of generality h2 = 1; set u1 = a2g and u2 = a2.
Then u1, u2 ∈ U and g = u1u2z ∈ UUz. On the other hand, if for all j we have hj �= 1,
then for each hj there are vj and wj in Hj (as in the table above for h1) satisfying
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vjwj = hjz and wjvj = hj . Moreover, from the assumption that d has order 4 and g
has order 2, it follows that n is odd; in particular n ≥ 3, since we are assuming n > 1.
Set u1 = h1w2 · · ·wn−1vn and u2 = dv2 · · · vn−1wn. Then since n is odd, u1 and u2

have order 4 and so u1, u2 ∈ U . Also u1u2z = d(h1)(w2v2) · · · (wn−1vn−1)(vnwnz) = g.
Thus g ∈ UUz. Finally we must consider the case where g has order 2, d ∈ {α, β, αβ}
and d has order 2. This means K ∼= D8, d ∈ {β, αβ} and an even number of the hi

are nontrivial (including, by assumption, h1). If d = β, set u1 = αw1h2 · · ·hn and
u2 = αβv1. If d = αβ, set u1 = αv1h2 · · ·hn and u2 = βw1. Then u1, u2 ∈ U and
g = u1u2z ∈ UUz. We have now shown that E \K ⊆ UUz.

To show that S is locally maximal, we note first that since S contains z, all
elements of order 4 in G are contained in

√
S. Therefore S is locally maximal if and

only if every involution of G is contained in S∪SS. Involutions of Ea are of the form
ga where g ∈ E and g has order 4. The set of elements of order 4 in E is U ∪ Uz.
Therefore the involutions of Ea are contained in the set Ua ∪ Uza ⊆ Ua ∪ UXa ⊆
S ∪ SS. Similarly every involution in Eb appears in S ∪ SS.

Now consider (S ∪ SS)∩E, which is given by X ∪XX ∪UUz. Every involution
of K is contained in X ∪ XX because X fills K, and every involution of E \ K is
contained in UUz. Thus S ∪ SS contains all the involutions of E.

Finally we look at (S∪SS)∩Eab, which is the set (UU∪UUz)ab. The involutions
of Eab are elements gab where g in E has order 4. Since E \ K ⊆ UUz, all that
remains is to express every element of K that has order 4 as an element of UU or
UUz. If K ∼= D8, then since n > 1 we can write α = (βa1)(αβa1) ∈ UU , and
so α−1 = αz ∈ UUz, and we are done. If K ∼= Q8 then we have α = β(αβ),
β = (αβ)α and αβ as elements of UU , and their inverses as elements of UUz.
Therefore every involution of Eab is indeed contained in S ∪ SS. We have now
shown that S ∪SS contains all the involutions of G, and hence S is locally maximal
product-free. However, a /∈ S ∪ SS. Therefore S does not fill G. Thus G is not a
filled group.

Corollary 3.11. Let G be a 2-group. Then G is filled if and only if G is either
elementary abelian, or one of D8, D8 × C2, D8 ∗Q8 or (D8 ∗Q8)× C2.

Proof. The proof is immediate from Corollary 3.5, Proposition 3.8 and Theorem
3.10.

Theorem 3.12. Let G be a finite nilpotent group. Then G is filled if and only if G
is either an elementary abelian 2-group or one of C3, C5, D8, D8 × C2, D8 ∗ Q8 or
(D8 ∗Q8)× C2.

Proof. Suppose G is filled and nilpotent. Then G is the direct product of its Sylow
subgroups. Therefore for any prime p dividing |G|, G has a normal subgroup N
of index p. Hence, by Theorem 1.2(ii) and (iii), p is one of 2, 3 or 5. If p = 3,
then by Theorem 1.2(iv), G must be cyclic of order 3. So we can assume the only
primes dividing |G| are 2 and 5. If p = 5 and 25 divides |G| then G has a normal
subgroup of index 25, but by Theorem 1.2(iii) there are no filled groups of order 25,
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a contradiction. Therefore the normal subgroup N of index 5 in G is either trivial
or a 2-group. Either way, N contains no elements of order 5. Hence, by Theorem
1.2(v), G must be cyclic of order 5. The only remaining possibility is that G is a
2-group. Theorem 3.12 now follows from Corollary 3.11.

4 Groups of order 2np

In this section we show that if G is a group of order 2np, where n is a positive integer
and p is an odd prime, then G is filled if and only if G is D6, D10, D12, D14 or D22.

Lemma 4.1. Let p be an odd prime and let k be an integer satisfying k >

∞∑
r=1

⌊ p

2r

⌋
.

Let G be a group of order 2kp. Then G contains a non-trivial normal elementary
abelian 2-subgroup of order no greater than 2p.

Before embarking on the proof, note that if t =
∑∞

r=1

⌊
p
2r

⌋
, then 2t is the largest

power of 2 dividing p!, and hence the condition on k in Lemma 4.1 ensures that 2k

does not divide p!.

Proof. We show first that G contains some non-trivial normal 2-subgroup N . Con-
sider the set S2 of Sylow 2-subgroups of G. By the Sylow theorems, either |S2| = 1
or |S2| = p. If |S2| = 1 we take N to be the unique Sylow 2-subgroup. For the case
|S2| = p, note that by the Sylow theorems G acts transitively by conjugation on the
set S2. We view this action as a group homomorphism φ : G → Sym(S2). Now
ker φ is the intersection of the Sylow 2-subgroups, so has order 2m for some m ≥ 0.
Moreover |G|/| kerφ| divides |Sym(S2)| = p!. Since 2k does not divide p!, we must
have m > 0. The required normal subgroup of G is then N = ker φ.

It is a fundamental result that a minimal normal subgroup of a solvable group is
elementary abelian. ThusN contains some non-trivial elementary abelian 2-subgroup
K which is normal in G. Now K is a union of conjugacy classes of G. Since |K|
is even and contains the conjugacy class {1}, it must contain some other conjugacy
class T of odd size. Since |T | must divide |G|, we conclude that either |T | = 1 or
|T | = p. In either case, 〈T 〉 is a normal 2-subgroup of G of order at most 2p, as
required.

Corollary 4.2. For any k ≥ 3, there is no filled group of order 3× 2k.

Proof. We proceed by induction. By computer search (see Section 5 for details) we
know there are no filled groups of order 24, 48 or 96. So the statement is true for
k = 3, 4, 5. Suppose the statement is true up to k ≥ 5 and consider the case k + 1.
If G is a group of order 3× 2k+1, then by Lemma 4.1 it contains a normal subgroup
H of order 2, 4 or 8. Then G/H has order 3× 2k−2, 3× 2k−1 or 3× 2k and so is not
filled by the induction hypothesis. Thus G is not filled.

Corollary 4.3. For any k ≥ 2, there is no filled group of order 5× 2k.
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Proof. By computer search we know there are no filled groups of order 20, 40, 80,
160 or 320. So the statement is true for k = 2, 3, 4, 5, 6. Suppose the statement is
true up to k ≥ 6 and consider the case k + 1. If G is a group of order 5× 2k+1, then
by Lemma 4.1 it contains a normal subgroup H of order 2, 4, 8, 16 or 32. Then G/H
has order 5× 2k−4, 5× 2k−3, 5 × 2k−2, 5 × 2k−1 or 5× 2k and so is not filled by the
induction hypothesis. Thus G is not filled.

Corollary 4.4. For any k ≥ 2, there is no filled group of order 7× 2k.

Proof. By computer search, we know there are no filled groups of order 28, 56, 112,
224, 448, 896 or 1792. So the statement is true for k = 2, 3, 4, 5, 6, 7, 8. Suppose the
statement is true up to k ≥ 8 and consider the case k + 1. If G is a group of order
7 × 2k+1, then by Lemma 4.1 it contains a normal subgroup H of order 2, 4, 8, 16,
32, 64 or 128. Then G/H has order 7× 2k−6, 7× 2k−5, 7× 2k−4, 7× 2k−3, 7× 2k−2,
7 × 2k−1 or 7 × 2k and so is not filled by the induction hypothesis. Thus G is not
filled.

Lemma 4.5. Suppose G is a filled group of order 2np, where n ≥ 2 and p is an odd
prime. If G has a normal subgroup of order p, then G contains a central involution.

Proof. Suppose N is normal of order p in G. Then G = NH where H is any Sylow
2-subgroup of G. This means G/N ∼= H . Since G is filled, G/N must be filled. By
Corollary 3.11 H is either an elementary abelian 2-group, or D8, D8×C2, D8 ∗Q8 or
D8 ∗Q8 ×C2. Since H has order at least 4, it follows that either H contains a Klein
4-group K = 〈a, b〉 such that K is central in H , or H contains a subgroup D which
is dihedral of order 8, whose centre is also the centre of H . In the first scenario,
consider the action of H on N by conjugation. Write N = 〈x〉. Now axa−1 = xi for
some i, and x = a2xa−2 = xi2 . Thus i = ±1 (because in the cyclic group of units of
Zp the element 1 has exactly 2 square roots). If axa−1 = x−1 and bxb−1 = x−1, then
(ab)x(ab)−1 = x. Therefore at least one involution g in K centralises x. This means
we have g ∈ Z(H) ∩ CG(N). Thus g ∈ Z(G). Now consider the second situation,
where H contains a subgroup D which is dihedral of order 8 whose centre is also the
centre of H . We have D = 〈s, t : s2 = t2 = (st)4 = 1〉. Again looking at the action
on N by conjugation, we have that sxs−1 = x±1 and txt−1 = x±1, which implies
(st)x(ts)−1 = x±1. Let g = (st)2. Then g ∈ Z(H) and gxg−1 = x, so g ∈ CG(N).
Hence again G contains a central involution.

Proposition 4.6. For any k ≥ 2, there is no filled group of order 11× 2k.

Proof. We proceed by induction on k ≥ 2. Computer search shows there is no filled
group of order 44. Let G be a group of order 11 × 2k for k > 2 and suppose for a
contradiction that G is filled. If G has a normal Sylow 2-subgroup, then the quotient
of G by this subgroup would be filled of order 11, which is impossible. So we can
assume G does not have a normal Sylow 2-subgroup. If G has a normal Sylow 11-
subgroup N , then, by Lemma 4.5, G contains a central involution g. The quotient
G/〈g〉 is filled of order 11× 2k−1. By induction G/〈g〉 is not filled, and so G cannot
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be filled. Suppose then that the Sylow subgroups are not normal. The number of
Sylow 11-subgroups divides 2k and is congruent to 1 modulo 11. So the first time this
can arise is when k = 10. A simple counting argument shows that any group of order
11 × 210 has either a normal Sylow 11-subgroup or a normal Sylow 2-subgroup, so
there is nothing to check here. There is one group of order 211× 11 with non-normal
Sylow subgroups, and four such groups of order 212 × 11. The package GrpConst
in GAP [7] allows the user to construct all solvable groups of given order, and the
function FrattiniExtensionMethod restricts to those groups with only non-normal
Sylow subgroups. Thus, even though these five groups are not contained in the
Small Groups library of GAP, they can be constructed and tested using the methods
described in Section 5. The upshot is that no group of order 11 × 210, 11 × 211 or
11× 212 is filled. We may therefore assume k ≥ 13. By Lemma 4.1 there is a normal
elementary abelian 2-subgroup N of G with order at most 211. Thus G/N is filled of
order 11 × 2m where 2 ≤ m < k, a contradiction. Hence G is not filled. The result
now follows by induction.

Theorem 4.7. Let G be a group of order 2np where n ≥ 1 and p is an odd prime.
If G is filled, then G is one of D6, D10, D12, D14 or D22.

Proof. We have dealt with p = 3, 5, 7 and 11. It only remains to show that if p > 11,
then there are no filled groups of order 2np. We proceed by induction on n. If n = 1,
then the result holds by Theorems 1.2(iii) and 2.4. Suppose n ≥ 2. Let N be a
minimal normal subgroup of G. Then N is either cyclic of order p or an elementary
abelian 2-group. If N is cyclic of order p, then by Lemma 4.5, G has a central
involution g. Now G/〈g〉 has order 2n−1p, so by inductive hypothesis is not filled.
Hence G is not filled. So assume N is an elementary abelian 2-group. Then G/N
is either cyclic of order p or has order 2mp where 1 ≤ m < n. In either case, since
p > 11, we know that G/N is not filled. Therefore G is not filled. By induction no
group of order 2np is filled, when p > 11. This completes the proof.

5 Groups of order up to 2000

In this section we describe the computer algorithms used to determine the filled
status of a group. These algorithms are implemented in GAP [7] and allow us to test
all groups in the library of small groups up to order 2000. We note that although
there are nearly 50 billion groups of these orders, the vast majority are accounted
for by the 2-groups (classified in Section 3) and groups of order 1536 (classified in
Section 4).

The first algorithm (Algorithm 5.1) attempts to find a locally maximal product-
free set in a given group G which does not fill G. The strategy is to repeatedly add
elements at random to a product-free set S until S is locally maximal. At each stage
we keep track of the set F of elements which could be added to S to keep it product-
free. If our maximal set S fills G we discard it and start again, returning the first
set S found which does not fill G. Note that by Lemma 3.7, if G is an extraspecial
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2-group we may begin each search by placing the unique central involution in S. In
practice if this algorithm fails to return a result in a reasonable time we abort and
use the exhaustive search method of Algorithm 5.2.

Algorithm 5.1 Find a non-filling locally maximal product-free set for a group G

function NFS(G)
repeat

if G is an extraspecial 2-group then
S ← Z(G) \ {1}

else
S ← ∅

end if
F ← G \ ({1} ∪ S ∪ √S)
repeat

x← Random(F )
S ← S ∪ {x}
F ← F \ (S ∪ SS ∪ SS−1 ∪ S−1S ∪√S)

until F = ∅
until {1} ∪ S ∪ SS �= G
return S

end function

The second algorithm (Algorithm 5.2) performs an exhaustive search of locally
maximal product-free sets S in a group G and tests whether any fails to fill G.
This algorithm is very expensive, and is only required when the random method of
Algorithm 5.1 has failed to return a result in a reasonable time. The key to making
this algorithm run efficiently is the observation that if φ is an automorphism of G,
then S is a locally maximal product-free subset of G if and only if φ(S) is locally
maximal product-free. Thus the problem of testing all possible sets S is reduced to
testing only orbit representatives under the action of the automorphism group of G.

These orbits can be readily found using GAP, and for small groups an exhaus-
tive search is practical. This reveals that the largest group with a locally maximal
product-free set of size 1 has order 8, and the largest group with such a set of size 2
has order 16. For larger product-free sets in larger groups G, in practice computing
orbits of all possible subsets of G is still prohibitively expensive. To get around this
problem, we begin by computing orbits of all product-free sets S of size 3. From
each orbit we choose the minimal representative set (with respect to some arbitrary
ordering of the elements of G). For each such representative set S, we then try to
extend S in all possible ways to obtain a locally maximal product-free set and test
whether each possible extension fills our group G. We need only consider extensions
using the set F of elements larger than any currently in our set S and which keep S
product-free, so again we keep track of this set. Each time we add a new element x
to S, we test whether S is locally maximal and if not, we (recursively) extend this
new set. The algorithm terminates when either a non-filling locally maximal set has
been found, or all possible sets have been examined.
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Algorithm 5.2 Exhaustive search for a non-complete locally maximal product-free
set
function ExhaustiveSearch(G)

O ← set of orbit representatives of product-free sets of 3 elements of G under
action of Aut(G)

for each S ∈ O do
F ← G \ (S ∪ SS ∪ SS−1 ∪ S−1S ∪√S)
if not ExtendPFS(G,S,F ) then

return false
end if

end for
return true

end function

function ExtendPFS(G,S,F )
if F = ∅ then

if S ∪ SS ∪ SS−1 ∪ S−1S ∪ √S = G then
if {1} ∪ S ∪ SS �= G then

return false
end if

end if
else

for each x ∈ F do
S ′ ← S ∪ {x}
F ′ ← {f ∈ F |f > x} \ (S ′ ∪ S ′S ′ ∪ S ′S ′−1 ∪ S ′−1S ′ ∪ √S ′)
if not ExtendPFS(G,S ′,F ′) then

return false
end if

end for
end if
return true

end function
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Our final algorithm (Algorithm 5.3) is used to determine whether a given group G
is filled. It uses the results from previous sections to exclude most groups without the
need to resort to construction of non-filling sets. For those groups which cannot be
excluded in this way, we use the random method of Algorithm 5.1 to find a non-filling
set. If all else fails, we resort to the exhaustive method of Algorithm 5.2.

We begin by defining the set G of filled groups of order at most 32, as given in [2,
Table 1]. For larger groups we then apply the simple tests using Theorems 1.2(iii),
1.2(vi), 1.2(vii), 2.4 and 3.10. If these are not sufficient to determine the status of
our group we examine its normal subgroups and invoke Theorems 1.2(ii), 1.2(iv) and
1.2(v). Finally, if the status of the group is still not resolved we use Algorithms 5.1
then 5.2 to search for non-filling sets.

We remark that when we were proving the results of Section 4 about groups of
order 2kp, we used a version of Algorithm 5.3 that omits the condition

else if n = 2kp where k > 0 and p is an odd prime then
return false.

Using these methods we have examined all groups in the small groups library in
GAP up to order 2000. The only filled groups are those noted in [2, Table 1] plus the
group (D8 ∗Q8)×C2 of order 64 and the elementary abelian 2-groups. We conclude
with the following conjecture.

Conjecture 5.1. Let G be a finite group. Then G is filled if and only if G is either
an elementary abelian 2-group or one of C3, C5, D6, D8, D10, D12, D14, D8 × C2,
D22, D8 ∗Q8 or (D8 ∗Q8)× C2.
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Algorithm 5.3 Test whether a group G is filled

function Filled(G)
n← |G|
if n ≤ 32 then

if G ∈ G then
return true

else
return false

end if
else if n is odd then

return false
else if G is elementary abelian then

return true
else if n = 2k where k > 7 then

return false
else if n = 2kp where k > 0 and p is an odd prime then

return false
else if G is abelian, dihedral or generalised quaternion then

return false
else

for each proper non-trivial normal subgroup N �G do
if [G : N ] = 3 or [G : N ] = 5 and not all elements of order 5 are in N

then
return false

end if
if not Filled(G/N) then

return false
end if

end for
end if
if NFS(G) succeeds then

return false
else

return ExhaustiveSearch(G)
end if

end function
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