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Abstract

We explore the probability κ(n, r) that a permutation sampled uniformly
at random from the symmetric group Sn has only cycles of length greater
than r, where 1 ≤ r < n. As the order of the group increases, new
asymptotic formulas valid in the specified regions are obtained using the
saddle-point method in combination with ideas originated in analytic
number theory. Some results for permutations without long cycles are
employed.

1 Introduction

Results

Denote by Sn the symmetric group on a finite set of n symbols. Let σ ∈ Sn and
kj(σ) be the number of cycles of length j in σ. The general task is to find a new
asymptotic formula for

κ(n, r) =
1

n!

∣∣{σ ∈ Sn : kj(σ) = 0 ∀j ∈ 1, r}∣∣
if 1 ≤ r < n and n → ∞. To begin with, we have a classic example of derangements

κ(n, 1) =
n∑

j=0

(−1)j

j!
= e−1 +O

(
1

n!

)

([10, p. 135] or [4, p. 107]), and the trivial case κ(n, r) = 1/n if n/2 ≤ r < n.
Nevertheless, a general formula is complex. Formally, for 1 ≤ r < n, we have

κ(n, r) =
∑

s1+2s2+...+nsn=n
sj=0,j≤r

n∏
j=1

1

jsjsj !
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([4, p. 80]), where the summation is over the vectors (s1, s2, . . . , sn) ∈ N
n
0 with sj = 0

for j ≤ r. The formula can be rewritten in terms of independent Poisson random
variables Zj, 1 ≤ j ≤ n, such that EZj = 1/j. Namely,

κ(n, r) = exp

{ n∑
j=r+1

1

j

}
Pr
( n∑

j=r+1

jZj = n
)
. (1.1)

We need the following information to address previous results. Buchstab’s func-
tion ω(v) [12, p. 399] is the unique continuous solution to the equation

(vω(v))′ = ω(v − 1) (1.2)

for v > 2 with the initial condition ω(v) = 1/v if 1 ≤ v ≤ 2. Moreover, 1/2 ≤ ω(v) ≤
1 if v ≥ 1 [12, p. 400]. Dickman’s function �(v) is a unique continuous solution to
the equation

v�′(v) + �(v − 1) = 0 (1.3)

for v > 1 with the initial condition �(v) = 1 if 0 ≤ v ≤ 1. Furthermore, �(v) ≤ 1/Γ(v)
for v ≥ 1 [12, p. 366], where Γ is the gamma function. The function R(v), introduced
in [13, p. 6], is described in Definition 3.3 and Lemma 3.4 below. It comes from the
evaluation of ω(v)− e−γ, where γ is the Euler-Mascheroni constant. For the purpose
of this paper, it is sufficient to know that

R(v) = �(v) exp

{
− π2v

2(log v)2
+O

(
v log log(v + 2)

(log v)3

)}
(1.4)

if v ≥ v0, where v0 is some sufficiently large constant, and R(v) = O (1) if 1 ≤ v < v0
(Lemma 3.5). As the ratio n/r will appear frequently in the sequel, hereafter we
denote

u = n/r.

At this point, the results obtained so far can be mentioned.
The total variation distance for permutations was estimated by Arratia and

Tavare in their notable work [2] of 1992. From the estimate it follows that

∣∣κ(n, r)− e−Hr
∣∣ ≤√2π�u	 2�u�−1

(�u	 − 1)!
+

1

�u	! + 3
( e
u

)u
(1.5)

= exp
{
− u log u+ u log(2e) +O (log(u+ 2))

}
(1.6)

if 1 ≤ r < n and Hr =
∑r

j=1 1/j. Later, in 2002 Manstavičius [7] showed that

κ(n, r) = e−Hr+γω(u) +O

(
1

r2

)
(1.7)

if 1 ≤ r < n. His result was not noticed and, therefore, similar results relying on
the same proof technique were presented by other authors, namely, in [3] and [5]. A
recurrence relation

κ(n, r) =
1

n
+

1

n

∑
r<j<n−r

κ(j, r),



R. PETUCHOVAS /AUSTRALAS. J. COMBIN. 72 (1) (2018), 1–18 3

and also the induction principle and approximation of sums by integrals, were applied
in [3], [5] and [7] to get (1.7). Moreover, none of the aforementioned authors noticed
that there was a result by Hildebrand and Tenenbaum

ω(u) = e−γ +O(R(u)) (1.8)

if u ≥ 1 (Lemma 3.4 below), which combined with the estimates (1.4),

�(u) = exp

{
−u log u− u log log(u+ 2) + u

(
1 +O

(
log log(u+ 2)

log(u+ 2)

))}
(1.9)

(Corollary 2.3 in [6]), and (1.6), gives

κ(n, r) = e−Hr+γω(u) +O
(
exp

{
− u log u+ u log(2e) +O (log u)

})
(1.10)

for u ≥ 1. Therefore, in the case of (log logn)−1 log n = o(u), the result (1.5)
combined with (1.8) is stronger than those mentioned after it, but in the case of
u ≤ (log log n)−1 log n, Manstavičius’ result (1.7) provides a sharper order of the
error term.

The recent result by Weingartner [14] supplements the previous ones:

Proposition 1.1. Let u = n/r. For 1 ≤ r ≤ n/ logn, we have

κ(n, r) = e−Hr +O

(
(u/e)−u

r2

)
. (1.11)

If r ≥ 3, we can replace e by 1 in the error term.

To improve on (1.11) in this paper, one makes use of Cauchy’s integral represen-
tation

Pr
( n∑

j=r+1

jZj = n
)
=

1

2πi

∫
|z|=β

exp
{ n∑

j=r+1

zj − 1

j

} dz

zn+1
,

where β > 0 is to be chosen. Firstly, after some transformations of the integral,
the residue theorem is applied to obtain the main asymptotic term, and secondly,
the remaining integral is evaluated using different saddle-point approximations. This
idea has already been adopted in Manstavičius’ and the author’s recent work [8]. We
have proven the following theorem:

Theorem 1.2. If
√
n logn ≤ r < n and u = n/r, then

κ(n, r) = e−Hr+γω(u) +O

(
R(u)u3/2 log2(u+ 1)

r2

)
. (1.12)

Although not effective, the error estimate is the sharpest in the region
√
n logn ≤

r < n as far as the author knows. This theorem is useful for solving a more general
problem, which is presented in the next section.

The paper provides new asymptotic estimates for κ(n, r) when it is approximated
by e−Hr and 2 ≤ r ≤ n(log log n)/ logn.

Stressing the dependence on a parameter v in an estimate, we will write Ov(·).
The results in this paper are in the following four propositions.
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Theorem 1.3. Let ε and δ be arbitrary but fixed positive numbers and u = n/r. We
have

κ(n, r) = e−Hr +Oε,δ

(
�(u)

r
exp

{
− 2u (1− δ)

π2(log(1 + u))2

})
(1.13)

if (log n)3+ε ≤ r < n and

κ(n, r) = e−Hr +O

(
�(u)uu/r

r

)
(1.14)

if log n ≤ r < (logn)3+ε.

Recalling (1.9) one can verify that Theorem 1.3 presents a sharper order of the
error term if log n ≤ r ≤ n(log logn)/ log n. Moreover, the proof of Theorem 1.3 can
give an asymptotic formula in the whole region 1 ≤ r < n, but the precision of it
for 2 ≤ r ≤ logn does not satisfy us as much as that given in Corollary 1.5, which
follows from the next theorem.

Theorem 1.4. Let

ν(n, r) =
1

n!

∣∣{σ ∈ Sn : kj(σ) = 0 ∀j ∈ r + 1, n}∣∣ ,
and ε be an arbitrary but fixed positive number; then

κ(n, r) = e−Hr +Oε

(
ν(n, r)

r
exp

{
− u1−4/r(1− ε)

4π2(log(u+ 1))2

})
(1.15)

if 5 ≤ r < n and

κ(n, r) = e−Hr +O

(
ν(n, r)n5/2

)
(1.16)

if 2 ≤ r < 5.

The proof of the proposition applies Theorem 2 and Corollary 5 of [9]. Theo-
rem 1.4 can be useful in formulas where both probabilities ν(n, r) and κ(n, r) are
involved. This is shown in the next section.

Using Theorem 1 of [9], we deduce Lemma 3.8, which combined with Theorem 1.4
gives the following corollary:

Corollary 1.5. For 2 ≤ r ≤ logn, we have

κ(n, r) = e−Hr +O

(
exp

{
−n

r
log

n

e
+

n

log n
+

3n

(logn)2

})
.

The corollary improves on the orders of the previous asymptotic formulas error
estimates in its region of validity.

Finally, it is important to mention that Theorems 1.3 and 1.4 follow from the
following effective inequality:
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Theorem 1.6. For all 1 ≤ r < n/2 and α > 1, we have

|κ(n, r)− e−Hr | ≤ πe4α2r−n+3/2

n2(α− 1)2
exp

{
r∑

j=1

αj − 2

j
+ E(r, α)

}

+
4eα2r−n+2

πn2r(α− 1)3
exp

{
−α(αr − 1)

2r(α− 1)
−Hr

}
where

E(r, α) = −2

r

αr+1

α− 1

(
π−2

1 + (rα− r)2
− α−r/2

)
+

+min{2r logα, 2 log(er)}

and (a)+ = max{a, 0} if a ∈ R.

To obtain Theorems 1.3 and 1.4, we have chosen different functions α = α(n, r).
However, for both theorems we have u1/r ≤ α ≤ u2/r. It can be guessed that an
appropriate choice of α leads to an improvement of the effective inequality (1.5). Yet
the author failed to find some pragmatic expression.

Analytic results obtained for permutations usually can be compared to these
obtained in number theory. In our case, one can have in mind the analysis of the
number of natural numbers missing small prime factors. Theorem 1.3 is comparable
to Corollary 7.4 given in [12, p. 417] while Theorem 1.4 is comparable to Theorem 1
given on page 397 of the same book. Information about parallelism between theories
can be found in [1] or partially in [14].

2 Motivation

The density κ(n, r), as well as ν(n, r), is important in answering the following ques-
tion: How many permutations with a given cycle structure pattern are in a symmetric
group? It can clearly be seen in the case when the pattern restrictions are defined
for “short” cycles.

For the demonstration of this, let us take k̄r(σ) = (k1(σ), . . . , kr(σ)) (a truncated
structure vector of σ) and vector Z̄r = (Z1, . . . , Zr) with the coordinates of the
independent Poisson random variables such that EZj = 1/j. For 1 ≤ r ≤ n, we have

dTV (n, r) := sup
A⊂Nn

0

∣∣∣∣∣#
{
σ : k̄r(σ) ∈ A

}
n!

− Pr(Z̄r ∈ A)

∣∣∣∣∣
=

1

2

∞∑
m=0

ν(m, r)
∣∣κ(n−m, r)− e−Hr

∣∣
([8]). It is clear that dTV (n, r) is the total variation distance between the distributions
of random vectors k̄r and Z̄r.

Evidently, Theorem 1.4 provides an estimate for the distance only through the
function ν(n, r). Applying it for 5 ≤ r < n, we get

dTV (n, r) � 1

r

n−r−1∑
m=0

ν(m, r)ν(n−m, r) +
e−Hr

2

∞∑
m=n−r

ν(m, r) +
1

2
ν(n, r).
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Thus, one can try to improve the order of (1.5) relying only on the results for density
ν(n, r). Moreover, an improvement of the factor u3/2 log2(u+1) in (1.12) would cause
an improvement on the same factor in the formula

dTV (n, r) = H(u)

(
1 +O

(
u3/2 log2(u+ 1)

r

))

if
√
n logn ≤ r ≤ n, where

H(u) =
1

2

∫ ∞

0

∣∣ω(u− v)− e−γ
∣∣�(v)dv + �(u)

2

and ω(v) = 0 if v < 1 ([8]).

The next two sections are dedicated to the auxiliary propositions and the proofs
of the new theorems.

3 Auxiliary Lemmas

There are eight lemmas in this section; six of them introduce some functions and
their estimates needed in the proofs of Theorem 1.3, Theorem 1.4, and Corollary 1.5.
Two other lemmas (Lemma 3.4 and Lemma 3.5) have already been discussed in the
introduction. We will use the following notation

I(s) =

∫ s

0

et − 1

t
dt,

T (s) =

∫ s

0

et − 1

t

(
tet/r

r(et/r − 1)
− 1

)
dt.

Therefore,

I(s) + T (s) =

∫ s/r

0

r∑
j=1

ejtdt

=
r∑

j=1

ejs/r − 1

j
. (3.1)

Later on the function ξ(v), v ≥ 1, is defined as in the next lemma.

Lemma 3.1. For v > 1, define ξ = ξ(v) as the nonzero solution to the equation

eξ = 1 + vξ

and put ξ(1) = 0. If v > 1, then log v < ξ < 2 log v,

ξ = log v + log log(v + 2) +O

(
log log(v + 2)

log(v + 2)

)
(3.2)

and

ξ′ := ξ′(v) =
1

v

ξ

ξ − 1 + 1/v
=

1

v
exp

{
O

(
1

log(v + 1)

)}
. (3.3)
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Proof. This is Lemma 6 in [9].

Lemma 3.2. Let �(v), v ≥ 1, be the Dickman function (1.3). For v ≥ 1, we have

�(v) =

√
ξ′(v)
2π

exp
{
γ − vξ(v) + I(ξ(v))

}(
1 +O

(
1

v

))
.

Proof. This is a known result; it can be found in [12] on page 374.

Definition 3.3. If v0 > 1 is a sufficiently large constant and v ≥ v0, we let

R(v) =

∣∣∣∣∣exp {−vζ0(v)− I(ζ0(v))}
ζ0(v)

√
2πv(1− 1/ζ0(v))

∣∣∣∣∣
where ζ0 is the unique solution to the equation eζ = 1 − vζ that satisfies inequality
|ζ0(v)− ξ(v) + iπ| ≤ π. If 1 ≤ v < v0, we set R(v) = O(1). For the original
definition, see [13].

Lemma 3.4. Let ω(v), v ≥ 1, be the Buchstab function (1.2). Then, for v ≥ 1, we
have

ω(v)− e−γ = −2e−γR(v) (cosϑ(v) +O (1/v))

where R(v) and ϑ(v) are real valued differentiable functions. Moreover, R(v) is
decreasing for sufficiently large v and

R(v) = �(v) exp

{ −π2v

2ξ(v)2
+O

(
v

ξ(v)3

)}
.

Proof. This is Lemma 4 in [13].

Lemma 3.5. For a sufficiently large constant v0, we have

R(v) = �(v) exp

{ −π2v

2(log v)2
+O

(
v log log(v + 2)

(log v)3

)}
if v ≥ v0, and R(v) = O(1) if 1 ≤ v < v0.

Proof. This follows from Lemmas 3.1 and 3.4.

Lemma 3.6. Let 1 ≤ r ≤ n. Denote by x the positive solution to the equation
r∑

j=1

xj = n,

and let u = n/r. We have

e(log u)/r ≤ x ≤ e(2 log u)/r.

Moreover,

x = exp

{
log(u ·min{r, log u})

r

}(
1 +O

(
1

r

))
(3.4)

if u ≥ 3.
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Proof. Bounds for x follow from inequalities

xr/2 ≤ r
√
x1x2 . . . xr ≤ u =

1

r

r∑
j=1

xj ≤ xr,

and the asymptotic formula is taken from Lemma 9 in [9].

Recall that

ν(n, r) =
1

n!

∣∣{σ ∈ Sn : kj(σ) = 0 ∀j ∈ r + 1, n}∣∣ .
Lemma 3.7. Let x be the positive solution to the equation

∑r
j=1 x

j = n, and λ(x) =∑r
j=1 jx

j. For 1 ≤ r ≤ n, we have

ν(n, r) =
exp

{∑r
j=1 x

j/j
}

xn
√

2πλ(x)

(
1 +O

( r
n

))

and
r2

2
< λ(x) ≤ rn.

Proof. This is Corollary 5 from [9], except the effective bounds for λ(x), which triv-
ially follow from inequalities

r∑
j=1

j ≤
r∑

j=1

jxj ≤ r

r∑
j=1

xj .

Lemma 3.8. For 1 ≤ r ≤ log n, we have

ν(n, r) � exp

{
−n log n

r
+

n

r
+

n

log n
+

3n

(logn)2
− 2n

(logn)3
+ log

logn

r

}
.

Proof. We apply Theorem 1 from [9],

ν(n, r) =
1√
2πnr

exp

{
−n log n

r
+

n

r
+

r∑
N=1

drNn
(r−N)/r

}(
1 +O

(
n−1/r

))

� exp

{
−n logn

r
+

n

r
+

r∑
N=1

drNn
(r−N)/r − log r

}
,

where drr = −(1/r)
∑r

j=2 1/j and

drN =
Γ(N +N/r)

(r −N)Γ(N + 1)Γ(1 +N/r)
≤ 1

r −N



R. PETUCHOVAS /AUSTRALAS. J. COMBIN. 72 (1) (2018), 1–18 9

if 0 < N/r < 1. Therefore,

ν(n, r) � exp

{
−n log n

r
+

n

r
+

r−1∑
N=1

nN/r

N
− log r

}
,

and the proposition follows from an estimate

r−1∑
N=1

nN/r

N
≤
∫ r

1

e(t logn)/r

t
dt ≤

∫ logn

1

et − 1

t
dt+ log logn

=
et − t− 1

t

∣∣∣logn
1

+
et − t2/2− t− 1

t2

∣∣∣logn
1

+ 2

∫ logn

1

et − t2/2− t− 1

t3
dt

+ log logn

≤ n

log n
+

n

(log n)2
+ 2(log n− 1)

n

(logn)3
+ log log n.

Lemma 3.9. For 0 < y < 2πr, we have

T (y) =

∫ y

0

et − 1

t

(
t

r

e
t
r

e
t
r − 1

− 1

)
dt ≤ ey

2r
+

yey

12r2
.

Proof. A well-known theory of Bernoulli numbers {Bn}, n ≥ 0, [11, p. 142] gives us
the series

tet

et − 1
= t+

∞∑
n=0

Bn(−t)n

n!
= 1 +

t

2
+ 2

∞∑
k=1

(−1)k+1ζ(2k)

(2π)2k
t2k (3.5)

converging for |t| < 2π. Here ζ(2k) =
∑

m≥1 m
−2k ≤ ζ(2) = π2/6. Hence, if

0 < t < 2π,

tet

et − 1
= 1 +

t

2
+ 2

ζ(2)

(2π)2
t2 + . . . < 1 +

t

2
+ 2

ζ(2)

(2π)2
t2 = 1 +

t

2
+

t2

12

and

T (y) ≤ 1

2r

∫ y

0

(et − 1)dt+
1

12r2

∫ y

0

t(et − 1)dt.
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4 The proofs of Theorem 1.3 and Theorem 1.4

The next lemma is an essential part of the proofs. We use the following notation

(a)+ = max{a, 0}

if a ∈ R.

Lemma 4.1. If 1/r ≤ |t| ≤ π, r ∈ N, and α > 1, then

r∑
j=1

1− αj cos(tj)

j
≤

r∑
j=1

αj − 1

j
− 2

r

αr+1

α− 1

(
π−2

1 + (rα− r)2
− α−r/2

)
+

+ log
|α− eit|
α− 1

+ min{2r logα, 2 log(er)}+ 4, (4.1)

and
r∑

j=1

1− αj cos(tj)

j
≤ − 1

2r

α(αr − 1)

α− 1
+ 1 (4.2)

if |t| ≤ 1/r.

Proof. Note that

2t2/π2 ≤ 1− cos t ≤ t2/2 (4.3)

if |t| ≤ π. An estimate (4.2) is not difficult to obtain. If |t| ≤ 1/r, we have

r∑
j=1

1− αj cos(tj)

j
≤ −

r∑
j=1

αj − 1

j
+

r∑
j=1

αj (1− cos(j/r))

j

≤ −
r∑

j=1

αj − 1

j
+

1

2r2

r∑
j=1

jαj

≤ − 1

2r

r∑
j=1

αj + 1.

To obtain an estimate (4.1), we use the technique found in [12, p. 407]. Notice that

r∑
j=1

1− αj cos(tj)

j
=

r∑
j=1

αj − 1

j
−

r∑
j=1

αj (1 + cos(tj))− 2

j
. (4.4)
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Thus, we evaluate only the second sum

r∑
j=1

αj (1 + cos(tj))− 2

j

≥
[r/2]∑
j=1

cos(tj)− 1

j
+

1

r

r∑
j=[r/2]+1

αj (1 + cos(tj))−
r∑

j=[r/2]+1

2

j

≥
r∑

j=1

cos(tj)− 1

j
+

1

r
�

r∑
j=[r/2]+1

αj
(
1 + eitj

)− 4. (4.5)

To obtain −4 we used inequalities log(1 + r) ≤ ∑r
j=1 1/j ≤ 1 + log r. Let us turn

our attention to the most difficult part, namely, to the sum

�
r∑

j=[r/2]+1

αj
(
1 + eitj

)

=
αr+1 − α[r/2]+1

α− 1
+ �(αeit)r+1 − (αeit)[r/2]+1

αeit − 1

=
αr+1

α− 1

(
1− α[r/2]−r + �eit(r+1) − α[r/2]−reit([r/2]+1)

αeit − 1
(α− 1)

)

≥ αr+1

α− 1

(
1− 2α[r/2]−r + �eit(r+1) (α− 1)

αeit − 1

)
+

≥ αr+1

α− 1

(
1− 2α−r/2 −

∣∣∣∣ α− 1

αeit − 1

∣∣∣∣
)

+

. (4.6)

In the last steps, we used a relation �z ≥ −|z|, z ∈ C. Applying

1− p√
p2 + v2

≥ 1

2

v2

p2 + v2
, p > 0, v ∈ R,

with p = α− 1 and v =
√

2α(1− cos t) and recalling (4.3), we get that

1−
∣∣∣∣ α− 1

αeit − 1

∣∣∣∣ ≥ 1

2

2α(1− cos t)

(α− 1)2 + 2α(1− cos t)

≥ (1− cos(1/r))

(α− 1)2 + 2(1− cos(1/r))

≥ 2

π2

1

(rα− r)2 + 1
.

Applying the latter lower estimate for (4.6), in conjunction with (4.5), we obtain

r∑
j=1

αj (1 + cos(tj))− 2

j

≥
r∑

j=1

cos(tj)− 1

j
+

2

r

αr+1

α− 1

(
π−2

1 + (rα− r)2
− α−r/2

)
+

− 4. (4.7)
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It is necessary to make a specific estimate for the remaining sum. We have
r∑

j=1

1− cos(tj)

j
≤ �

∞∑
j=1

1− eitj

j
α−j +

r∑
j=1

1− cos(tj)

j
(1− α−j)

≤ log
|1− α−1eit|
1− α−1

+ 2

r∑
j=1

1− α−j

j

≤ log
|α− eit|
α− 1

+ min{2r logα, 2 log(er)}. (4.8)

The reasons for obtaining this estimate will reveal in the proofs of Theorems 1.3
and 1.4. Combining (4.8) with (4.7) and (4.4) we arrive at the assertion.

The common part of the proofs (Theorem 1.6). We set the proofs for the case
r < n/2. The case n/2 ≤ r ≤ n is an easy exercise. For 0 < β < 1, we have

Pr
( n∑

j=r+1

jZj = n
)
=

1

2πi

∫
|z|=β

exp

{
n∑

j=r+1

zj − 1

j

}
dz

zn+1

=
e−Hn

2πi

∫
|z|=β

exp

{
r∑

j=1

1− zj

j

}
dz

(1− z)zn+1
,

because, if we add
∑∞

j=n+1 z
j/j to

∑n
j=r+1 z

j/j, n-th Taylor coefficient of the inte-
grand function does not change. Notice that the resulting integrand function has
two singularities at z = 1 and z = 0. Let s = −r log z and u = n/r, then

Pr
( n∑

j=r+1

jZj = n
)
=

e−Hn

2πi

∫ −r log β+irπ

−r log β−irπ

exp

{
r∑

j=1

1− e−js/r

j

}
eus+s/r

r(es/r − 1)
ds

=:
e−Hn

2πi

∫ −r log β+irπ

−r log β−irπ

L(s)eusds.

The obtained integrand function has only one singularity at s = 0. Furthermore,
Ress=0 L(s)e

us = 1. Let δ = δ1 ∪ δ2 ∪ δ3 ∪ δ4 and α > 1 where

δ1 = {−r log β + it : t ∈ [−rπ, rπ]}, δ2 = {σ + irπ : σ ∈ [−r logα,−r log β]},
δ3 = {−r logα + it : t ∈ [−rπ, rπ]}, δ4 = {σ − irπ : σ ∈ [−r logα,−r log β]}.

We apply the residue theorem to get

Pr
( n∑

j=r+1

jZj = n
)

=
e−Hn

2πi

(∫
δ

L(s)eusds−
(∫

δ2

L(s)eusds+

∫
δ4

L(s)eusds

)
−
∫
δ3

L(s)eusds

)

= e−Hn

(
1− 0− 1

2πi

∫
δ3

L(s)eusds

)
=: e−Hn (1 +R) . (4.9)
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At this point, it remains to estimate R. Firstly, we will apply integration by parts
twice. Note that L′(s) = − e−s

r(es/r−1)
L(s).

R =
1

2πiu

∫ −r logα+irπ

−r logα−irπ

L(s)deus

= − 1

2πiu

∫ −r logα+irπ

−r logα−irπ

eusL′(s)ds

= − 1

2πiu(u− 1)

∫ −r logα+irπ

−r logα−irπ

esL′(s)de(u−1)s

=
1

2πiu(u− 1)

∫ −r logα+irπ

−r logα−irπ

e(u−1)s (esL′(s))′ ds

=
1

2πin(n− r)

∫ −r logα+irπ

−r logα−irπ

es/r + e−s

(es/r − 1)2
L(s)e(u−1)sds. (4.10)

Secondly, using abbreviations

E(r, α) := −2

r

αr+1

α− 1

(
π−2

1 + (rα− r)2
− α−r/2

)
+

+min{2r logα, 2 log(er)} (4.11)

and

J(τ, α) :=
1

(α− 1)2 + α (2τ/(πr))2
, τ ∈ R,

we apply (4.3) and Lemma 4.1 to (4.10):

|R| ≤ 4α2r−n+2

πn2r

∫ rπ

0

1

|eiτ/r − α|3 exp
{

r∑
j=1

1− αj cos(τj/r)

j

}
dτ

≤ 4e4α2r−n+2

πn2r(α− 1)
exp

{
r∑

j=1

αj − 1

j
+ E(r, α)

}∫ rπ

1

J(τ, α)dτ

+
4eα2r−n+2

πn2r
exp

{
−α(αr − 1)

2r(α− 1)

}∫ 1

0

J(τ, α)3/2dτ

due to
∣∣es/r + e−s

∣∣ ≤ 2αr and the additional factor 1/|eiτ/r − α| from |L(s)|. Since∫ rπ

1

J(τ, α)dτ =
πr

2
√
α(α− 1)

arctan

(
2
√
ατ

πr(α− 1)

) ∣∣∣rπ
1

≤ π2r

4
√
α(α− 1)

and
∫ 1

0
J(τ, α)3/2dτ ≤ (α− 1)−3 , we obtain

|R| ≤ πe4α2r−n+3/2

n2(α− 1)2
exp

{
r∑

j=1

αj − 1

j
+ E(r, α)

}
+

4eα2r−n+2

πn2r(α−1)3
exp

{
−α(αr−1)

2r(α−1)

}
.

(4.12)

Hereafter, we divide the argument into two parts. In the first part we take
α = eξ/r (Theorem 1.3) and in the second α = x (Theorem 1.4), where ξ = ξ(n/r) is
defined in Lemma 3.1, and x = x(n, r) in Lemma 3.6.
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Proof of Theorem 1.3. Let α = eξ/r. Recall that logn ≤ r < n/2 and log u ≤ ξ ≤
2 log u. Note, referring to the equation eξ = 1+ uξ, we have ξ > 1. We will need the
following estimates

I(ξ) =

∫ ξ

0

1

t
d(et − t− 1) ≥ et − t− 1

t

∣∣∣ξ
0
= u− 1,

0 ≤ T (ξ) ≤ 1 + uξ

2r
+

2r(1 + uξ)

12r2
≤ 2uξ

3r
+

1

r
(4.13)

(this follows from Lemma 3.9; note ξ ≤ 2r), and

E(r, eξ/r)−min{2ξ, 2 log(er)}

= −2

r

eξ+ξ/r

eξ/r − 1

(
π−2

1 + (reξ/r − r)2
− e−ξ/2

)
+

=
−2eξπ−2

ξ + ξ(reξ/r − r)2
ξeξ/r

r(eξ/r − 1)

(
1− π2 + π2(reξ/r − r)2

eξ/2

)
+

.

Now, applying the estimates (ξ/r) < 2, (ξ/r)eξ/r/(eξ/r−1) = 1+O+(ξ/r) (see (3.5)),
and

reξ/r − r =
ξ

1!
+

ξ2

2!r
+

ξ3

3!r2
+ . . .

= ξ(1 +O+(ξ/r))

(O+ is the Big-O notation where + indicates that the estimated quantity is greater
than 0), we obtain

E(r, eξ/r)−min{2ξ, 2 log(er)}

=
−2(u+ 1/ξ)π−2

1 + ξ2(1 +O+(ξ/r))

ξeξ/r

r(eξ/r − 1)

(
1 +O

(
(log u)3/2√

u

))
(4.14)

=
−2(u+ 1/ξ)π−2

1 + ξ2(1 +O+(ξ/r))

(
1 +O

(
log u

r
+

(log u)3/2√
u

))
. (4.15)

We see that I(ξ) + T (ξ)+E(r, eξ/r) � u if u → ∞. Recalling (3.1) and applying the
latter estimate to (4.12), we conclude that

R � e2ξ−uξ

(uξ)2
exp

{
r∑

j=1

ejξ/r − 1

j
+ E(r, eξ/r)

}
+

e2ξ−uξ

u2ξ3
exp

{
−uξ

2r

eξ/r

eξ/r − 1

}

� exp
{−uξ + I(ξ) + T (ξ) + E(r, eξ/r)

}
. (4.16)

To obtain (1.14), we first observe that combining (1.1), (4.9) and (4.16) we get

κ(n, r) = e−Hr +O

(
1

r
exp

{−uξ + I(ξ) + T (ξ) + E(r, eξ/r)
})

.
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We apply Lemma 3.2 and formula (3.3) here to obtain

κ(n, r) = e−Hr +O

(
�(u)

r
exp

{
T (ξ) + E(r, eξ/r) + log u

})
. (4.17)

It is left to evaluate T (ξ) + E(r, eξ/r) + log u. For that we use (4.13), (4.14)–(4.15)
and then we apply (3.2). Recalling that log n ≤ r ≤ (log n)3+ε, we have

T (ξ) + E(r, eξ/r) + log u

≤ 2uξ

3r
+

1

r
+ 2ξ − 2(u+ 1/ξ)π−2

1 + ξ2(1 +O+(ξ/r))

(
1 +O

(
log u

r
+

(log u)3/2√
u

))
+ log u

=
2uξ

3r

(
1− r

ξ3
· 3

(π/ξ)2 + π2(1+O+(ξ/r))

(
1+O

(
log u

r
+
(log u)3/2√

u

))
+O

( r
u

))

≤ u log u

r
(4.18)

if u is sufficiently large, because (log u)/r (in the error estimate) came from the
factor in (4.14) that is greater than 1. When u is bounded, equation (1.14) is trivial.
Applying (4.18) to (4.17), we prove (1.14).

Now we turn to assertion (1.13), recalling that (log n)3+ε ≤ r < n, ε > 0, and
δ > 0. Let n0 = n0(ε, δ) and u0 = u0(ε, δ) be such sufficiently large positive constants,
depending on parameters ε and δ, that if n ≥ n0 and u ≥ u0, using (4.15), (4.13)
and Lemma 3.1, we obtain

E(r, eξ/r) + 2ξ + T (ξ)

= − 2u

π2ξ2

(
1 +O

(
log u

r
+

1

(log u)2

))
+min{2ξ, 2 log(er)}+ 2ξ + T (ξ)

≤ − 2u

π2ξ2

(
1 +O

(
log u

r
+

1

(log u)2

))
+ 4ξ +

2uξ

3r
+

1

r

= − 2u

π2ξ2

(
1 +O

(
1

(log u)2
+

(log u)3

r

))

= − 2u

π2(log u)2

(
1 +O

(
log log(u+ 2)

log u
+

1

(logn)ε

))

≤ − 2u

π2(log(1 + u))2
(1− δ) .

Combining the latter estimate with (4.16), (4.9), and Lemma 3.2 we prove asser-
tion (1.13) for the case n ≥ n0 and u ≥ u0. In case when n ≤ n0 or u ≤ u0,
estimate (1.13) follows trivially from (4.9), (4.15), (4.16) and Lemma 3.2.

Proof of Theorem 1.4. Let α = x. Recall that u > 2 and r ≥ 5. Throughout the
proof, we apply inequalities e(log u)/r ≤ x ≤ e(2 log u)/r and equation

xr+1 − x

x− 1
= n,
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which come from Lemma 3.6. Recall (4.11). The proof starts with the following
observation:

E(r, x)−min{2r log x, 2 log(er)} ≤ −2u

(
π−2

1 + (rx− r)2
− x−r/2

)
+

≤ −u1−4/r

4π2(log u)2

(
1− π2

xr/2
− π2(rx− r)2

xr/2

)
+

≤ −u1−4/r

4π2(log u)2

(
1− π2

√
u
− π2x3r/2+2

u2

)
+

where the second inequality is obtained using estimate rx − r ≤ re(2 log u)/r − r ≤
2(log u)u2/r and the third—inequalities x ≥ e(log u)/r and (x− 1)/xr ≤ x/n. Now we
apply the latter estimate and x2/(nx− n)2 � 1 to (4.12) and thus obtain

R � x2r−n exp

{
r∑

j=1

xj − 1

j
− u1−4/r

4π2(log u)2

(
1− π2

√
u
− π2x3r/2+2

u2

)
+

}

+
x2r−n

log u
exp

{
−u

2

}
,

because x(xr−1)/(2rx−2r) = u/2 (see Lemma 3.6). Applying Lemma 3.7, it follows
that

R � √
ux2rν(n, r) exp

{
− u1−4/r

4π2(log u)2

(
1− π2

√
u
− π2x3r/2+2

u2

)
+

}
(4.19)

� ν(n, r) exp

{
− u1−4/r

4π2(log u)2

(
1− π2

√
u
− π2x3r/2+2

u2

)
+

+ 5 log u

}
. (4.20)

Now, formula (1.16) follows simply from (4.19) if u is bounded (see Lemma 3.6). If
u is sufficiently large or u → ∞ we apply (3.4):

R � √
ux2rν(n, r)

=
√
u (exp{(logn)/r} (1 +O(1/r)))2r ν(n, r)

� n5/2r−1/2ν(n, r).

It remains to prove the formula (1.15). Let u1 = u1(ε) be such a sufficiently large
positive constant depending on the parameter ε > 0 that if u ≥ u1 applying (3.4) to
(4.20) it follows that

R � ν(n, r) exp

{
− u1−4/r

4π2(log u)2
(
1 +O

(
(log u)3u2/r−1/2

))}

�ε ν(n, r) exp

{
− u1−4/r(1− ε)

4π2(log(u+ 1))2

}
.

Actually, this estimate is also correct in the case of u ≤ u1. Recalling (4.9) and (1.1)
we finish the proof of (1.15).
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