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Abstract

We generalize the notion of a dominating broadcast by introducing a cost
function k∗ which assigns to each distance x the cost, k∗(x), for a ver-
tex to broadcast that distance. A cost function k∗ has a right adjoint
k∗. The right adjoint k∗ provides a different approach for generalising
broadcast domination. We study the relationship between these two ap-
proaches and make use of both perspectives to generalise the bounds
found in [B. Brešar and S. Špacapan, Ars Combin. 92, (2009), 303–320]
on broadcast domination of product graphs.

1 Introduction

For background on graph domination and broadcast domination see [5] and [2] re-
spectively. A broadcast on a graph G was first defined by Erwin in [3] as a function
f : V (G) → {1, 2, . . . , diam(G)} which assigns to each vertex the distance it broad-
casts. In this paper we use a slightly modified definition, where we instead take the
codomain to be N = N ∪ {∞} = {0, 1, 2, . . .} ∪ {∞}. This decision will be justified
below. Given a broadcast f : V (G) → N on a graph G, the f -neighbourhood of v
is the set Nf [v] = {w ∈ V (G) | dG(v, w) ≤ f(v)} where dG(v, w) is the distance
between v and w in G. A vertex v with f(v) �= 0 is said to dominate all vertices in
its f -neighbourhood. With this in mind, a broadcast f is dominating if each vertex
in V (G) is dominated by some vertex in V (G). The set of all broadcasting vertices v
(i.e, those with f(v) �= 0) is denoted by V +

f . A broadcast f is independent if there are

no distinct vertices v, w ∈ V +
f such that v ∈ Nf [w] (or w ∈ Nf [v]). A broadcast f is

efficient if for any pair of distinct vertices v, w ∈ V +
f we have that Nf [v]∩Nf [w] = ∅.

The primary concern in broadcast domination is finding minimum-cost dominat-
ing broadcasts, where the cost of a broadcast f is defined to be c(f) =

∑
v∈V (G) f(v).
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Notice here that our modification of the definition of a broadcast has no impact
on results pertaining to minimum-cost dominating broadcasts, as any minimum-cost
broadcast f cannot have f(v) > diam(G) for a vertex v ∈ V (G). If G is a graph then
the broadcast domination number γb(G) = min{c(f) | f is a dominating broadcast
on G}. This notion of cost is rather inflexible as the cost for a vertex to broadcast
distance x is assumed to be x. We can generalise broadcast domination by associat-
ing to a graph a cost function k∗ : N → N, where the cost to broadcast distance x is
then k∗(x). We believe this idea was first considered in [6]. We now consider broad-
casts on the pair (G, k∗) of a graph G and a cost function k∗. The cost of a broadcast
f on (G, k∗) is given by ck∗(f) =

∑
v∈V (G) k

∗(f(v)) and the cost domination num-

ber on (G, k∗) is γk∗
c (G) = min{ck∗(f) | f is a dominating broadcast on (G, k∗)}. A

broadcast f is optimal if it has cost equal to the cost domination number of (G, k∗).

2 Cost functions and adjoints

When studying broadcasts with a cost function we find that many results will only
hold when k∗ is superadditive (i.e. when k∗(x+ y) ≥ k∗(x) + k∗(y) for all x, y ∈ N).
Surprisingly, similar results will hold when the ‘right adjoint’ of k∗ is subadditive.
We investigate this below.

Let A and B be partially ordered sets and k∗ : A → B an order-preserving map
between them. Then the function k∗ : B → A is called the right adjoint of k∗ if k∗(b)
is the largest element in A such that k∗(k∗(b)) ≤ b. In this case we also call k∗ the
left adjoint of k∗. Additionally it can be shown that k∗ has the property that k∗(b)
is the least element such that k∗(k∗(b)) ≥ b. As an example see the following.

Example 2.1 Let f ∗ : N → N be given by f ∗(n) = 2n. This has both adjoints. The
right adjoint is f∗(n) = �n

2

 and the left adjoint is f!(n) = �n

2
�.

For more information on adjunctions see [7].

General functions k : N → N need not have right adjoints. For this reason we
define cost functions in the following way.

Definition 2.2 A cost function is a function k∗ : N → N such that

1. k∗(0) = 0,

2. k∗ is order preserving,

3. k∗(∞) = sup{k∗(x) | x ∈ N},
4. k∗(x) = 0 =⇒ x = 0.

The first two requirements are very natural constraints to put on a function
which is modelling cost. With regard to the third requirement, note that any order



P.F. FAUL/AUSTRALAS. J. COMBIN. 72 (1) (2018), 70–81 72

preserving map k : N → N satisfying the other conditions can be extended uniquely
to one of this form. The fourth condition is not necessary for the adjoint to exist,
but we include it to exclude degenerate cases where it costs nothing to broadcast
a non-zero distance. The first three conditions are the requisite conditions for the
‘adjoint functor theorem for partially ordered sets’ to apply which guarantees that a
right adjoint exists.

Let k∗ be a cost function and k∗ its right adjoint. Given that k∗ takes in a distance
and returns a cost, we think of k∗ as taking in a cost and returning a distance. From
the definition of a right adjoint we see that k∗(t) is the largest distance a vertex
can broadcast for cost at most t. This intuition about the adjoint suggests a similar
but different way for broadcasts to be generalized in the same vein. We consider a
function k∗ : N → N which takes in a cost t and returns the greatest distance which
costs at most t to broadcast. These functions should have left adjoints and so we
define them as follows.

Definition 2.3 A scaling function is a function k∗ : N → N such that

1. k∗(0) = 0,

2. k∗ is order preserving,

3. k∗(∞) = ∞.

From well-known properties of adjoints it can be shown that if k∗ is a scaling
function then its left adjoint is a cost function and vice versa.

From this perspective we can consider graphs equipped with scaling functions,
which we write as (G, k∗) for a graph G and a scaling function k∗, as the objects
of study. For graphs equipped with scaling functions, broadcasts are no longer the
fundamental objects of interest. This is because broadcasts return the distance
associated with each vertex v and a scaling function must take in a cost as in-
put. Instead we consider functions h : V (G) → N, which we call S-casts (short
for scaled broadcasts). We regard functions which associate to each vertex a dis-
tance as broadcasts and we regard functions which associate to each vertex a cost
as S-casts. Given a graph G equipped with a scaling function k∗ and an S-cast h,
we compose h with the scaling function k∗ to get a broadcast on G. An S-cast h
is dominating when k∗ ◦ h is a dominating broadcast. The cost of an S-cast h is
given by c(h) =

∑
v∈V (G) h(v) and the associated domination number is given by

γk∗
s (G) = min{c(h) | h is a dominating S-cast on (G, k∗)}. A dominating S-cast h is

optimal if its cost is equal to the S-cast domination number on (G, k∗). An S-cast h
is independent when k∗ ◦ h is independent, and h is efficient when k∗ ◦ h is efficient.
This perspective is the reason for the modification of the definition of a broadcast,
as it is possible for there to exist vertices v such that (k∗ ◦ h)(v) > diam(G). Finally
we define V +

h = V +
k∗◦h and Nh[v] = Nk∗◦h[v].

It is worth emphasising the duality between the two approaches outlined above.
Firstly, to every cost function we can associate a scaling function given by its right
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adjoint. Similarly, we can associate to each scaling function a cost function given by
its left adjoint. Consider a graph equipped with a cost function, (G, k∗). There is
a unique scaling function k∗ associated to this pair. To each broadcast f on (G, k∗)
we can associate the S-cast k∗ ◦ f which is used when computing the cost of f . To
each S-cast h we can associate the broadcast k∗ ◦ h which is used when determining
which vertices h dominates. In each approach the broadcast tells us the distances a
vertex broadcast and the S-cast tells us the cost to broadcast a given distance.

The following theorem further connects the two approaches.

Theorem 2.4 If G is a graph and k∗ a cost function, then γk∗
c (G) = γk∗

s (G).

Proof. Let f be an optimal dominating broadcast on (G, k∗). It follows from the
definition of a right adjoint that k∗(k∗(f(x)) ≥ f(x). Thus k∗ ◦ f is a dominating
S-cast. Its cost is equal to the cost of f and so γk∗

s (G) ≤ γk∗
c (G).

Let h be an optimal dominating S-cast on (G, k∗). From the definition of dominating
S-cast we get that k∗ ◦ h is a dominating broadcast. The cost of k∗ ◦ h is given by
summing k∗ ◦ k∗ ◦ h over all vertices. We already know from the adjunction that
(k∗ ◦ k∗ ◦ h)(x) ≤ h(x). As we showed above, when you compose a dominating
broadcast with the cost function you get a dominating S-cast and so k∗ ◦ k∗ ◦ h
is a dominating S-cast. Thus if it were the case that (k∗ ◦ k∗ ◦ h)(x) < h(x) at
any point x, then this would contradict our assumption that h is optimal. Hence
(k∗ ◦ k∗ ◦ h)(x) = h(x) and so the cost of k∗ ◦ h is equal to the cost of h. Therefore
γk∗
c (G) ≤ γk∗

s (G). �

As mentioned above, superadditivity and subadditivity are important properties
in the study of cost and scaling functions. We now relate these two properties.

Proposition 2.5 Let k∗ be a function with a left adjoint k∗. Then k∗ is superadditive
if and only if its left adjoint k∗ is subadditive.

Proof. Take x, y ∈ N. From the definition of adjoints we have that k∗(k∗(x+ y)) ≥
x+ y and that k∗(x+ y) is the least element for which this holds. Then note that by
the superadditivity of k∗ we get k∗(k∗(x) + k∗(y)) ≥ k∗(k∗(x)) + k∗(k∗(y)) ≥ x + y.
Thus combining these two results we conclude that k∗(x+ y) ≤ k∗(x) + k∗(y).

The other direction follows similarly. �

Notice that this means that a function k∗ with a right adjoint k∗ is subadditive
if and only if k∗ is superadditive.

It is not the case that if k∗ is superadditive then k∗ is subadditive or vice versa. For
instance consider 2.1. Note that f ∗(n) = 2n is both superadditive and subadditive.
Further note that its left adjoint f!(n) = �n

2
� is not superadditive and that its right

adjoint f∗(n) = �n
2

 is not subadditive.

Below we prove that when k∗ is superadditive (or equivalently when k∗ is subad-
ditive) then there always exists an efficient optimal dominating S-cast on (G, k∗).
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Lemma 2.6 Let (G, k∗) be a graph equipped with a superadditive scaling function.
Then there exists an independent optimal dominating S-cast on (G, k∗).

Proof. Let h be an optimal dominating S-cast which is not independent. There
there exist vertices v, w ∈ V +

k∗◦h such that v ∈ Nk∗◦h(w). Construct a new S-cast h′

identical to h except that h′(v) = 0, h′(w) = h(v) + h(w). Since k∗ is superadditive
k∗(h′(w)) ≥ k∗(h(v)) + k∗(h(w)), thus Nh(v) ∪ Nh(w) ⊆ Nh′(w) and so h′ is domi-
nating. Furthermore c(h′) = c(h) and so h′ is optimal. This process can be repeated
until we have an independent dominating broadcast satisfying the conditions of the
lemma. �

Lemma 2.7 Let (G, k∗) be a graph equipped with a superadditive scaling function.
Then there exists an efficient optimal dominating S-cast on (G, k∗).

Proof. By Lemma 2.6 we have that there exists an optimal independent dominating
S-cast h on (G, k∗). Assume h is not efficient. Then there are vertices v, w ∈ V +

h

with v �= w and a vertex u such that u ∈ Nh[v] ∩ Nh[w]. Since h is independent,
u �= v, w. It follows that there exists a path P from v to w passing through u with
length less or equal to k∗(h(v))+k∗(h(w)). Let x be a vertex in P distance k∗(h(w))
from v.

Consider a new S-cast h′ identical to h except that h′(v) = 0 = h′(w) and h′(x) =
h(v) + h(w). Note that c(h′) = c(h) and |V +

h′ | < |V +
h |. Since k∗(h(v) + h(w)) ≥

k∗(h(v))+k∗(h(w)), it follows immediately that Nh[v]∪Nh[w] ⊆ Nh′[x] which implies
that h′ is dominating.

It is possible that h′ is not efficient. Since V +
h is finite and |V +

h′ | < |V +
h |, we can repeat

the procedure mentioned in this proof and the process will eventually terminate with
an optimal efficient dominating broadcast. �

We can go further and show that if k∗ is not superadditive then there exists a
graph G such that (G, k∗) has no efficient optimal dominating broadcast.

Theorem 2.8 Let k∗ be a scaling function. The following are equivalent.

(i) For every graph G, (G, k∗) has an efficient γk∗
s (G) dominating S-cast.

(ii) k∗ is superadditive.

Proof. We have shown that if k∗ is superadditive then there is always an optimal
efficient dominating S-cast.

Assume k∗ is not superadditive. Since k∗ is not superadditive there exist natural
numbers m and n such that k∗(m + n) < k∗(m) + k∗(n). Pick x to be the smallest
m for which there is some n such that the above inequality holds. Then pick y to
be the smallest number such that k∗(x + y) < k∗(x) + k∗(y). Note that this means
that k∗(x− 1) < k∗(x), as if k∗(x− 1) = k∗(x) then we would have k∗((x− 1)+ y) ≤
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k∗(x + y) < k∗(x) + k∗(y) = k∗(x − 1) + k∗(y) contradicting that fact that x was
chosen to be minimal. A similar argument gives that k∗(y − 1) < k∗(y).

We construct a graph G in the following way. Glue x + y + 1 copies of Pk∗(x)+1

together at an end vertex, i.e. pick an end vertex in each of the x+ y + 1 paths and
identify them all. Call this graph Gx. Construct Gy in the same way except with
x + y + 1 copies of Pk∗(y)+1. Now construct G by gluing Gx and Gy together at an
end vertex of each.

Figure 1: Gy when y = 2 and x = 1 and k∗(y) = 2.

v

z

u

Figure 2: G when x = 1 and y = 2 and k∗(x) = 2 = k∗(y).

Let v be the centre of Gx and u the centre of Gy and z the vertex that attaches Gx

and Gy. We define an S-cast h by

h(s) =

⎧⎪⎨
⎪⎩
0 if s �∈ {u, v}
x if s = v

y if s = u.

It is clear that h is dominating. Furthermore z ∈ Nh(v) and z ∈ Nh(u), so h is not
efficient. We now show that γk∗

s (G) = x + y and then that h is the only optimal
dominating broadcast.
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Let h′ be an optimal dominating S-cast. Then c(h′) ≤ c(h) = x+y. Let u1, . . . , ux+y

refer to the end vertices closest to u and v1, . . . , vx+y the end vertices closest to v.
Note that the diameter of G is dG(ui, vj) = 2k∗(x) + 2k∗(y) where 1 ≤ i, j ≤ x + y.
Consider a ui − vj path P and a vertex w at distance k∗(x) + k∗(y) from vj . Then
dG(w, ui) = k∗(x) + k∗(y) since G is a tree. We can conclude that w is a central
vertex and that rad(G) = k∗(x) + k∗(y). Furthermore the distance from w to any
other leaf vertex is k∗(x) + k∗(y) by symmetry.

Since k∗(x+ y) < k∗(x) + k∗(y) it is not possible for a single vertex to dominate a ui

and a vj in particular this gives us that |V +
h′ | �= 1. We now show that |V +

h′ | = 2. To
do so we show that any vertex p ∈ V +

h′ dominates either all of v1, . . . , vx+y or all of
u1, . . . , ux+y.

It is not possible for each of the end vertices v1, . . . , vx+y to be dominated by distinct
vertices as there are x+ y of these end vertices and c(h′) ≤ x+ y. This would leave
no vertices to dominate the other set of end vertices without the cost of h′ exceeding
x+y. Now suppose that s ∈ V +

h′ , vi, vj ∈ Nh′ [s], that t ∈ V +
h′ and that ui′, uj′ ∈ Nh′[t].

Let dG(s, v) = l. Then (k∗◦h′)(s) ≥ k∗(x)+l as either the s−vi path or the s−vj path
passes through v. This implies that {v, v1, . . . , vx+y} ⊆ Nh′[s]. A similar argument
gives that {u, u1, . . . , ux+y} ⊆ Nh′[t]. It follows that V (G) ⊆ Nh′[s] ∪ Nh′[t] and so
V +
h′ = {s, t}.

Assume l = dG(s, v) �= 0. Then h′(s) > x as (k∗ ◦ h′)(s) > k∗(x). Thus since c(h′) =
x+y we must have that h′(t) < y. Then (k∗ ◦h′)(t) < k∗(y) (since k∗(y−1) < k∗(y))
which contradicts the fact that t dominates the leaves u1, . . . , ux+y. Thus l = 0 and
so s = v. A symmetric argument gives t = u. If h′(v) < x then the leaves v1, . . . , vx+y

are not dominated by v and similarly if h′(u) < y then the leaves u1, . . . , ux+y are
not dominated by u. Hence h′ = h and so the only optimal dominating S-cast on
(G, k∗) is inefficient. �

3 Generalising graph product bounds

In this section we show that when k∗ is a superadditive cost function, then the
bounds found in [1] generalise for finite products of trees and when k∗ is linear the
bounds generalise for finite products of graphs. In addition we show that if k∗ is
a subadditive scaling function then the results generalise too for finite products of
trees and further that if k∗ is a linear scaling function the results generalise for finite
products of graphs.

Definition 3.1 Let G and H be graphs. The Cartesian product G�H has vertex
set V (G�H) = V (G)× V (H). The vertex (u, u′) is adjacent to (v, v′) if u = v and
u′ is adjacent to v′ in H or u′ = v′ and u is adjacent to v in G.

Definition 3.2 Let G and H be graphs. The strong product G � H has vertex set
V (G�H) = V (G)×V (H). The vertex (u, u′) is adjacent to (v, v′) if u = v and u′ is
adjacent to v′ in H or u′ = v′ and u is adjacent to v in G or finally if u is adjacent
to v in G and u′ is adjacent to v′ in H.
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It is shown in [1] that given two graphs G and H

γb(G�H) ≤ 3
2
(γb(G) + γb(H)),

and that

γb(G�H) ≤ 3
2
max{γb(G), γb(H)}.

The results all stem from a lemma in [1] showing that γb(G) ≥
⌈
2rad(G)

3

⌉
. We prove

a more general version of this lemma which we then apply to the above mentioned
cases of cost and scaling functions.

Lemma 3.3 Let G be a graph and k∗ a superadditive scaling function. Then there
exists a spanning tree T of G such that γk∗

s (T ) = γk∗
s (G).

Proof. A spanning tree H of G can be thought of as G with potentially some edges
deleted. With this in mind it is clear that if h is a dominating broadcast on (H, k∗)
then it is also dominating on (G, k∗). Thus γk∗

s (G) ≤ γk∗
s (H) for any spanning tree H .

That k∗ is superadditive will allow us to find a spanning tree such that the above
inequality holds in the other direction. By Lemma 2.7 there exists an efficient optimal
dominating S-cast h on (G, k∗). Thus the neighbourhoods Nh[v] for v ∈ V +

h are all
pairwise disjoint. For each Nh[v] consider the subgraph it generates and a spanning
tree Tv such that dTv(v, x) = dG(v, x) for all x ∈ Nh[v]. To construct such a Tv we
systematically consider geodesics from v to every vertex x and in each case select one
which does not result in a cycle. The trees Tv can be connected with edges in such a
way that the result is a spanning tree T of G. By the construction h is a dominating
broadcast on (T, k∗) and so we get that γk∗

s (T ) = γk∗
s (G) as desired. �

Note that by Theorem 2.4 and Proposition 2.5 we get that the above lemma holds
when k∗ is a subadditive cost function.

Lemma 3.4 Let (Pn, k∗) be such that there exists an optimal dominating S-cast h
with h(v) ≤ k∗(1) for each v ∈ V (Pn). Then

γk∗
s (Pn) =

⌈
n

2k∗(k∗(1)) + 1

⌉
k∗(1).

Proof. By the adjunction we get that k∗(x) = 0 for all x < k∗(1) which gives us that
h(v) = 0 or k∗(1), as h is optimal. Each broadcasting vertex dominates itself and
k∗(k∗(1)) vertices on either side of it, which is 2k∗(k∗(1)) + 1 vertices in total. Since
h is optimal and on a path we can assume it is efficient. Thus there are � n

2k∗(k∗(1))+1
�

broadcasting vertices and so we conclude that

c(h) =

⌈
n

2k∗(k∗(1)) + 1

⌉
k∗(1).

�
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This result restricts to γb(Pn) = �n
3
� in the broadcast setting.

Lemma 3.5 Let k∗ and k∗ be adjoint cost and scaling functions. Then if k∗ is
subadditive or k∗ is superadditive, we have that for every path Pn there exists an
optimal dominating broadcast h on (Pn, k∗) with h(v) ≤ k∗(1) for each v ∈ V (Pn).

Proof. First assume k∗ is subadditive. We begin by showing that k∗(1) = 1. Assume
to the contrary that k∗(1) = t > 1. Then k∗(t) ≥ 1 > 0 = k∗(t − 1) + k∗(1) and so
is not subadditive. Let h be a dominating S-cast on (Pn, k

∗, k∗) and assume there
exists a v ∈ V (Pn) with h(v) > 1. The neighbourhood Nh[v] contains 2k∗(h(v)) + 1
vertices. Since k∗ is subadditive we get k∗(h(v)) ≤ k∗(h(v)− 1) + k∗(1) which gives
that 2k∗(h(v)−1)+2k∗(1)+2 > 2k∗(h(v))+1. Thus there exists vertices u, w ∈ Nh[v]
such that it would be more effective to have an S-cast h′ identical to h except that
h′(v) = 0, h′(u) = 1 and h′(w) = h(v) − 1. Applying this argument repeatedly to
an optimal dominating broadcast gives that an optimal dominating broadcast exists
satisfying the conditions in Lemma 3.4.

Next assume k∗ is superadditive. Let f be an optimal dominating broadcast on
(Pn, k

∗, k∗) with f(v) > 1 for some v ∈ V (Pn). As before note that Nf [v] contains
2f(v) + 1 vertices. Thus there exists vertices u, w ∈ Nh[v] such that a broadcast
f ′ identical to f except that f ′(v) = 0, f ′(u) = 1 and f ′(w) = f(v) − 1 with
Nf [v] ⊆ Nf ′ [u]∪Nf ′ [w] exists. Also since k∗ is superadditive we get that k∗(f(v)) ≥
k∗(f(1)) + k∗(f(v) − 1). Thus it is no more expensive to use the alternative f ′.
Applying this argument repeatedly gives us that there is an optimal dominating
broadcast f with f(v) ≤ 1 for each v ∈ V (Pn). The associated S-cast k∗ ◦ f satisfies
(k∗ ◦ g)(v) ≤ k∗(1). Theorem 2.4 tells us that this S-cast is optimal and so we are
done. �

Corollary 3.6 Consider (Pn, k∗) where k∗ is subadditive. Then

γk∗
s (Pn) =

⌈
n

2k∗(1) + 1

⌉
.

Proof. As discussed in the previous proof k∗(1) = 1 and so the result follows. �

Corollary 3.7 Consider (Pn, k∗) where k∗ is superadditive. Then

γk∗
s (Pn) =

⌈n
3

⌉
k∗(1).

Proof. This follows from the fact that k∗(k∗(1)) = 1. Assume k∗(k∗(1)) = t > 1.
Then k∗(t) = k∗(1) which gives k∗(t) < k∗(1)+k∗(t−1), violating the superadditivity
of k∗. �

Lemma 3.8 Let (T, k∗, k∗) be a tree equipped with a scaling function k∗ such that
there exists an optimal dominating S-cast h on (Pn, k∗) with h(v) ≤ k∗(1) for each
v ∈ V (Pn). Then

γk∗
s (T ) ≥

⌈
2 rad(T )

2k∗(k∗(1)) + 1

⌉
k∗(1).
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Proof. Let T be a tree. We know that diam(T ) ≥ 2 rad(T )− 1 and so there exists a
path P in T containing 2rad(T ) vertices. Let f be an optimal dominating broadcast
on T . For each vertex x ∈ V (T ) denote by x′ the unique closest vertex to x on P .
Consider the broadcast f ′ on P given by f ′(x) = max{f(y) | y′ = x}. Because f is
dominating it follows that f ′ is dominating on P . Furthermore applying Lemma 3.4
we get the following inequality

c(f) ≥ c(f ′) ≥ γk∗
s (P2rad(T )) =

⌈
2 rad(T )

2k∗(k∗(1)) + 1

⌉
k∗(1).

�

Corollary 3.9 Let (T, k∗) be a tree equipped with a subadditive scaling function k∗.
Then

γk∗
s (T ) ≥

⌈
2 rad(T )

2k∗(1) + 1

⌉
.

Corollary 3.10 Let (T, k∗) be a tree equipped with a superadditive cost function k∗.
Then

γk∗
s (T ) ≥

⌈
2 rad(T )

3

⌉
k∗(1).

Corollary 3.11 Let (G, k∗) be a graph equipped with a linear scaling function k∗.
Then

γk∗
s (G) ≥

⌈
2 rad(G)

2k∗(1) + 1

⌉
.

Proof. That k∗ is linear means that it is superadditive and subadditive. Thus we
can invoke Lemma 3.3 to find a spanning tree T of G with γk∗

s (G) = γk∗
s (T ) ≥

� 2rad(T )
2k∗(1)+1

� ≥ � 2 rad(G)
2k∗(1)+1

� . �

Corollary 3.12 Let (G, k∗) be a graph equipped with a linear cost function k∗. Then

γk∗
s (G) ≥

⌈
2rad(G)

3

⌉
k∗(1).

We can now apply these corollaries to the products below.

3.1 Cartesian product

Given two graphs G and H it is known that rad(G�H) = rad(G)+rad(H). Further-
more it is clear that γk∗

s (G) ≤ k∗(rad(G)), as any S-cast h with h(u) = k∗(rad(G))
for a central vertex u is dominating. Combining these facts we get the following

results. Let�n

i=1Gi = G1�G2� · · ·�Gn.



P.F. FAUL/AUSTRALAS. J. COMBIN. 72 (1) (2018), 70–81 80

Proposition 3.13 Let G1, G2, . . . , Gn be a finite family of graphs and k∗ a scaling
function. If k∗ is linear, or if each Gi is a tree and k∗ is subadditive we have the
following bound

γk∗
s

⎛
⎝ n

�
i=1

Gi

⎞
⎠ ≤ k∗

(
2k∗(1) + 1

2

(
n∑

i=1

γk∗
s (Gi)

))
.

Proof. The bound in Corollary 3.9 can be manipulated to give

rad(G) ≤ 2k∗(1) + 1

2
γk∗
s (G).

The conditions on the graphs and scaling function allow us to apply Corollary 3.9
and Corollary 3.11 respectively to give

γk∗
s

⎛
⎝ n

�
i=1

Gi

⎞
⎠ ≤ k∗

⎛
⎝rad

⎛
⎝ n

�
i=1

Gi

⎞
⎠
⎞
⎠ ≤ k∗

(
n∑

i=1

rad(Gi)

)

≤ k∗
(
2k∗(1) + 1

2
(

n∑
i=1

γk∗
s (Gi))

)
.

�

Similarly we get the following proposition.

Proposition 3.14 Let G1, G2, . . . , Gn be a finite family of graphs and k∗ a cost
function. If k∗ is linear, or if each Gi is a tree and k∗ is superadditive we have the
following bound

γk∗
s

⎛
⎝ n

�
i=1

Gi

⎞
⎠ ≤ k∗

(
3

2k∗(1)

(
n∑

i=1

γk∗
s (Gi)

))
.

This is proved identically.

3.2 Strong product

Given two graphs G and H it is known that rad(G � H) = max{rad(G), rad(H)}.
Furthermore we define�n

i=1Gi = G1�G2� . . .�Gn. Applying essentially the same
proof techniques as used in Proposition 3.13 we get the following two results.

Proposition 3.15 Let G1, G2, . . . , Gn be a finite family of graphs and k∗ a scaling
function. If k∗ is linear, or if each Gi is a tree and k∗ is subadditive we have the
following bound

γk∗
s

⎛
⎝ n

�
i=1

Gi

⎞
⎠ ≤ k∗

(
2k∗(1) + 1

2
max{γk∗

s (Gi) | 1 ≤ i ≤ n}
)
.



P.F. FAUL/AUSTRALAS. J. COMBIN. 72 (1) (2018), 70–81 81

Proposition 3.16 Let G1, G2, . . . , Gn be a finite family of graphs and k∗ a cost
function. If k∗ is linear, or if each Gi is a tree and k∗ is subadditive we have the
following bound

γk∗
s

⎛
⎝ n

�
i=1

Gi

⎞
⎠ ≤ k∗

(
3

2k∗(1)
max{γk∗

s (Gi) | 1 ≤ i ≤ n}
)
.

We omit bounds on the tensor product here but they can be found in [4] where we
further develop the theory. In [1] the bounds were all shown to be sharp. A potential
avenue for further research would be to determine whether there are classes of graphs
(which would necessarily depend on the scaling function) which achieve these bounds.
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