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Abstract

The Strong Splitter Theorem is used to give a short proof that the class
of binary matroids with no 4-wheel minor consists of a few small matroids
and the infinite family of binary spikes.

1 Introduction

The class of binary matroids with no minor isomorphic to M (W}) was characterized
as follows by Oxley [2], Theorem 2.1:

Theorem 1.1. Let M be a 3-connected binary matroid. Then M has no minor
isomorphic to M (Wy) if and only if M is isomorphic to Uyy, Uiy, Uia, Urs, Uss,
MWs3), Fr, FX, or Z., Z¥, Z\a, or Z\c,, forr > 4.

Besides the small matroids that are trivially in the class, there is one infinite
family Z, (subsequently named the binary spike). Matrix representations for Z, and
7 are shown below, where we use the name of the matroid to also stand for the
matrix representing it:
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Observe that Z, has two non-isomorphic 3-connected single-element deletions
Z\a, and Z,\c,, both of which are self-dual. Moreover, Z\{a,,c.} = Z* |,
Z¥bys1 = Z\ey, ZF by = Z\ay, and Z7 /{b,,by41} = Z._1. Since Z,\¢, /b, = Z,_4
and Z, has no minor isomorphic to the self-dual matroid M (Wy), neither does Z,

nor Z.
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The main technique used in [2] was the Splitter Theorem [4]. The main technique
used here is the Strong Splitter Theorem [1].

Theorem 1.2. Suppose N is a 3-connected proper minor of a 3-connected matroid
M such that, if N is a wheel or a whirl, then M has no larger minor isomorphic to
a wheel or whirl, respectively. Let j = r(M) — r(N). Then there is a sequence of
3-connected matroids My, My, ..., M; such that My = N, M, = M, M; 1 is a minor
of M; for 1 <1 <mn, and for some j < t:

(i) For1<i<j, r(M;)—r(M_1)=1and |E(M;) — E(M;_1)| <3; and
(ii) Forj <i<t, r(M;)=r(M) and |E(M;) — E(M;_1)| = 1.

Moreover, when |E(M;) — E(M;_1)| =3, for some 1 <i < j, E(M;) — E(M;_1) is a
triad of M;.

Let M be a class of matroids closed under minors. We may focus on the 3-
connected members of M since matroids that are not 3-connected can be pieced
together from 3-connected matroids using the operations of 1-sum and 2-sum [3],
8.3.1. Let us denote a simple single-element extension of M by an element e as
M + e and a cosimple single-element coextension of M by an element f as M o f.
Note that a simple extension of a 3-connected matroid is also 3-connected. Likewise
for cosimple coextensions.

Suppose N is a 3-connected proper minor of a 3-connected matroid M such that, if
N is a wheel or a whirl, then M has no larger minor isomorphic to a wheel or whirl,
respectively. The Splitter Theorem states that there is a sequence of 3-connected
matroids My, My, ..., M; such that My = N, M; = M, and for 1 < i < t either
M; = M;_1+eor M; = M;_q0f [3], Cor. 12.2.1. Thus to reach a matroid isomorphic
to M, one may start with N and perform simple single-element extensions and
cosimple single-element coextensions. The Splitter Theorem imposes no conditions
to restrict how N can grow to (a matroid isomorphic to) M. Theorem 1.2 extends
the Splitter Theorem by proving that after two simple single-element extensions
a cosimple single-element coextension must be performed, and it puts additional
restrictions on how the coextensions are obtained.

A 3-connected rank k matroid in M that has no further 3-connected extensions
in M is called a monarch for M. Note that M may have several monarchs of varying
sizes. (The class under consideration has just one monarch and that makes things
very easy.) Theorem 1.2 implies that every 3-connected rank r monarch in M is a
simple extension of a 3-connected rank r matroid M,, where M, is obtained from
a 3-connected rank r — 1 matroid M,_; in the following ways: M, = M,_; o f or
M,= M, 1o0f+eor M, =M, 10 f+{e, e} or M, = M, +eo f, where f is
added in series to an element in M,_1 or M, = M,_1 + {e1,ea} o f, where {ey, es, f}
is a triad. There is no reason to asssume a priori that M, is unique for a specific
excluded minor class. However, if M, happens to be unique, we get a recursive way
of defining it, and consequently a recursive way of defining the corresponding rank r
monarch.
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2 The proof

The proof of Theorem 1.1 essentially comes down to the following result [2], Theorem
2.2. The class of binary matroids with no minor isomorphic to Py or Py is denoted
as EX[Py, P§]. The matroids Py and Py are shown below:
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Po = 11010P9_I51}(1)1
11110 L1 0 o

Theorem 2.1. Let M be a binary non-regular 3-connected matroid. Then M is in
EX[Py, P§] if and only if M is isomorphic to Fr, F¥, or Z., Z*, Z,\a, or Z,\c,, for
r > 4.

Proof. The proof is by induction on the rank. It is easy to check that the binary
non-regular 3-connected rank 4 matroids in EX [Py, Py] are Ff = Z,\{au4, c4}, Zs\ a4,
and Z4\c4, and Z;. Assume a binary non-regular 3-connected matroid with rank at
most r is in EX[Py, Py] if and only if it, or its dual, is isomorphic to a member of
the known classes of matroids. Thus Z;_5 has no coextensions and its simple single-
element extensions Z, s\a,_2 and Z,_5\c,_2 both coextend only to Z* , and Z* ,
extends only to Z,_1 in EX|[Py, Py] (see Figure 1).

The next two claims complete the proof.

Z,\a
Z*r-l r\ ' Zy
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Figure 1: Growth of EX [Py, Py]

Claim A. Z}_, has no coextensions and its simple single-element extensions
Zr_a\@r—1 and Z._1\c,—1 both coextend only to Z* | in EX|Py, P§].

Proof. Suppose M is a cosimple coextension of Z* , in EX|[Py, P;]. Theorem 1.2
implies that M must be a cosimple single-element coextension of Z* ,, Z._1\¢,_1,
Zr_1\a,_1, or Z,_1. Moreover, if M is a cosimple single-element coextension of Z,_,
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then {b,, a,,c.} forms a triad in M. By the induction hypothesis the only rows that
can be added to Z,_3 are [11...10] and [11...11] (see Figure 1). Adding [11...10]
gives Z, 5\c,_o and adding [11...11] gives Z, s\a,_o. Adding both gives Z* .
Therefore Z*_, has no further cosimple coextensions in EX [Py, Py].

The only simple single-element extensions of Z* , in EX|[Py, P;] are obtained
by adding columns a, ; = [11...10]" and ¢,_; = [11...11]7 giving respectively,
Zr_1\¢;—1 and Z,_1\a,_1. However, Z._1\c,_1 and Z,_1\a,_; are also single-element
coextensions of Z,_5 by rows [11...10] and [11...11], respectively. Adding both
these rows to Z,_5 gives Z ;.

Adding to Z*_, both columns ¢,_; and a,_; gives Z,_;. The only cosimple single-
element coextension of Z,_; we must check is the matroid Z/_; formed by adding row
[00...011]. The matroid Z_,/{bs,bg,...b-—1}\{as,as,...a,_1} shown below has a
Pg-minor.

01 1 11
10111
Z;n_l/{bg,,bﬁ,...br_l}\{a5,a6,...ar_1} = I5 11 011
11101
0 0011

Claim B. Z_, extends only to Z, in EX[Py, F§].

Proof. We will prove that the only columns that can be added to Z7_; are ¢, =
[11...11]7 and a, = [11...10]T. First observe that Z* ,/b, = Z, 1\c,_; and
Z* b1 = Z,_1\a,—1. By the induction hypothesis applied to Z*_,/b,, the only
columns that can be added are ¢,_; with a zero or one in the last position, by, bs, . ..
br_2,b,_1 with a one in the last position, and aq, as, . ..a,_o,a,_; with the entry in
the last position switched. They are:

L, =[1...10" and ¢! ; =[11...11]%;

2. b! = [100...01]7, b} = [010...01]7 up to b, = [000...0101]", b}, =
[000...011]7; and

3. ay=[0111...1110]7, a3 = [1011...1110]" up to a®_, = [111...1010]7, a®_, =
[111...1100].

Similary, the only columns that can be added to Z* ,/b._; are a,_; with a zero or
one, by, by,...b._9,b. with a one in the second-last position, and aq, as,...a,_9,¢._1
with the entry in the second-last position switched. They are:

(4) a®_, =[11...00]" and @} , = [11...10]7;

(5) B! = [100...10)7, b, = [010...10]7 up to b, = [000...0110],
bl = [000...011]7; and
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(6) a? = [0111...1101]7, a3 = [1011...1101]" up to a®_, = [111...1001]7, and
al_, =[111...1111]T.

Observe that the only overlapping columns among the first set of columns in (1),
(2), and (3) and in the second set of columns in (4), (5), and (6) are [11...10]7,
[11...11]7, and [00...011]. The first is a, and the second is ¢,. They give the single-
element extensions Z,.\¢, and Z,\a,, and together the double-element extension Z,.
Lastly, let Z* | + b} be the matroid obtained by adding b} = [00...11] to ZF ;.
Observe that

(Z:—l + bql«—l)/{b47 ey br_g}\{a4, e ,CLT_Q} = Z; + béll

The matroid ZF + b} shown below has a Pg-minor.

01110
10110
ZE+bi=|I;{1 1010
11101
11111
This completes the proof of Theorem 1.1. 0J
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