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Abstract

Frankl’s conjecture, from 1979, states that any finite union-closed family,
containing at least one non-empty member set, must have an element
which belongs to at least half of the member-sets. In this paper we show
that if the minimum cardinality of

⋃A over all counter-examples is q,
then any counter-example family must contain at least 4q + 1 sets. As a
consequence, we show that a minimal counter-example must contain at
least 53 sets.

1 Introduction

A family of sets A is said to be union-closed if the union of any two member sets
is also a member of A. Frankl’s conjecture (or the union-closed sets conjecture)
states that if A is finite, then some element must belong to at least half of the sets
in A, provided at least one member set is non-empty. Although the origin of this
conjecture is not explicit, it is generally attributed to Frankl (1979) following [5]. A
detailed discussion and current standing of the conjecture can be found in [1].

In [3], Roberts and Simpson showed that if q is the minimum cardinality of
⋃A

over all counter-examples, then any counter-example A must satisfy the inequality
|A| ≥ 4q−1. In this paper, we expand the ideas presented in [3] to find an improved
lower bound 4q+1. In [4], it was proved that a minimal counter-example must contain
at least 13 elements in

⋃A. Hence we show that the minimal counter-example family
must contain at least 53 sets.
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2 Main results

2.1 Preliminary lemmas

Throughout this paper, A will denote a minimal counter-example with |⋃A| = q,
the minimum number of constituent elements across all counter-examples. Here |A|
must be odd, because if it is even we can remove a basis set (a set that cannot be
obtained by the union of any two other sets of A) to generate a counter-example
with |A| − 1. Let |A| = 2n + 1.

We denote the family of sets in A containing an element x by Ax.

The universal set for A is defined by S :=
⋃A. Thus |S| = q.

We define Ax := {A ∈ A : x /∈ A}. Let Cx :=
⋃Ax. We denote the family

containing all such Cx by C:
C := {Cx : x ∈ S}.

For any x we define the family Dx to be

Dx := Ax \ {S} \ C.

We now define and note the difference between the terms abundant and abun-
dance. We call an element x abundant in a family F if 2|Fx| ≥ |F|. (By definition,
our counterexample A cannot contain any abundant element.) On the other hand,
we define abundance of x in F simply as |Fx|.

Next, we define and distinguish the terms mutually dominant and dominant. We
say that two elements a and b are mutually dominating if a and b always appear
together in the member sets of A. We say a dominates b if Ab ⊂ Aa and |Aa| >
|Ab|. Our counter-example family A cannot contain any mutually dominating pair of
elements, since they can be replaced by a single element which in turn would violate
the minimality of q. Therefore, for any a, b ∈ S, if a �= b, then Ca �= Cb. However, A
may contain elements which dominate other elements.

Definition 1. We define the sets I and J by:

I := {a ∈ S : a is NOT dominated by any other element in S};
J := {b ∈ S : b is dominated by some other element in S}.

If an element is present in n sets of A, then it cannot be dominated by any other
element. Hence they must be present in I. We know from [2] that A must contain
at least three elements with abundance n. Thus |I| ≥ 3. Note that every non-empty
set in A must contain at least one element from I.

We now prove slightly modified versions of two lemmas from [3].

Lemma 1. Let a be an element of S. If a /∈ I then I ⊆ Ca, and if a ∈ I then
I \ {a} ⊆ Ca.
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Proof. When a /∈ I, let y ∈ I. Since a cannot dominate y, there must exist a set
containing y but not a. So y ∈ Ca.

When a ∈ I, let z ∈ I and z �= a. Since a cannot dominate z, there must
exist a set containing z but not a. So z ∈ Ca. But a /∈ Ca because

⋃Aa cannot
contain a.

So we conclude that if a ∈ I, then it must be present in q − 1 sets of C.

Lemma 2. For any a, Ca cannot be a basis set of A.

Proof. Let Ca be a basis. So we can remove Ca to get a new union-closed A′ with
|A′| = |A| − 1.

If a /∈ I, then I ⊆ Ca (Lemma 1). Since I must contain all elements with
abundance n, removing Ca would generate another counter-example A′ with |A′| <
|A|, which is a contradiction.

If a ∈ I, then I \ {a} ⊆ Ca (Lemma 1). Let Ba be a basis set containing a.
Removing Ba and Ca from A we get A′′ with |A′′| = |A| − 2 = 2n − 1, and no
element is contained in more than n − 1 sets. Hence A′′ is also a counter-example,
which is again a contradiction.

Definition 2. We say that elements a and b are mutually abundant if 2|Aa ∩Ab| ≥
|Aa| and 2|Aa ∩Ab| ≥ |Ab|.
Definition 3. For every element a, we define the sets Ha and La as follows:

Ha := {b ∈ S : b is abundant in Aa};
La := {c ∈ S : c is abundant in Aa}.

We now prove a few lemmas which will be used repeatedly in the next section.

Lemma 3. If a, b ∈ I, b ∈ Ha and Da ∩ Db �= ∅, then |A| ≥ 4q + 3.

Proof. Since b ∈ Ha, it must be present in at least (n + 1)/2 sets of Aa. Also b ∈ S
and b must be in q − 2 sets of C \ {Ca}. It must also be present in at least one set
of Da, since Da ∩ Db �= ∅. So we have

(n + 1)

2
+ 1 + (q − 2) + 1 ≤ n,

which yields |A| ≥ 4q + 3.

Lemma 4. If |Ax| = |Ay| = n, x �= y, then y ∈ Hx or y ∈ Lx, but y /∈ Hx ∩ Lx.

Proof. Suppose y /∈ Hx and y /∈ Lx. Let us assume that n is even (say n = 2k).
Since y /∈ Lx, we have |Ax ∩ Ay| ≤ k − 1. Since y /∈ Hx, we have |Ax ∩ Ay| ≤ k. So
|Ay| ≤ k − 1 + k = n− 1, a contradiction.
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On the other hand, if n is odd (say n = 2k+1), since y /∈ Lx, we have |Ax∩Ay| ≤
k. Since y /∈ Hx, we have |Ax ∩ Ay| ≤ k. So |Ay| ≤ k + k = n− 1, a contradiction
again.

The case y ∈ Hx ∩Lx is not possible because it will render y abundant in A.

Lemma 5. If |Ax| = |Ay| = n and y ∈ Hx, then x ∈ Hy.

Proof. Since y ∈ Hx, we have y /∈ Lx from Lemma 4. So x and y cannot be mutually
abundant (because |Ax| = |Ay| = n). Hence x /∈ Ly. Thus, from Lemma 4, we have
x ∈ Hy.

Definition 4. For any x, y ∈ S, we define

Axy := Ax ∩Ay; Exy := ∪Axy.

Note that Axy is union-closed.

Lemma 6. If x, y ∈ I, then Exy /∈ C.

Proof. From Lemma 1, any Ca ∈ C must contain either I or I \ {a}. But Exy can
contain at most I \ {x} \ {y}. Hence Exy /∈ C.

As a corollary to the above lemma, note that Axy cannot contain any set from C
when x, y ∈ I. Also S /∈ Axy, since S must contain both x and y.

Now we prove our central result, |A| ≥ 4q+1. To do so, we divide the proof into
the following two cases.

2.2 The case when Cx �= S \ {x} for some x

Theorem 1. If there exists x ∈ I such that |Ax| < n, then |A| ≥ 4q + 1.

Proof. We have |Ax| ≥ n + 2. There must exist y ∈ I abundant in Ax (for if y
is dominated by some z, then z would also be abundant in Ax and we would then
choose z instead of y). Hence y must be in at least (n+2)/2 sets of Ax. Since y ∈ I,
y must be in q − 2 sets of C \ {Cx}. Also y ∈ S. So we have

n + 2

2
+ (q − 2) + 1 ≤ n

which yields |A| ≥ 4q + 1.

Theorem 2. If |Ax| = n for all x ∈ I, then |A| ≥ 4q + 1.
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Figure 1: Representation of A

Proof. Let y ∈ I and y ∈ Hx. If Dx∩Dy �= ∅, then we immediately have |A| ≥ 4q+3
from Lemma 3. So let Dx ∩ Dy = ∅. Then |Axy| = q (since |{S}| = 1, |C| = q,
|Dx| = |Dy| = n− q).

Since Axy is union closed, there must exist some z ∈ I abundant in Axy. We
choose z as the element with maximum abundance in Axy. If z is present in all q sets
of Axy, then we have |Az| ≥ 2q (since z must be in q sets of C ∪ {S}). This yields
|A| ≥ 4q + 1.

So let z be present in at most q − 1 sets of Axy. Hence there must exist s ∈ I
present in Axy \ Az. Consequently, there exists Gs ∈ Axy such that s ∈ Gs and
z /∈ Gs. Since z is maximal in Axy, s must also be present in at most q − 1 sets of
Axy. So there must exist Gz ∈ Axy such that z ∈ Gz and s /∈ Gz. Also, since Axy is
union-closed, there exists Gzs ∈ Axy such that z ∈ Gzs and s ∈ Gzs. We summarize
this as follows.

z ∈ Gz and s /∈ Gz;

s ∈ Gs and z /∈ Gs;

s ∈ Gzs and z ∈ Gzs;

where Gz, Gs, Gzs ∈ Axy.

Our set-up is depicted in Figure 1.

By the hypothesis of this theorem, we have |Ax| = |Ay| = |Az| = n. Therefore,
applying Lemma 4, we have the following three sub-cases:
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(a) z ∈ Hx:

We consider the family Asy. There exists a basis Bx, where x ∈ Bx and s /∈ Bx,
since s cannot dominate x. Since Dx ∩ Dy = ∅, y /∈ Bx. Hence Bx ∈ Asy. Since
Gz ∈ Axy, y /∈ Gz. Also s /∈ Gz. Therefore Gz ∈ Asy.

Since Bx and Gz are in Asy, we have x, z ∈ Esy. From Lemma 6, Esy /∈ C. Hence
Esy ∈ Dx ∩ Dz. Thus, since Dx ∩ Dz �= ∅ and z ∈ Hx, we have |A| ≥ 4q + 3 from
Lemma 3.

(b) z ∈ Hy:

The proof is similar to case (a), but with the roles of x and y reversed.

(c) z ∈ Lx and z ∈ Ly:

Here z ∈ Lx implies x ∈ Lz , since |Ax| = |Az| = n. Similarly, since z ∈ Ly, we
have y ∈ Lz. Therefore, we have x, y /∈ Hz from Lemma 4. Since x, y /∈ Hz, let r ∈ I
be an element of Hz.

If r is present in any set of Axy, then we have a set Grz ∈ Axy containing both r
and z, since Axy is union-closed. Since Grz /∈ C, we have Grz ∈ Dr ∩ Dz. Therefore
we have |A| ≥ 4q + 3 from Lemma 3, since r ∈ Hz and Dr ∩ Dz �= ∅.

Let us assume that r is not in any sets of Axy. So Dr ⊂ Dx ∪Dy. Since r cannot
be dominated by s, there must exist a basis Br such that r ∈ Br and s /∈ Br.

If Br ∈ Dx, then Br ∈ Asy (because y /∈ Br, since Dx ∩Dy = ∅). Also, Gz ∈ Asy.
So z, r ∈ Esy /∈ C.

If Br ∈ Dy, then Br ∈ Asx (because x /∈ Br, since Dx ∩Dy = ∅). Also, Gz ∈ Asx.
So z, r ∈ Esx /∈ C.

So at least one of Esx and Esy must be present in Dr ∩ Dz. Therefore, we have
|A| ≥ 4q + 3 from Lemma 3, since r ∈ Hz and Dr ∩ Dz �= ∅.

2.3 The case when Cx = S \ {x} for all x

In this case, no element can be dominated by any other element. Thus all elements
must be present in q − 1 sets of C.
Theorem 3. If there exists x such that |Ax| < n, then |A| ≥ 4q + 1.

Proof. The proof is similar to that of Theorem 1. We have |Ax| ≥ n+2. Let y ∈ Hx.
So y must be in at least (n + 2)/2 sets of Ax. It must be in q − 2 sets of C \ {Cx}.
Also, y ∈ S. So (n+ 2)/2 + (q − 2) + 1 ≤ n, which yields |A| ≥ 4q + 1.

Theorem 4. If for all x, |Ax| = n, then |A| ≥ 4q + 1.

Proof. Since |Ax| = n for all x, no element can dominate any other element. There-
fore I = S. Since, in the proof of Theorem 2, we did not consider any element from
J , this just becomes a special case of Theorem 2.
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Corollary 1. The minimal counter-example to Frankl’s conjecture must contain at
least 53 sets.

Proof. Combining Theorems 1, 2, 3 and 4, we obtain |A| ≥ 4q+1. Since it is shown
in [4] that q ≥ 13, we have |A| ≥ 53.
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