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Abstract

In this paper we investigate a parameter of graphs, called the circular altitude,
introduced by Peter Cameron. We show that the circular altitude provides a
lower bound on the circular chromatic number, and hence on the chromatic
number, of a graph and investigate this parameter for the iterated Mycielskian
of certain graphs.
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1 Introduction

The linear altitude α(G) of an undirected and simple graph G is the largest guaranteed
length of a monotonic path in any vertex-ordering. We will use the convention that the
length of a path in G is the number of vertices in the path. Hence, α(G) is the largest
integer k such that for any ordering of the vertices of G there is a monotonic path with
k vertices. It turns out that α(G) is equal to the chromatic number χ(G) of G:

• If we have a k-colouring of G, then ordering the vertices according to their colour,
and then vertices within the same colour class arbitrarily, produces a linear ordering
where every monotonic path has length at most k, hence α(G) � χ(G);

• Conversely, suppose we have a linear ordering of the vertices of G. Then for every
vertex v, assign a colour c(v) by taking the length of a largest increasing path ending
at v. This assignment produces a proper colouring, hence, α(G) � χ(G).

Peter Cameron proposed an analogue of the linear altitude for circular orderings [1].
Given a circular ordering σ of the vertices V (G) of G (that is, a one-to-one assignment of
V (G) to the vertices of a directed cycle), we say that a cycle u1, u2, . . . , un is monotonic for
σ if u1, . . . , , un, u1 appear in this circular order in σ. The circular altitude of a graph G,
denoted α◦(G), is defined as the largest k such that every circular ordering of the vertices
of G contains a monotonic cycle of length at least k. For this definition we consider edges
as monotonic cycles of length two, so the circular altitude is at least 2 for any graph with
at least one edge.

If H is a subgraph of G, then any circular ordering of V (G) induces a circular ordering
of V (H), so α◦(G) � α◦(H). In particular, α◦(G) � ω(G), the clique number of G. Now
suppose that U1, . . . , Us is a partition of V (G) into stable sets (also known as cocliques or
independent sets) and consider any circular ordering of V (G) having first all the vertices
in U1, then all the vertices in U2, and so on appearing in this order. Every monotonic
cycle for this ordering may use at most one vertex for each of the Ui’s, so α◦(G) � s. In
particular, α◦(G) � χ(G), the chromatic number of G. If α◦(G) is not 2, then we also
have α◦(G) � girth(G). We wish to investigate which graphs achieve the above bounds,
and whether there exist graphs G satisfying ω(G) < α◦(G) < χ(G).

Given a graph G, the Mycielskian of G, written M(G), is the graph defined as follows.
The vertex set of M(G) is defined to be

V (M(G)) = {w} ∪ {au | a ∈ V (G)} ∪ {av | a ∈ V (G)}.

(Note that here au and av are simply names for two copies of the vertex a.) The induced
subgraph on the vertices {av | a ∈ V (G)} is a copy of G. Vertex w is adjacent to all vertices
of the form au, and for every edge ab in G we add edges aubv and buav to M(G). For
example, M(K2) = C5 andM(C5) is the Grötzsch graph. We denote byMd(G) the graph
obtained from G by iterating this process d times (where M0(G) = G). This construction
was defined by Jan Mycielski in [4] and has the property that χ(M(G)) = χ(G) + 1 and
ω(M(G)) = ω(G). We are interested in graphs which satisfy ω(G) < α◦(G) < χ(G), and
Mycielskians provide promising examples. In fact, our first main result is the following.
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Theorem 1.1. Suppose G is nonempty with χ(Mr(G)) = t, where t is odd, and the
length of the shortest odd cycle of G (i.e., its ‘odd girth’) is strictly greater than t. Then
α◦(Mr(G)) < t.

As a corollary of Theorem 1.1, we obtain the following, where C2n+1 denotes an odd
cycle of length 2n+ 1.

Theorem 1.2. If n > r + 1, then ω(M2r(C2n+1)) = 2, α◦(M2r(C2n+1)) = 2r + 2, and
χ(M2r(C2n+1)) = 2r + 3.

Our second main result concerns the relation between the circular altitude and the
circular chromatic number of a graph. The circular chromatic number χc(G) is often
considered to be the most natural generalisation of the chromatic number of a graph G.
Briefly, it is the infimum of the magnitudes of the circular colourings of G (see Section
3 for definitions) and it satisfies the bound χ(G) − 1 < χc(G) � χ(G) (see [8, Theorem
1.1]). In this paper, we show that:

Theorem 1.3. α◦(G) � χc(G).

We should emphasise that the value of α◦(G) is not dependent on other known lower
bounds for χc(G). Conversely, our proofs of Theorems 1.1 and 1.2 are explicit and do not
depend on the connection between the circular altitude and circular chromatic number.

In the theory of circular colouring, one prominent open problem is the determination
of χc(M3(K6)), the circular chromatic number of the third Mycielskian of the complete
graph K6. The Zig-zag Theorem (discussed in Section 5) implies that α◦(M3(K5)) =
α◦(M2(K6)) = 8 and so 8 � α◦(M3(K6)). On the other hand, χ(M3(K6)) = 9 and so

8 � α◦(M3(K6)) � χc(M3(K6)) � χ(M3(K6)) = 9.

After running trial computations by computer, we are confident in the following con-
jecture:

Conjecture 1.4. α◦(M3(K6)) = 9 and hence χc(M3(K6)) = 9.

On closer inspection, it appears that the circular altitude is more than just a surface
generalisation of the concept of linear ordering. Indeed, the connection with the circular
chromatic number and the surprising link between circular altitude and the very powerful
topological techniques of the Zig-zag Theorem (see Section 5) demonstrate its utility.
Circular altitude has also been recently studied by Shaebani [5].

2 Basic definitions and notation

Let G be a graph. For vertices a, b the notation a ∼ b means that vertices a, b are adjacent
in G, while we indicate the complement of G as G.

Given a linear ordering of V (G) we may obtain a proper colouring of V (G) as follows:
for every vertex v ∈ V (G), the colour of v is the number of vertices in a longest monotonic
path ending at v. We call such colouring the colouring induced by the linear ordering.
The following result follows easily from this definition.
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Remark 2.1. If c is the colouring of V (G) induced by a linear ordering of V (G) and u
is adjacent to v in G, then c(u) < c(v) if and only if u precedes v in the linear ordering.

Consider a circular ordering u1, u2, . . . , un of V (G); for every ui, such a circular order-
ing induces two linear orderings of V (G) starting at ui, one as ui < ui+1 < · · · < un <
u1 < · · · < ui−1 and the other as ui < ui−1 < · · · < u1 < un < · · · < ui+1. For our
purposes it is irrelevant which one of the linear orderings we pick. The next result follows
from Remark 2.1.

Remark 2.2. Consider a circular ordering of V (G) and a linear ordering starting at
u ∈ V (G) induced by this circular ordering. Let c be the colouring of V (G) induced by the
linear ordering and suppose that C = {u1, . . . , uk} is a cycle of G with c(u1) < c(u2) <
· · · < c(uk). Then C is a monotonic cycle for the initial circular ordering.

3 Connection between circular altitude and circular chromatic
number

The circular chromatic number χc(G) of G is the infimum over all real numbers r such
that there exists a map from V (G) to a circle of circumference 1 with the property that
any two adjacent vertices map to points at distance at least 1/r apart along this circle.
An equivalent definition is given below in terms of circular colourings (see [8, Section 2]).

Definition 3.1. For positive integers p and q, with q � p, a colouring c : V (G) →
{1, . . . , p} of a graph G is called a (p,q)-colouring if for all adjacent vertices u and v one
has q � |c(u)− c(v)| � p− q. The circular chromatic number of G is defined as

χc(G) := inf

{
p

q
: there is a (p, q)-colouring of G

}
.

It is known for every graph G that χ(G) − 1 < χc(G) � χ(G) (see [8, Theorem
1.1]). Given the second definition/interpretation of χc(G), it seems like there should
be a connection between the circular altitude α◦(G) and the circular chromatic number
χc(G). Indeed, there is such a connection, as stated in Theorem 1.3: For every graph G,
α◦(G) � �χc(G)�.

Proof of Theorem 1.3. Let α◦(G) = t and let c : V (G) → {1, . . . , p} be any (p, q)-
colouring of G. By definition, for all u ∼ v, we have q � |c(u) − c(v)| � p − q. We
convert this colouring into a circular ordering. We start by creating a linear order, where
we start with all vertices with colour 1 (in any order among themselves), then we place
all vertices with colour 2, then all with colour 3, etc., until all vertices have been placed.
We turn this into a circular ordering by placing the very first vertex in our linear order
and placing vertices clockwise.

Since αo(G) = t, for some integer m � t, there are vertices v1, v2, . . . , vm such that
v1 ∼ v2, v2 ∼ v3, . . . , vm−1 ∼ vm, vm ∼ v1, and c(v1) < c(v2) < . . . < c(vm). By the
definition of (p, q)-colouring, for all 1 � i � m − 1 we have c(vi+1) − c(vi) � q, and so
c(vm)−c(v1) � (m−1)q � (t−1)q. On the other hand, by the definition of (p, q)-colouring,
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c(vm) − c(v1) � p − q. Hence (t − 1)q � p− q, and so α◦(G) = t � p/q. This is true for
any (p, q)-colouring, and so α◦(G) � χc(G). Since α◦(G) is an integer, we get the desired
result.

Remark 3.2. An acyclic orientation
−→
G of an undirected graph G is an assignment of a

direction to each edge that does not form any directed cycle. Every graph has an acyclic

orientation, such as those induced by linear orderings. Given such an orientation
−→
G and

a cycle C of G, denote by C+ the set of edges of C whose orientation in
−→
G agrees with

the direction of C (along a fixed transversal of C) and denote by C− the set of remaining
edges. By [3, Corollary 3.2],

χc(G) = min−→
G

max
C

{ |C|
|C+| ,

|C|
|C−|

}
.

Given a circular ordering of the vertices, one can induce a linear ordering and an acyclic
orientation. If α◦(G) � 3 and C is a monotonic cycle of length k in this circular ordering,
then

max

{ |C|
|C+| ,

|C|
|C−|

}
= k,

since there is exactly one backwards edge. This gives an alternate argument that α◦(G) �
χc(G), provided α◦(G) � 3.

Corollary 3.3. If α◦(G) > 2 then χc(G) � girth(G).

4 Criteria for χc(G) = χ(G)

We have the following immediate corollary of Theorem 1.3:

Corollary 4.1. If α◦(G) = χ(G), then χc(G) = χ(G).

Section 3 of [8] is all about conditions for when χc(G) = χ(G). In particular, one
result in [8] is the following.

Theorem 4.2 (Corollary 3.1 in [8]). If G is disconnected, then χc(G) = χ(G).

We extend the result of Theorem 4.2 to the circular altitude.

Proposition 4.3. If G is disconnected, then α◦(G) = χ(G).

Proof. Let A be the vertex set of a connected component of G, and let B = V (G) \ A.
We adopt the notation G[A] for the induced subgraph of G with vertex set A. Note that
since A is a connected component of G, for all vertices u ∈ A and v ∈ B, u ∼ v. From
this, it is immediate that if χ(G[A]) = r and χ(G[B]) = s, then χ(G) = r + s.

Now assume that we are given a circular ordering of the vertices of G. Choose two
vertices a, b in the ordering that occur consecutively such that a ∈ A, b ∈ B, and b comes
before a in the ordering if moving in the clockwise direction. We now induce a linear
ordering on the vertices by starting with the vertex a and continuing as in the circular



J. BAMBERG ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 357–368 362

ordering, ending at b. Note that since χ(G[A]) = r and χ(G[B]) = s, we have α(G[A]) = r
and α(G[B]) = s, and there exists a monotonic path PA (respectively PB) that uses only
vertices from A (respectively B) of length at least r (respectively at least s). We now
combine these two paths together. Since every vertex in A is adjacent to every vertex in
B, this creates one long monotonic path P of length at least r + s. If P begins with a
vertex of A and ends with a vertex of B (or vice versa), then P is actually a monotonic
cycle of length at least r + s in the ordering, and we are done. Otherwise, P begins and
ends with two vertices either from A or from B. If it is two vertices from A, then these
are both adjacent to the vertex b at the end of the ordering and we have a monotonic
cycle of length at least r+ s+1. If it is two vertices from B, then these are both adjacent
to the vertex a at the beginning of the ordering and we have a monotonic cycle of length
at least r + s + 1. In any case, this circular ordering has a monotonic cycle of length
at least r + s. Since r + s is the chromatic number of G (and upper bound for α◦(G)),
α◦(G) = χ(G), as desired.

Theorem 4.2 ([8, Corollary 3.1]) is implied by the following.

Theorem 4.4 ([8, Theorem 3.1]). Suppose χ(G) = m. If there is a proper nonempty
subset A of V (G) such that for any m-colouring c of G, each colour class X of c is either
contained in A or is disjoint from A, then χc(G) = χ(G).

It was noted in [8] that, at that time, all other known sufficient conditions for a
graph G to satisfy χc(G) = χ(G) were easily derived from Theorem 4.4. (Since its
publication, however, there have been other sufficient conditions, such as the topological
criteria introduced in [6].) Corollary 4.1 is a legitimately distinct sufficient condition from
Theorem 4.4 and the topological methods. For instance, as noted on [8, p. 378], for any
integers n � 1 and g � 3, there is a graph of girth at least g that is uniquely n-colourable.
For this graph, Theorem 4.4 implies that the circular chromatic number is n, but Corollary
4.1 is useless if g > n. On the other hand, if G = M(K3) is the Mycielskian of K3 (see
Figure 1) then G has vertex set {au, av, bu, bv, cu, cv, w} and edge set

{avbv, avcv, bvcv, aubv, aucv, buav, bucv, cuav, cubv, auw, buw, cuw}.

By a corollary of the Zig-zag Theorem in [6] (see Theorem 5.7 in the next section),
α◦(G) = 4, and hence α◦(G) = χc(G) = χ(G) = 4. (It should be noted that one can prove
that α◦(G) = 4 for this graph by elementary methods as well.) On the other hand, there
exist colourings c1 : V (G) → {1, 2, 3, 4} and c2 : V (G) → {1, 2, 3, 4} given by c1(w) = 1,
c1(a

v) = c2(a
u) = 2, c1(b

v) = c1(b
u) = 3, c1(c

v) = c1(c
u) = 4, and c2(w) = c2(a

v) = 1,
c2(a

u) = c2(b
u) = c2(c

u) = 2, c2(b
v) = 3, c2(c

v) = 4, which demonstrate that G does not
satisfy the hypotheses of Theorem 4.4. This leads to the following “natural” question:

Can Corollary 4.1 be used to show that χc(G) = χ(G) for any new graphs G?

For instance, one such open case is G = Mt(Kn) where n � t + 2 and n + t is odd (the
even case was settled by Simonyi and Tardos in [6]).
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Figure 1: M(K3)
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5 The circular altitude of iterated Mycielskians

First we need to introduce some notation which will be convenient for dealing with iterated
Mycielski graphs. Recall that the Mycielskian M(G) of a graph G is the graph obtained
from G by adding a vertex u′ for every u ∈ V (G), plus an extra vertex w so that every
vertex u′ is adjacent to the neighbours of u and to w (and no further edges are added to
the graph). Iterating this process i times we obtain the graph Mi(G).

Given a graph G we iteratively define (for every i � 1) the vertex set of Mi(G) to be

V (Mi(G)) = {wi} ∪ {au | a ∈ V (Mi−1(G))} ∪ {av | a ∈ V (Mi−1(G))},
where the vertices of the form av correspond to the original vertices of Mi−1(G), vertex
au is the one paired-up with av and wi is the vertex adjacent to all the other new vertices.
From the definition of Mycielskian, in this notation we have the following adjacency rules:

(R1) For any vertex a ∈ V (Mi−1(G)), wi ∼ au and wi �∼ av.

(R2) For any vertices a, b ∈ V (Mi−1(G)), au �∼ bu.

(R3) For any vertices a, b ∈ V (Mi−1(G)), av ∼ bv ⇔ av ∼ bu ⇔ a ∼ b.

We take the convention that each u or v added to the exponent in an iteration fills the
rightmost position of the word in the exponent, e.g., if c ∈ V (G) then (cu)v = cuv ∈
V (M2(G)).

So, for example, if G ∼= K2, with vertex set {a, b}, then M(G) will be the 5-cycle with
vertex set {au, av, bu, bv, w1} and edge set

{avbv, aubv, buav, auw1, b
uw1}.

The vertices of M2(G) are w2, w
u
1 , w

v
1 together with all vertices of the form aW and bW ,

for all choices of a word W of length two in u, v. It turns out that M2(G) is isomorphic
to the Grötzsch graph.
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We will add the following conventions: when used in exponential notation, [m] refers
to an arbitrary word of length m in u, v, and we will always read words from right to left.
So, for instance, [r − i]u[i− 1] is an arbitrary word in u, v that has length r and has a u
in the ith position.

Lemma 5.1. Let W1 and W2 be any two distinct words of length r − k in u, v. Then:

(i) If aW1 ∼ bW2 in Mr(G), then a ∼ b in Mk(G), unless a or b is a “w” vertex. In
particular, if k = 0, i, j ∈ V (G), and iW1 ∼ jW2, then i ∼ j.

(ii) If k = 0 and, for some 1 � s � r, both W1 and W2 have a u in position s, then iW1

is not adjacent to jW2 in Mr(G), for every i, j ∈ V (G).

(iii) wW1
k is not adjacent to wW2

k .

Proof. By induction, the adjacency rules R1–R3 imply (i) and (ii). Finally (iii) follows
from the definition of the Mycielski construction (no vertex is ever adjacent to a copy of
itself) and rules R1–R3 for adjacency.

For ease of notation, we will letM0(G) = G. Given a (linear) ordering of the vertices of
Mr(G), r � 1, the vertices of Mr−1(G) correspond to the vertices in iW , where i ∈ V (G)
and W is a word whose rightmost letter is v, and wU

j , where j � r − 1 and U is a word
of length r− j whose rightmost letter is v. This subset of vertices induces an ordering of
Mr−1(G). Based on this observation, we will call this ordering of Mr−1(G) the ordering
of Mr−1(G) inherited from the ordering of Mr(G). Note that, starting with an ordering
ofMr(G), we may iterate this process until we arrive at an induced order forM0(G) = G.
This order corresponds to a colouring c of the original graph, and we refer to this as the
colouring of G induced by the ordering of Mr(G).

We now present a convention for ordering the vertices of Mr(G), where G is any
graph. We order the words of length r in u, v lexicographically by reading from right to
left and assuming that v < u. (So uvv < vuv < uvu, for instance.) A powerful ordering
of Mr(G) is a linear ordering of the vertices satisfying all of the following five conditions:

(P0) The colouring c of G induced by the powerful ordering of Mr(G) is a χ(G)-colouring
of G.

(P1) For any i, j ∈ V (G) and any fixed word W of length r in u, v, if iW occurs before
jW in the ordering, then c(i) � c(j).

(P2) For any words W1 and W2 of length r in u, v and any i, j ∈ V (G), if W1 < W2

lexicographically, then iW1 occurs before jW2 in the ordering.

(P3) For all 1 � i � r and all j ∈ V (G), w
[r−i]
i occurs before j[r] in the ordering.

(P4) For all i < j, w
[r−i]
i occurs before w

[r−j]
j in the ordering.

Lemma 5.2. For any graph G there exists a powerful ordering of Mr(G).
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Proof. First, note that there is a linear ordering of the vertices of G that induces some
χ(G)-colouring, by [2, Proposition 1]; take c to be such a colouring. It is easy to obtain
a powerful ordering of V (Mr(G)) inducing c as follows. First place all the vertices of

the form w
[r−1]
1 (in any order), then all vertices of the form w

[r−2]
2 (in any order) and so

on up to vertex wr. This guarantees that properties P3 and P4 of powerful orderings
are satisfied. Next, order all words of length r in u, v lexicographically (as above), as
W1 < W2 < · · · < Wm. Then in the powerful ordering we place, after vertex wr, all
vertices iW1 for i ∈ V (G) in non-decreasing order of colour, i.e., iW1 comes before jW1 if
c(i) < c(j). This guarantees that P0 and P1 hold. Next we place in a similar fashion all
vertices of the form iW2 and so on, up to vertices of the form iWm (this guarantees that
P2 holds).

Lemma 5.3. Let i, j ∈ V (G) such that i ∼ j in G, and assume iW1 ∼ jW2 in Mr(G) for
words W1 and W2 of length r in u and v, where jW2 comes after iW1 in a powerful ordering.
If W1 has a u in the sth position, where s > 1, then for some integer k, 1 � k < s, W1

has a v in kth position and W2 has a u in the kth position.

Proof. Suppose not. First, by rules R1–R3, W1 and W2 cannot both have a u as the mth

letter for any 1 � m � r. Thus we may assume that the first s− 1 symbols of W2 are v,
and so W2 comes before W1 lexicographically. However, jW2 comes after iW1 , so this is a
contradiction to property P2 of powerful orderings. Hence the result holds.

Lemma 5.4. Suppose that the vertices of Mr(G) are arranged in a powerful ordering.

Then any monotonic path in the ordering beginning at w
[r−i]
i has length at most r+2− i.

Proof. Let P be such a path, and assume that w
[r−j]
j is the last vertex in P that is a w

vertex. By rules R1–R3, the next vertex in P is of the form aW0
0 for some a0 ∈ V (G) and

W0 = [j − 1]u[r − j]. By Lemma 5.3, there can only be r − j additional vertices in P :
the vertex after aW0

0 in the path is of the form aW1
1 , where W1 contains a u in one of the

first (r − j) positions (reading right to left) where W0 contained a v; similarly, a vertex
aW2
2 after aW1

1 in the path P is such that W2 contains a u in some earlier position still
where W1 contains a v, etc. There are only r − j positions before the forced u in W0, so
this means there are at most r− j + 1 vertices in P after the last w vertex in P . On the
other hand, any w

[r−k]
k occurring before w

[r−j]
j in P necessarily has k < j by Lemma 5.1

and by property P4 of powerful orderings. Proceeding similarly, we find that there can
be at most j− i vertices before w

[r−j]
j in P . Altogether, this is a total of at most r+2− i

vertices in P , as desired.

Lemma 5.5. Let G be any graph that has an edge, and suppose χ(Mr(G)) = t. In any

powerful ordering of the vertices of Mr(G), there are no vertices of the form w
[r−i]
i in any

monotonic paths of length t or longer.

Proof. Since we have a powerful ordering, any monotonic path containing a vertex of the
form w

[r−i]
i must begin at a vertex of the form w

[r−j]
j (by P3), and, by Lemma 5.4, this

path has length at most r + 1. On the other hand, χ(G) = t − r � 2, since G contains
an edge and χ(M(G)) = χ(G) + 1. Hence any monotonic path containing a vertex of the
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form w
[r−i]
i has length at most r + 1 < r + 2 � t, and so no monotonic path of length t

can contain a vertex of the form w
[r−i]
i .

Lemma 5.6. If G is any graph containing an edge and χ(Mr(G)) = t, then a powerful
ordering of the vertices of Mr(G) contains no path of length longer than t.

Proof. We proceed by induction on d (at most r), where the induction statement is
that any powerful ordering of Md(G) contains no monotonic path of length greater than
t− r+ d. First, since a powerful ordering groups the vertices of M0(G) by colour class of
an induced proper χ(G)-colouring c of G, by P0, we have that G = M0(G) contains no
monotonic path of length longer than t− r.

Now assume for some 0 � d � r−1 that a powerful ordering of the vertices of Md(G)
contains no monotonic path of length greater than t − r + d and suppose that there is
a powerful ordering of the vertices of Md+1(G) that contains a monotonic path P of
length m > t − r + d + 1. By Lemma 5.5, P cannot contain any vertex of the form
w

[d+1−i]
i since χ(Md+1(G)) = t − r + d + 1. Let the vertices of P be iW1

1 , iW2
2 , . . . , iWm

m

when taken monotonically in the powerful ordering, where each word Wi has length d+1.
By P2, Wi � Wj in the lexicographic order for all i < j. Since i

Wm−1

m−1 ∼ iWm
m , either

the rightmost letter of Wm is v, in which case the rightmost letter of all Wi is v, or the
rightmost letter of Wm is u, in which case the rightmost letter of Wm−1 is v by rule R2,
and hence the rightmost letter of all Wi is v for all i � m − 1 by lexicographic order.
Define W ′

i to be the word of length d obtained by deleting the final letter v from each

Wi, i � m − 1. Note that, since i
Wj

j ∼ i
Wj+1

j+1 and the rightmost letter of Wj is v for

1 � j � m − 1, by the definition of the Mycielskian, i
W ′

1
1 , . . . , i

W ′
m−1

m−1 is a path in Md(G).
Moreover, by definition of powerful order, lexicographically W ′

1 � W ′
2 � . . . � W ′

m−1, and

so i
W ′

1
1 , . . . , i

W ′
m−1

m−1 is in fact a monotonic path of length m− 1 > t− r + d in the powerful
ordering of Md(G) inherited from the powerful ordering of Md+1(G), a contradiction to
the inductive hypothesis. Therefore, a powerful ordering of the vertices ofMr(G) contains
no path of length longer than t, as desired.

We can now prove Theorem 1.1, which we restate here for convenience.

Theorem 1.1: Suppose G is nonempty with χ(Mr(G)) = t, where t is odd,
and the length of the shortest odd cycle of G is strictly greater than t. Then
α◦(Mr(G)) < t.

Proof of Theorem 1.1. Suppose on the contrary that α◦(Mr(G)) � t. Then there exists
a monotone cycle of length at least t in any circular ordering of V (Mr(G)); in particular,
in a powerful ordering of the vertices of Mr(G), which exists by Lemma 5.2, there must
exist a monotonic path P of length at least t such that the first and last vertices are
adjacent. By Lemma 5.6, P has length exactly t, and by Lemma 5.5, P contains no
vertex of the form w

[r−j]
j . Let the vertices of P be iW1

1 , . . . , iWt
t when taken monotonically

in the powerful ordering. (Note that the vertices i1, . . . , it are not necessarily distinct.)
By Lemma 5.1, we see that this implies that i1 ∼ i2 ∼ · · · ∼ it ∼ i1 in G, and, in fact,
(i1, i2, . . . , it, i1) is a closed walk of length t in G. Since a closed walk of odd length must
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contain an odd cycle, and the length of the shortest odd cycle of G is strictly greater than
t, we have a contradiction. Therefore, α◦(Mr(G)) < t.

The following is a consequence of the Zig-zag Theorem in [6]. We use it to prove a
corollary to Theorem 1.1 and also Theorem 1.2.

Proposition 5.7. Let G ∼= C2n+1 and c be an arbitrary proper colouring of Mr(G) by an
arbitrary number of colours, where the colours are linearly ordered. Let t = χ(Mr(G)) =
χ(G)+r. Then Mr(G) contains a complete bipartite subgraph K� t

2
�,� t

2
� such that c assigns

distinct colours to all t vertices of this subgraph and these colours appear alternating on
the two sides of the bipartite subgraph with respect to their order.

Proof. By [6, Proposition 4] (the proof of which is attributed to Stiebitz [7]), Mr(C2n+1)
is strongly topologically t-chromatic and hence, by [6, Equation (1)], also topologically
t-chromatic. Thus, the result follows from the Zig-zag Theorem in [6].

Finally, we prove Theorem 1.2 below.

Proof of Theorem 1.2. Let t = 3 + 2r be the chromatic number of M2r(C2n+1). First,
ω(M2r(C2n+1)) = 2 as M2r(C2n+1) has no triangles. Consider any circular ordering of the
vertices of M2r(C2n+1). Pick any linear ordering induced by the circular ordering, and
let c be the colouring induced by this linear ordering. Then by Proposition 5.7, there is
a monotonic cycle of length t− 1 = 2r+2 in the circular ordering of M2r(C2n+1). Hence
α◦(M2r(C2n+1)) � 2r + 2. By Theorem 1.1,

α◦(M2r(C2n+1)) < χ(M2r(C2n+1)) = 2r + 3.

The result follows.

Remark 5.8. Theorem 1.2 can also be proved with the following argument: by [8, Corol-
lary 4.1], χc(C2n+1) = 2 + 1/n. By applying both [8, Theorem 4.3] and Theorem 1.3, we
see that α◦(M2r(C2n+1)) � χc(M2r(C2n+1)) < χ(M2r(C2n+1)). Combined with Proposi-
tion 5.7, the result follows.
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