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Abstract

Let G be a graph. An independent dominating set of G is a subset
D C V(G) such that no two vertices in D are adjacent, and every vertex
of G either belongs to D or is adjacent to a vertex in D. The size of a
smallest independent dominating set of G is the independent domination
number, i(G). The graph G is i-critical if i(G — ) < i(G) for all vertices
x, and is i-bicritical if (G — {x,y}) < i(G) for all 2-subsets of vertices
{z,y}. It is shown that i-bicritical graphs differ structurally from ~-
bicritical graphs, which are those in the corresponding collection defined
with respect to the domination number. Several methods of constructing
i-bicritical graphs from other graphs are described. Conditions that must
be satisfied by the constituent graphs in order for the resulting graph to
be i-bicritical are given. Some of these graphs are also i-critical.
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1 Introduction

Let G = (V, E) be a simple graph with vertex set V' = V(G) and edge set E = E(G).
A subset D C V(G) is called an independent dominating set of the graph G if it is
both a dominating set and an independent set. The minimum cardinality among all
independent dominating sets of G is the independent domination number, i(G). An
independent dominating set of minimum cardinality is called an i-set.

For a vertex v € V(G), the number (G — v) may be greater than, less than,
or equal to i(G). A graph G is independent domination critical, or i-critical if
i(G —v) < i(G) for every v € V(G). More generally, for an integer ¢ > 1, a graph
G is (i,t)-critical if i(G — §) < i(G) for any S C V(G) with |S| = t. Independent
domination critical graphs are (i, 1)-critical graphs. For surveys about independent
domination and independent domination critical graphs, see [9, 11].

In this paper we study (4, 2)-critical graphs, which we refer to as i-bicritical graphs.
These were first considered by Xu, Xu, and Zhang [15], who described some of their
basic properties and gave a construction that produces a new ¢-bicritical graph from
a graph which is both i-critical and ¢-bicritical. Examples of i-bicritical graphs given
in [15] include K, ., K, 41 and the Cartesian product K,,00K,,, where n > 3 in each
case. The graph G shown in Figure 1 can also be seen to be ¢-bicritical.

Figure 1: An i-bicritical graph.

Bicriticality for domination was first studied in [2]. We shall reference these
results, in context, throughout this paper. The (v, t)-critical graphs, defined analo-
gously to the (4, t)-critical graphs, were introduced by Mojdeh, Firoozi, and Hasni
[13]. The (v, 1)-critical graphs are the y-critical graphs. The (v, 2)-critical graphs are
commonly referred to as 7y-bicritical graphs. Constructions of bicritical graphs with
edge connectivity 2 can be found in [3]. It is easy to observe that if G is i-bicritical
and 7(G) = i(G), then G is 7-bicritical. For each n > 3, the Cartesian product
K,0K, is an example of such a graph. The (v, k)-critical graphs have been further
studied in [12] and [7].

This paper is organized as follows. Notation, terminology and basic properties
of ¢-bicritical graphs are reviewed in the next section. It is shown that i-bicritical
graphs have different structural properties than ~-bicritical graphs. In particular,
they may have cut vertices or cut-edges. In Section 3 we characterize the i-bicritical
graphs with independent domination number 2, and show that for each £ > 4 and
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every graph G there exists an i-bicritical graph H with ¢(H) = k such that G is
an induced subgraph of H. When i(G) > 4 the graph H can be chosen so that
i(G) = i(H). When i(G) = 3 it is an open question whether there exists such an
H with i(H) = 3. In the remaining sections we consider constructions of i-bicritical
graphs using the operations of disjoint union, join, coalescence, identification on a
subgraph, and wreath product.

2 Notation, terminology and basic properties

Definitions and notation for graphs and domination are followed from [9, 10], and
[14].

For a set of vertices S C V(G), (S) denotes the subgraph of G induced by the
vertices in S. For a set S C V(G), G — S is the graph (V(G) — S) and for a vertex
veV(G), G—wvis (V(G) — {v}). For a vertex x € V(G), the open neighbourhood,
Ng(z), is the set {y | zy € E(G)}, and the closed neighbourhood, N¢[x], is the set
N¢lz] = Ng(z) U {x}. Analogously, for a set S C V(G), the open neighbourhood of
S, Ng(9), is the set {z | zy € E(G) for some y € S}, and the closed neighbourhood
of S, Ng|[S], is the set Ng[S] = Ng(S)US. When the graph G is obvious from
context, we simply write N(z), N[z], N(S), and N[S].

Let G; and Gy be graphs. The union of G1 and G4, denoted by G U G, is the
graph with vertex set V(G; U G2) = V(G1) U V(G3) and edge set E(G; U Gg) =
E(G1) U E(Gs). Note that the graphs G; and G5 may have vertices or edges in
common. For k£ > 3, the union of the graphs Gi,Gs,...,Gy can be recursively

defined by
k k—1
UJéi= (U GZ) LG
i=1 i=1

The operation of disjoint union of graphs corresponds to the union of disjoint graphs.

Let D be a subset of vertices of a graph G. We say that D dominates a vertex v
if either v € D or v is adjacent to a vertex in D. For a set of vertices S C V' we say
that D dominates S if it dominates every vertex of S. The set D is a dominating set
if it dominates V. The domination number of G, v(G), is the smallest cardinality of
a dominating set of G.

Let G be a graph. We identify the following three disjoint subsets whose union
is V:

() Vi = {0:i(G —v) > i)}
(i) Vi ={v:i(G—v) =i(@)};
(iii) V7 ={v:i(G—v) <i(G)}.

The set V? is the set of i-stable vertices, and the set V.~ is the set of i-critical vertices.

A graph is i-critical if and only if V. = V7. If G is i-critical and i(G) = k we say

that G is k-i-critical. The corresponding concepts for the domination number, ~, are

defined similarly. Notice that the cycles Cy and C7 are both i-critical and ~v-critical.
The following properties of i-bicritical graphs are proved in [15].
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Theorem 2.1. [15] Let G be an i-bicritical graph with at least two vertices. Then,
(a) i(G) =2 <i(G = {z,y}) <i(G) - 1;
(b) for any vertex v, i(G) — 1 < i(G —v) < i(G);
(c) if i(G —v) =i(G), then G — v is i-critical;
(d) if x,y € V are such that i(G — {z,y}) = i(G) — 2, then d(x,y) > 2;
(e) G has no vertex of degree 2;

(f) G is not a tree.

Statements (a), (b) and (c) above follow from the general observation that, for
any graph G and S C V(G), i(G — S) > i(G) — |S|. To see that both extremes
can occur in the inequality in (a), consider K, and K, ,4+i. The graph K, ,+1 also
demonstrates that both extremes can occur in the inequalities in (b). Statement (e)
can be seen as the i-bicritical equivalent of the result that a ~-bicritical graph can
not have a vertex of degree 1 [1]. In fact, a connected 7-bicritical graph must have
0 > 3, v > 3 and edge connectivity at least 2. To see that i-bicritical graphs can
have cut vertices and cut edges, consider the graph constructed from K34 by adding
a new vertex and joining it to one of the vertices in the independent set of size 4.

Graphs with the property that i(G — {z,y}) = i(G) — 2 for any two independent
vertices x and y are called strongly i-bicritical graphs. These are studied in detail in
[5]. They have more structure than i-bicritical graphs. For example, if G is strongly
i-bicritical then G is 2-connected and has minimum degree 6 > 3.

We now establish several other properties of i-bicritical graphs.

Proposition 2.2. If G is i-bicritical, then there does not exist v € V(G) such that
(N(v)) has Ky ,,,m >0, as a spanning subgraph.

Proof. Suppose G is i-bicritical and let v € V(G) such that (N(v)) has K, as
a spanning subgraph. Let {vy,v2} be the vertices in the independent set of size 2
in this copy of K, ,, and let D be an i-set of G — {vy,v2}. If there is a vertex x
with € (N[v] — {vy,v2}) N D, then D is also an independent dominating set of
G, a contradiction. If (N[v] — {v1,v2}) N D = 0, then D does not dominate v, a
contradiction. The result follows. U

Proposition 2.3. If G is connected and i-bicritical, then at most one verter of G
has a neighbour of degree 1. Furthermore, if v € V(G) has a neighbour of degree 1,
then v is the only vertex of G which is not an i-critical vertex.

Proof. Suppose there exist u,v € V(G) such that u # v and both of these vertices
have a neighbour of degree 1. Let v’ be a degree 1 neighbour of u, and v’ be a degree
1 neighbour of v.

Since G is i-bicritical, G — {u,v} has an independent dominating set, D, of size
at most ¢(G) — 1. But v/, v are isolated vertices of G — {u, v}, hence v’,v" € D. Thus
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D is an independent dominating set of G, a contradiction. Therefore at most one
vertex of G has a neighbour of degree 1.

Suppose v € V(G) is the only vertex of G with a neighbour of degree 1, say
v'. As above, since v’ is in any independent dominating set of G — v, any such set
dominates G. Therefore, i(G — v) = i(G), so that v is not an i-critical vertex of G.

Now let z € V(G) — {v}. We claim that z is a critical vertex of G. Since G is
i-bicritical, (G — {v,x}) < i(G). Since v’ is in any independent dominating set of
G — {v, z}, any such set dominates G — x. This completes the proof. O

For n > 3, the graph constructed from K, ;1 by adding a new vertex and joining
it to one of the vertices in the independent set of size n+ 1 is a connected ¢-bicritical
graph with a vertex of degree 1 (also, see Figure 2). We do not know if it is possible
for an ¢-bicritical graph with at least 3 vertices to have more than one vertex of
degree 1.

Proposition 2.4. If G is connected and i-bicritical, then diam(G) < 2i(G) — 1.

Proof. We use the fact that 2¢—2 is a sharp upper bound on the diameter of connected
i-critical graphs [4]. Suppose G is a connected, i-bicritical graph. If G is i-critical,
then the above bound holds. Otherwise, by Theorem 2.1, there exists a vertex v such
that G — v is i-critical. If G — v is connected, then diam(G) < diam(G —v) +1 <
2i(G —v) —2+4+1=2i(G) —2+1 < 2i(G) — 1. Suppose G — v is disconnected.
Then each component is ¢-critical. Suppose Gi, G, ..., G are the components of
G — v and assume (G, Gy are the components with the largest and second largest
diameter. Then diam(G) < diam(G1)+ diam(G2)+2 < 2i(G1) —2+42i(Gy) —2+2 <
2i(G) — 2. O

The simplicity of the above proof suggests that the bound in the proposition is
weak. On the other hand, the diameter of a connected v-critical graph is at most
27 — 2 [6], and the diameter of a connected 7-bicritical graph is at most 2y — 3 [8].
Both bounds are sharp. The diameter of a strongly i-bicritical graph G is at most
3i(G)/2. The bound is not known to be sharp [5].

The following construction was introduced by Brigham et al. [2] as a way of
producing 7-bicritical graphs that are not 7-critical, and was considered by Xu, Xu,
and Zhang in the context of i-bicritical graphs [15]. For a graph G and a vertex v €
V(G), the ezpansion of G via v is the graph G}, with vertex set V(Gp,)) = V(G)U{v'}
(where v" ¢ V(G)) and edge set E(Gp)) = E(G) U {w' : u € Nglv]}. We note that,
for any graph G, i(G) = i(G) and GY,) is not i-critical since Gj,) —v' = G.

Proposition 2.5. [15] If G is i-bicritical and i-critical, then Gy is i-bicritical.

The previous proposition is formally identical to a statement about ~-bicritical
graphs from [2]. The graph in Figure 2 provides an example which shows that
the hypothesis that G is i-critical can neither be deleted, nor be replaced by the
hypothesis that (G — v) = i(G) — 1. Referring to the figure, note that G is i-
bicritical, i(G) = 4 and i(G — d) = i(G); hence G is not i-critical. The graph G, is
not 4-bicritical because i(Gy) = i(Gp,) — {v',d}) = 4.
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Figure 2: graphs G and Gy, from left to right

Graphs that are both i-critical and i-bicritical, for example K, , or K,[1K,,
where n > 3, have no i-stable vertices, that is, |[V°| = 0. For n > 3, the complete
bipartite graph K, ,,4; is an i-bicritical graph with |Vi0| =n+12>4.

The expansion construction is useful in creating é-bicritical graphs with |[V°| = 2.
If G is both i-critical and i-bicritical, then for any vertex v € V(G) the only stable
vertices of G are v and v'. To see this, let € V(G},)) — {v,v'}, and let D be an
i-set of G — x. Since D dominates v in G — x, D dominates v" in Gy — x. Thus D
is an independent dominating set of Gp,) — x and (G — x) < | D] < i(G) = i(Gy).

3 Characterizations

In this section we characterize the 2-i-bicritical graphs, and show that for £ > 4,
there is no characterization of the k-i-bicritical graphs in terms of a finite collection
of forbidden subgraphs. Characterizing the 3-i-bicritical graphs is an open problem.

The only 2-i-critical graphs are Ky, — F', where F' is a 1-factor [1]. We show that
there are only two 2-i-bicritical graphs.

Theorem 3.1. The only 2-i-bicritical graphs are Ko and the disjoint union K, U Ko.

Proof. Let G be a 2-i-bicritical graph. Since i(G) = 2, there exists an independent
dominating set {x,y} C V(G). Consider G — {z,y}. If i(G — {z,y}) = 0 then
G = K UK. If i(G—{z,y}) = 1, then there exists a vertex w € V(G —{x,y}) that
dominates G — {x,y}. In addition, w is not adjacent to at least one of x and y in
G, say y. Then zw € E(G) since {z,y} is an independent dominating set. Consider
G — {w,y}. Since i(G — {w,y}) = 1 there exists a vertex z € V(G — {w,y}) that
dominates G — {w, y}. Since w dominates G — {z,y}, z € N(w). Then zy ¢ E(G)
for otherwise i(G) = 1.

Suppose z # x. Consider G — {w, z}. Since i(G — {w, z}) = 1, there exists a
vertex v € V(G — {w, z}) such that v dominates G — {w, z}. Notice that v # y since
yxr ¢ E(G) and likewise v # x. Also, vw € E(G) since w dominates G — {x,y} and
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vz € E(G) since z dominates G — {w,y}. Then v dominates G and i(G) = 1, a
contradiction.

Suppose z = x and N(w)—{z} # 0. Consider G—{w, z}. Since i(G—{w,z}) =1
there exists a vertex v € V(G —{w, x}) that dominates G — {w, z}. Then vz € E(G)
since x = z dominates G — {w,y} and vw € E(G) since w dominates G — {z,y}.
Thus v dominates G and i(G) = 1, a contradiction. Therefore N(w) — {z} = () and
G= K1 U KQ. Ol

Ao used the following construction to prove that for any graph G there is a 3-i-
critical graph Hy = H;(G) such that G is an induced subgraph of H; [1]. Let G be a
graph. Construct H, = H,(G) from the disjoint union G’ = G'U K, as follows: For
each v € V(G'), add independent vertices {vy,v2} and all edges between V (G’ — v)
and {vy,v2}. Additionally, for all pairs z,y € V(G’) add all edges between {z1,xs}
and {y1,y2}. Then i(H;) = 3, the graph H; is 3-i-critical, and G is an induced
subgraph of Hj.

It can be seen from considering G = K5 that H; may not be i-bicritical. We now
use a similar construction to obtain a similar result for ¢-bicritical graphs.

Let G be a graph. For j > 1, let H; = H;(G) be the graph constructed from the
disjoint union G’ = GUK ;5 as follows: For each vertex v € V(G’) add independent
vertices I, = {v1,v2,...,v;11} and add all edges between V (G’ — v) and [,. Addi-
tionally, for all pairs z,y € V(G’) add all edges between I, and I,. Observe that
i(H;) = j + 2, and that G is an induced subgraph of H;.

Theorem 3.2. For j > 2, the graph H; is (j + 2)-i-critical and (j + 2)-i-bicritical.

Proof. Consider z € V(H;). If z € V(G'), then I, is an independent dominating set
of Hj — z. If z € I, for some v € V(G'), then {v} U (I, — {#}) is an independent
dominating set of H; — z. Thus i(H; — z) < j + 1 < i(H;) so H; is i-critical.

Now consider {z,y} C V(H;). If {z,y} C V(G'), then I, is an independent
dominating set of H; — {z,y}. If v € V(G') and y € I, for some z € V(G),
then I, — {y} is an independent dominating set of H; — {z,y}. If x € I, for some
u € V(G') and y € I, for some v € V(G'), then {u} U (I, — {z}) is an independent
dominating set of H; — {z,y}. Finally, if {z,y} C I, for some v € V(G’), then
{v} U (I, — {z,y}) is an independent dominating set of H; — {x,y}. It now follows
that H; is i-bicritical. O

Corollary 3.3. For any graph G and for all k > 4, there exists a k-i-bicritical graph
H such that G is an induced subgraph of H.

When i(G) > 4, the graph H can be chosen so that i(H) = i(G). Consequently,
for k > 4 there is no characterization of the k-i-bicritical graphs in terms of a finite
collection of forbidden subgraphs. It is unknown whether the same statement holds
when k£ = 3.

Since the characterization problem is difficult it is useful to know ways to pro-
duce i-bicritical graphs. In the next several sections, operations such as disjoint
union, join, and coalesence are used to present a collection of methods to construct
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1-bicritical graphs. Many of the constructions presented rely on the use of already
known ¢-bicritical graphs to create new ¢-bicritical graphs.

We conclude this section by noting that a slight strengthening of the statement
about i-critical graphs is also a consequence of Theorem 3.2.

Corollary 3.4. For any graph G and for all k > 3, there exists a k-i-critical graph
H such that G is an induced subgraph of H.

4 Construction of -Bicritical Graphs via Disjoint Union

k

Let Gy, Go, . . ., Gy be disjoint graphs. Note that i(|J G;) = >_ i(Gy). Also note that
=1 =1

K is both ¢-critical and ¢-bicritical.

Theorem 4.1. Let G1,Go, ..., Gy be disjoint graphs. For k > 2, the graph Ule Gy
is i-bicritical if and only if each of G1,Gs, ..., Gy is i-bicritical and at most one of
these graphs is not i-critical.

k
Proof. For convenience, let G = (J Gy.
=1

t=
Suppose G is i-bicritical. Any component of G which is isomorphic to K is
i-bicritical. Let 1 < j < k and suppose |V(G,)| > 2. Let {u,v} C V(G,). By
k
hypothesis, i(G — {u,v}) <i(G) — 1. But i(G — {u,v}) = > i(Gt)> +i(G; —
t=1,tj

{u,v})), so that
1< i(G) = i(G — {u,0}) = i(Gy) = i(G, — {u,v}).
Therefore G is i-bicritical. Therefore each of G, G, ..., Gy is i-bicritical.

Suppose u € V(G;) and v € V(G) for some 1 < j < £ < k. Then

k

i(G)—1>i(G —{u,v}) = ( Z i(GQ) +i(Gj —u) +i(Gy — v),

t=1,t4,¢

so that
1 <i(GQ) —i(G —{u,v}) =i(G;) —i(G; —u) +i(Gy) —i(Gy —v).

Since u and v are arbitrary vertices of GG; and G, respectively, at most one of these

graphs is not i-critical. Therefore at most one of G, G, ..., Gy is not i-critical.
For the converse, suppose each of Gy, Gs, ..., Gy is i-bicritical and at most one

of them is not ¢-critical. Without loss of generality, say G may not be i-critical.
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Consider G — {u, v} for some {u,v} C V(G). If u,v € V(Gy) for some 1 < j <k,
then

(G~ {u,v}) = (Zz ) ~ {u,0})

=Lt#j

= (@) _

If w e V(G;) and v € V(Gy) for some 1 < j < ¢ <k, then

i(G—A{u,v}) = ( Z i(GJ) +i(G; —u) + (G — )

t=1,t£4,0
< i(G) -1

since at most one of GG; and G is not ¢-critical. It now follows that G is i-bicritical. [

5 Construction of i-Bicritical Graphs via Join

Let G and H be disjoint graphs. Recall that the join of G and H, denoted G V H,
is the graph with vertex set V(G V H) = V(G) UV (H) and edge set E(GV H) =

k
E(G)UEH)U{uv : v € V(G)andv € V(H)}. The graph \/ Gy is defined

recursively by \/ Gy = (\/ Gt) V Gy. Note that i( \/ Gy) = min{i(Gy),1 <t < k}.

Note that, 1f G 2 Ki, then K7V G is not - blcrltlcal Thus, in studying the join
of graphs, we only consider graphs with at least two vertices.

Theorem 5.1. Let G1,Gs, ..., Gy be disjoint graphs with |V (Gt)| > 2 for each
k

t € {1,2,...,k}. Then \/ Gy is i-bicritical if and only if each of G1,Gs, ..., G}, is
t=1

1-bicritical and either

(a) i(G1) = i(G2) = -+ = i(Gg), and at most one of G1,Gs,...,Gy is not i-

critical, or

(b) i(Gy) — 1 = i(Gy) = -+ = i(Gy), the graph G1 has no edges, and each of
G, Gs, ..., Gy is i-critical.

Proof. Let G = \/ G.

Suppose G 1s i- blcrltlcal Suppose, without loss of generality, that G is not -
bicritical. Let {x,y} C V(G1) such that i(Gy — {z,y}) > i(Gy). Let D be an i-set
of G —{z,y}. By definition of join, D C V(G,) for some subscript j. If D C V(Gy),
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then (G — {z,y}) = i(G1 — {z,y}) > i(G1) > i(G), a contradiction. If D C V(Gj)
for j > 1, then i(G — {z,y}) = i(G;) > i(G), a contradiction. Therefore, each of
G1,Go, ..., G} is i-bicritical.

We claim that at most one of Gy, G, ..., Gy is not i-critical. Let z € V(G;) and
y € V(Gy), where j # (. Let D be an i-set of G — {z,y}. As above, D C V(G,)
for some subscript p. We show that, further, p € {j,¢}. Suppose not. Then i(G) <
i(Gp) = (G —{z,y}) <i(G) — 1, a contradiction. Thus, p € {j,¢}. If D C V(G;),
then i(G) — 1 > i(G — {z,y}) = i(G; — x). Therefore, G; is i-critical. Similarly, if
D C V(Gy) then G is i-critical. It follows that at least one graph among each pair
of graphs chosen from G4, G, ..., Gy is i-critical. This proves the claim.

We now claim that independent domination numbers of Gy, Gs, ..., G} differ by
at most one. Suppose, without loss of generality, that i(G1) > i(G2)+2. Let {z,y} C
V(G1) and let D be an i-set of G — {x,y}. As above, D C V(G,) for some subscript
p. It D C V(Gy), then i(G — {z,y}) = i(G1 — {z,y}) > i(G1) — 2 > i(Gs) > i(G),
a contradiction. If D C V(G;) for j > 1, then i(G — {z,y}) = i(G;) > i(G), a
contradiction. This proves the claim.

We claim that either i(G1) = i(Gy) = -+ = i(Gg) or i(G1) — 1 = i(Gy) =
-++ =1i(Gg). The statement follows immediately from the argument above if k = 2.
Suppose k > 3 and, without loss of generality, i(G1) + 1 = i(Gs) = i(G5). Let
r € V(Gq) and y € V(G3), and let D be an i-set of G — {z,y}. If D C V(Gy — x),
then i(Gy) — 1 > i(G) — 1 > i(G — {z,y}) = (G — x) > i(Gy) — 1, so that
i(G1) > i(G3), a contradiction. The case where D C V(G3 — y) similarly leads to
a contradiction. If D C V(G;) for j & {2,3}, then i(G — {z,y}) = i(G,) > i(G), a
contradiction. Since independent domination numbers of G, Gs, ..., G}, differ by at
most one, the claim is now proved.

Finally, we claim that if i(Gy) — 1 = i(G3) = - -+ = i(Gy), then G has no edges
and each of Gy, G, .. ., Gy is i-critical. Suppose that i(G1)—1 =i(Gy) = -+ = i(Gy)
and G, has at least one edge. Let zy € F(G;) and let D be an i-set of G — {z,y}.
Note that i(Gy — {z,y}) > i(G1) — 1 since zy € E(Gy). If D C V(G,), then
(G —Az,y}) = i(G1 — {z,y}) > i(G1) — 1 = i(Gy) = i(G), a contradiction. If
D C V(Gy) for j > 1, then i(G — {z,y}) = i(G;) > i(G), a contradiction. Hence Gy
has no edges.

Continuing the proof of the claim, suppose, without loss of generality, that G is
not i-critical. Let x € V(G;) and y € V(G3) such that i(Ga—y) > i(G2). Let D be an
i-set of G—{x,y}. It D C V(G), then i(G—{z,y}) = i(G1—x) = i(G1)—1 = i(Gy) >
i(@), a contradiction. If D C V(Gy), then i(G —{z,y}) = i(Ga —y) > i(Gs) > i(G),
a contradiction. If DN V(G;) # 0 for j > 2, then i(G — {z,y}) = i(G;) > i(G),
a contradiction. Therefore each of Gy, G, ..., Gy is i-critical. The claim is now
proved.

Now suppose each of Gy, Ga, .. .Gy is i-bicritical and either (a) or (b) holds. Let
{5} CV(G)

Suppose first that x,y € V(G;) for some j. If (a) holds, then suppose, without
loss of generality, that j = 1. Then i(G—{xz,y}) = i(G1 —{z,y}) < i(G1)—1 < i(Q).
Now suppose (b) holds. If j = 1, then since G; has no edges and i(G) = i(G1) — 1,
we have i(G —{z,y}) = i(G; —{x,y}) =i(G1) =2 =i(G) — 1 <i(G). If j > 1, then
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since i(G) = i(G;), we have i(G —{z,y}) <i(G,) —1=1i(G) — 1 <i(G).

Now suppose that x € V(G;) and y € V(Gy), where 1 < j < ¢ < k. If (a) holds,
then since at most one of Gy, Go,...,Gy is not i-critical we have i(G — {x,y}) <
min{i(G;—x),i(G,—y)} < i(G). Suppose (b) holds. Then, since ¢ > 1, i(G) = i(G),
and G is i-critical, we have i(G — {z,y}) = (G, — y) = i(Gy) — 1 < i(G).

It now follows that G is ¢-bicritical. O

6 Construction of :-Bicritical Graphs via Coalescence

Let G and H be disjoint graphs. Let € V(G) and y € V(H). The coalescence G
and H with respect to x and y is the graph G -, H with vertex set V(G -, H) =
(V(G) = {z}) U (V(H) — {y}) U {vy,}, where v,, ¢ V(G)U V(H), and edge set
E(G-,H)=FEG—-2)UE(H —y)U{v,w: w € Ng(x)UNg(y)}. If the context is
clear, or if the vertices x and y are not important, G - H is used instead of G -, H.

We first consider the independent domination number of G -, H and show that
i(G)+i(H) -1 <i(G -y H) <i(G)+i(H). When G -,, H is i-bicritical, either
possibility can arise. This is in contrast to the situation when G -,, H is i-critical.
In that case the only possibility is that i(G -, H) = i(G) +i(H) — 1. We are able to
give necessary and sufficient conditions for G'-,, H to be i-bicritical with independent
domination number i(G)+i(H) — 1, and necessary conditions for i-bicriticality when

i(G gy H) = i(G) +i(H).

Proposition 6.1. For any disjoint graphs G and H with x € V(G) and y € V(H),
we have i(G -y H) > i(G) +i(H) — 1.

Proof. Let S be an i-set of G -, H. Let S¢ = SNV(G) and Sy = SNV(H). Note
that v,,, the vertex arising from the identification of  and y, is in neither of these
sets as it is not an element of V(G) UV (H).

If v,y € S, then Sg U {z} is an independent dominating set of G and Sy U {y}
is an independent dominating set of H. Thus, i(G -,y H) = |S| = |S¢| + |Su| +1 >
i(G)—14+i(H)—1+1.

If v,y ¢ S, then a vertex of either G — x or H — y dominates v,,. Suppose a
vertex of G — x dominates v,,. Then Sg is an i-set of G and Sy is an i-set of H —y.
Since i(H —y) > i(H)—1, we have i(G -, H) = |S| = |S¢| + |Su| > i(G)+i(H) — 1.

Thus, in either case the inequality holds. O

Proposition 6.2. Let G and H be disjoint graphs with x € V(G) and y € V(H).
If x is an i-critical vertex of G ory is an i-critical vertex of H, then i(G -,y H) =
i(G)+i(H) — 1.

Proof. 1t suffices to prove the statement only in the case where x is an i-critical
vertex of G.

Suppose first that y is in an i-set of H. Then i(H) vertices of H, including y, can
be used to dominate (H — y) U {v,,}. Since x is an i-critical vertex of G, i(G) — 1
vertices of G can be used to dominate G'— x. Further, since x is i-critical in GG, none
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of these vertices of G are adjacent to x. Thus, i(G -, H) < i(G) +i(H) — 1, and
equality holds by Proposition 6.1.
Now suppose y is not in any ¢-set of H. Let Sy be an i-set of H. The vertex

Uyy is dominated by Sy and, again, i(G) — 1 vertices of G can be used to dominate
G —x. Thus, i(G -3y H) <i(G)+i(H)—1, and equality holds by Proposition 6.1. O

Propositions 6.1 and 6.2 imply that if one of the vertices of identification z or y
is i-critical in its corresponding graph, then (G -, H) = i(G) +i(H) — 1. It is not
necessary for either to be i-critical in its corresponding graph, however, as we now
show.

Proposition 6.3. Let G and H be disjoint graphs. If x is in an i-set of G and y is
in an i-set of H, then i(G -,y H) = i(G) +i(H) — 1.

Proof. Let Sg be an i-set of G such that © € Sg and let Sy be an i-set of H such
that y € Sy. Then S = (S¢ U Sy U{vyy}) \ {z,y} is an independent dominating set
of G-,y H. Thus, i(G -y H) =i(G) +i(H) — 1. O

We now consider the two remaining possibilities: neither x is an i-set of G nor y
is in an ¢-set of H, and one of these vertices is in an i-set of its graph and the other
is not.

Proposition 6.4. Let G and H be disjoint graphs. If x is not in any i-set of G and
y is not in any i-set of H, then i(G -»y, H) = i(G) +i(H).

Proof. Since the union of an i-set of G and an ¢-set of H is an independent dominating
set of G -y H, we have i(G -5, H) < i(G) + i(H).

Since x is not in any -set of G, it is not i-critical in G. Likewise, y is not ¢-critical
in H. Let S be an i-set of (G -,y H). Let S¢ = SNV(G) and Sy = SNV (H).

Suppose v, € S. Then Si; = Sg U {z} and S, = Sy U {y} are independent
dominating sets of G and H, respectively. Since x € S, and y € S}, neither of these
are i-sets. Therefore |S| > i(G) +i(H) — 1, and thus |S| =i(G) + i(H).

Now suppose that v,, ¢ S. If Sg dominates v,, then Sg is an independent
dominating set of G and |S¢| > i(G). Hence Sy is an independent dominating set of
H—yso |Sy| >i(H—y)=14(H). Thus |S| > i(G)+i(H). If Sg does not dominate
Ugy, then Sy does and the same statement follows similarly. O

If z is in an i-set of G and y is not in any i-set of H, it is possible to have either
(G yyH)=14(G)+i(H) —1ori(G 4y H) =i(G) +i(H). For example, if G = K33
and H = K34, then for any vertex x of K33 and for any vertex y of degree 3 in K34,
we have i(G -y H) =5 =i(G) +i(H) — 1. If G = Kj33[v] (the expansion via v of
K33, where v is any vertex in K33) and H = K34 where x is v/, the vertex added
to K33 in the expansion, and y is a vertex of degree 3 in Ks34, then G -, H has
i(Gyy H) =6 =1i(G) + i(H). These two cases are pictured below in Figure 3.

The following result, when combined with the propositions above, helps explain when
these two cases arise.
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Figure 3: The graphs K33 - K34 and K373[U] K3 4.

Proposition 6.5. Let G and H be disjoint graphs. Suppose x is in an i-set of G, y
1s not in any i-set of H. Then

(a) if i(G -y H) = i(G) +i(H) — 1, then x is i-critical in G; and
(b) if i(G -ny H) =i(G) +i(H), then x is not i-critical in G.

Proof. Suppose i(G -, H) = i(G)+i(H). Then, by Proposition 6.2, x is not i-critical
in G.

Now suppose (G -,y H) = i(G) +i(H) — 1. Let S be an i-set of G -,,, H. Let
Se=SNV(G) and Sy = SNV (H).

We claim v,, ¢ S. Suppose the contrary. Then Sg U {z} and Sy U {y} are
independent dominating sets of G and H, respectively. Thus |Sg U {z}| > i(G) and
|Sy U{y}| > i(H), as y is not in an i-set of H. Hence |S| > i(G) +i(H)+1—1=
i(G) +i(H), a contradiction. This proves the claim.

Next, we claim S¢ does not dominate v,,. Suppose the contrary. Then S and Sy
are independent dominating sets G and H — y, respectively. Therefore, |Sg| > i(G)
and |Sy| > i(H), which implies |S| > i(G) +i(H), a contradiction. This proves the
claim.

It now follows that Sz and Sy are independent dominating sets of G —x and H,
respectively. Thus [S¢| > i(G)—1 and |Sy| > i(H). Since i(G ., H) = i(G)+i(H)—1
we have that |Sg| = i(G) — 1 and |Sy| = i(H). Therefore, z is i-critical in G. O

Having considered the possibilities for the independent domination number of the
coalescence of GG and H, we now consider the situations in which G - H is i-bicritical.

Theorem 6.6. Let G and H be disjoint graphs. Let x € V(G) and y € V(H)
each have degree at least one. The graph G -5, H is i-bicritical with i(G -5, H) =
i(G) +i(H) — 1 if and only if

(a) G and H are i-bicritical;
(b) x is i-critical in G, and y is i-critical in H; and

(¢) G or H is i-critical.
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Proof. Suppose that G -, H is i-bicritical with (G -,, H) = i(G) + i(H) — 1.

We first show that (b) holds. By symmetry it suffices to show that y is an i-critical
vertex of H. Let u € Ng(x). Then, since v and x are adjacent, i(G -, H —{u, vy }) =
(i(G) +i(H) — 1) — 1. Hence, i(G) +i(H) — 2 = i(G — {u,z}) +i(H — y) >
i(G) —1+i(H) — 1. Therefore, i(G — {u,z}) =i(G) — 1 and i(H —y) =i(H) — 1,
so y is ¢-critical in H.

Next, we show that (a) holds. By symmetry it suffices to show that G is i-
bicritical. Suppose G is not i-bicritical and let {w, z} C V(G) be such that i(G —
{w, 2}) > i(G). Let S be an i-set of G -3, H — {w, z} and let S¢ = SN V(G) and
Sy = SNV (H). Note that v,, belongs to neither S nor Sy, as it is not an element
of V(G)UV(H).

Suppose * = w. Then, i(G -3y H — {vgy, 2}) = i(G —{w,z}) +i(H —y) >
i(G)+i(H)—1=1i(G -,y H), a contradiction to the i-bicriticality of G -, H.

Now suppose = ¢ {w, z}. If v, € S then Sg¢U{z} and Sy U{y} are independent
dominating sets of G — {w, z} and H, respectively. Therefore, |S| > i(G)+i(H)—1,
a contradiction. Hence we may assume v, ¢ S. If S; dominates z, then Sg
and Sy are independent dominating sets of G — {w, z} and H — y, respectively, and
|S| > i(G)+i(H)—1, a contradiction. If S does not dominate x, then Sg and Sy are
independent dominating sets of G —{w, z, x} and H, respectively. Thus |Sy| > i(H)
and |Sg| > (G —{w, z,z2}) = i((G —{w,z}) —z) > i(G — {w,z}) — 1 > i(G) — 1.
Therefore, |S| > i(G) +i(H) — 1, a contradiction. This completes the proof that (a)
holds.

Finally, we show that (c) holds. Suppose neither G nor H is i-critical. By (b),
there exists w € V(G — x) such that i(G —w) > i(G) and z € V(H — y) such that
i(H —z) > i(H). Let S be an i-set of G -,y H — {w, 2z} and let S¢ = SN V(G) and
Sp=SNV(H).

If v,y € S, then S¢U{x} is an independent dominating set of G —w and Sy U{y}
is an independent dominating set of H — z. Therefore |S| > i(G) +i(H) — 1, a
contradiction.

On the other hand, suppose v, ¢ S. Since S dominates vy, either S¢ dominates
x or Sy dominates y. By symmetry, assume the former. Thus, S¢ is an independent
dominating set of G — w and Sy is an independent dominating set of H — {y, z}.
In this case, |Sg| > i(G), and |Sy| > i(H — {y,z}) > i(H) — 1 by (a). Therefore
|S| > i(G) +i(H)— 1, a contradiction. This completes the proof that (c¢) holds, and
the proof that if G -, H is i-bicritical with i(G -,, H) = i(G) +i(H) — 1 than (a),
(b) and (c) hold.

Now suppose that (a), (b) and (c) hold. Let {w,z} C V(G -, H) and consider
G -2y H—{w, z}. We want to show that i(G -, H — {w, z}) <i(G) +i(H) — 2.

Suppose first that v,, = w, say. By symmetry we may assume z € V(G). Let Sg
be an i-set of G — {z, z} and Sy be an i-set of H —y. Then i(G -, H — {w, z}) <
|Sa| + |Su| <i(G) —1+i(H) — 1, as needed.

Hence, in what follows, we may assume v,,, & {w, z}.

Suppose that {w,z} C V(G). Let Sg be an i-set of G — {w, z}. Then Sg
dominates z. Let Sy be an i-set of H — y. Since y is i-critical in H, we have
that Ng(y) N Sy = 0. Thus, S = Sg U Sy is an independent dominating set of
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G -z H—{w, z} and i(G -5y H—{w, z}) = i((G — {w, z}) wy H) < |S| <i(G) — 1+
i(H)—1=14(G)+i(H) — 2, as needed.

If {w,z} C V(H) we similarly obtain an independent dominating set of the
required size.

Finally, suppose w € V(G) — {2z} and z € V(H) — {y}. By (c), we may assume
without loss of generality that G is i-critical. Let Sy be an i-set of H — {z,y}.
Then |Sy| < i(H) — 1. If Sy dominates y, then let Sg be an i-set of G — {w, z}.
Then |Sg| < i(G) — 1. By definition of Sg and Sy we have that Sg U Sy is an
independent dominating set of G -,, H — {w, z}, and (G -, H—{w, z}) < [S¢ U
S| <i(G)—1+i(H)—1=14(G)+i(H) — 2, as needed. If Sy does not dominate
y, let Sg be an i-set of G — w. Then |Sg| < i(G) — 1 by (c¢). By definition of
S¢ and Sy we have that Sg U Sy is an independent set of G -,, H — {w, z}, and
i(G gy H—{w, 2}) <|ScUSk| <i(G)—1+4+1i(H) —1=1i(G) +i(H) — 2, as needed.

It follows from the above that G -, H is i-bicritical. O

The previous theorem is not true if x can be an isolated vertex of GG. For example,
let G = Ky and H = Ky3 be disjoint graphs. For any vertices x € V(G) and
y € V(H), the graph G-, H = K; U K3 3 is i-bicritical with independent domination
number 3 = i(G) +i(H) — 1. But statement (b) does not hold when y belongs to
the independent set of size 3 in H. No such vertex is i-critical in H.

We now give an example to show that, in Theorem 6.6, if G is i-critical and H
is not ¢-critical, then it is necessary for vertex y to be i-critical in H. Let G and H
be the disjoint graphs shown in Figure 4 (overleaf). Note that G is both i-bicritical
and ¢-critical, and H is ¢-bicritical. However, the vertex y is not i-critical in H. The
coalescence G -, H has i(G -, H) = 6. On the other hand, G -,, H — {v,k} =
K3 3U Ky5U K, (disjoint union), thus (G -,, H — {v, k}) = 6. Therefore, G -, H is
not ¢-bicritical.

Using a proof similar to the one in Theorem 6.6, we can show the following.

Theorem 6.7. Let G and H be disjoint graphs with x € V(G) and y € V(H). If
G -zy H is y-bicritical with v(G -3y H) = v(G) +v(H) — 1 then x is y-critical in G,
y 1s y-critical in H, both G and H are y-bicritical, and at most one of G and H is
not ~y-critical.

We are also able to give necessary and sufficient conditions for G -,, H to be both
i-critical and ¢-bicritical. In light of Theorem 6.6, the following theorem is useful if
the coalescence construction is applied iteratively to a collection of graphs.

Theorem 6.8. Let G and H be disjoint graphs with x € V(G) andy € V(H). The
graph G -, H 1is i-critical and i-bicritical if and only if

(@) i(G g H) = i(G) +i(H) — 1;
(b) G and H are i-critical; and

(¢) G and H are i-bicritical.
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Figure 4: Showing the condition that y is critical in H is needed in Theorem 6.6.

Proof. Suppose G -, H is i-critical and i-bicritical. Then i(G) +i(H) — 1 < i(G -4y
H) < i(G)+i(H). Suppose equality holds in the upper bound. Then, by Proposition
6.2, x is not i-critical in G and y is not i-critical in H. Any independent dominating
set of G -,y H — v, must be the union of an independent dominating set S, of
G — x and an independent dominating set S, of H —y. Since x is not é-critical in
G, |Sz| = i(G). Similarly, |S,| > i(H). Thus i(G -uy H — vsy) > i(G) +i(H), a
contradiction to i-criticality. Hence, (a) holds.

It now follows from Theorem 6.6 that condition (c) holds.

It remains to show that (b) holds. By symmetry it suffices to show that G is
i-critical. The vertex x is i-critical in G by Theorem 6.6. Suppose G is not i-
critical and let w € V(G — x) be such that i(G — w) > i(G). Since w can not
be an ¢-critical vertex of the i-bicritical graph G -,, H, it follows that G -, H —w
is i-critical, it has an independent dominating set S of size i(G) + i(H) — 2. Let
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Se¢ =SNV(G) and Sy = SNV (H). Note that v,, does not belong to either of
these sets as it is not an element of V(G) U V(H). If vy, is in S, then S U {z}
and Sy U{y} are independent dominating sets of G —w and H, respectively. Thus,
i(Gwy H—w) = |Sg| + |Su| +1 > i(G) =1+ i(H) =1+ 1 =i(Q) +i(H) — 1,
a contradiction. Suppose, then, that v,, € S. If Sg dominates z, then S is an
independent dominating set of G — w and Sy is an independent dominating set of
H —y, so that i(G -,y H—w) = |S¢| +|Su| > i(G) +i(H) — 1, a contradiction. If Sg
does not dominate x, then it is an independent dominating set of G — {w, z}. Sy is
an independent dominating set of H. In this case, i(G -y H —w) = |S¢| + |Su| >
i(G) — 14 i(H), a contradiction. This completes the proof that (b) holds, and that
(a), (b), and (c) hold.

Now suppose (a), (b) and (c) hold. Then G -,, H is i-bicritical by Theorem 6.6.
It remains to show that it is also i-critical. Let w € V(G -,y H). If w = v, then the
union of an independent dominating set of G —z and an independent dominating set
of H —y is an independent dominating set of G -, H — w of size i(G) —1+1i(H) — 1,
as needed. Otherwise, without loss of generality suppose w € V(G — z). Let Sg
be an i-set of G — w. Since G is i-critical, |Sg| = i(G) — 1, and Sg dominates z.
Let Sy be an i-set of H —y. Then, since H is i-critical, |Sy| = i(H) — 1, and
SuNNy(y) = 0. Therefore S¢U Sy is an independent dominating set of G -, H —w
of size i(G) — 1+ i(H) — 1, as needed. Therefore G is i-critical, and the proof is
complete. O

It remains to consider the situation where i(G -,, H) = i(G) + i(H). By Proposi-
tions 6.4 and 6.5, there are two cases: (i) x is not in any i-set of G and y is not in any
i-set of H; and (ii) « is in an é-set of G but is not i-critical in G, and y is not in any
i-set of H. We are able to give necessary and sufficient conditions for ¢-bicriticality
of G -3y H in the first case, but not in the second case.

Theorem 6.9. Let G and H be disjoint graphs. Let x € V(G) and y € V(H) be
such that x is not in any i-set of G, and y is not in any i-set of H. Then G -5, H is
1-bicritical of and only iof

(a) G and H are i-bicritical;

(b) G — x is i-bicritical or there exists an independent set Dy C V(H) such that
y € Dy and |Dy| =i(H)+ 1; and

(¢) H — vy is i-bicritical or there exists an independent set Dg C V(G) such that
z € Dg and |Dg| = i(G) + 1.

Proof. By our assumptions on = and y we have i(G -, H) = i(G) + i(H). Further,
x is not an ¢-critical vertex of G and y is not an ¢-critical vertex of H.

Suppose G -, H is i-bicritical. Let u,v € V(G — ) U {vyy,}. The graph G -,
H — {u,v} has an i-set, S, of size at most i(G) +i(H) — 1. Let S¢ = SNV (G), and
Sy = SNV(H). There are two cases to consider, depending on whether v,, € S.
We show that, in each case, i((G — z) — {u,v}) < |S¢| < i(G) — 1, so that G is
1-bicritical. The é-bicriticality of H is established similarly.
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Suppose vy, € S (this case must arise when v,, € {u,v}, and may arise at other
times). Then Sp is an independent dominating set of H, so that |Syx| > i(H).
Similarly, S is an independent dominating set of G — {u,v}, and |Sg| < i(G) +
i(H)—1—|Sy| <i(G) — 1.

Now suppose v,, € S. Then Sy U {y} is an independent dominating set of H.
Since y is not in any i-set of H, we have |Sy| > i(H) + 1. Similarly, S¢ U {z} is an
independent dominating set of G — {u, v}, and |Sg| <i(G)+i(H) —1—|Sy| —1<
i(G) — 1. This completes the proof that statement (a) holds.

We now show that (b) holds. Suppose that G — x is not i-bicritical. Then there
exist u,v € V(G — x) such that i((G — z) — {u,v}) > (G — z) = i(G) (since (a)
holds, we have i(G — x) < i(G) by Theorem 2.1, and equality holds since z is not
in any i-set of G). Since G -, H is i-bicritical, it has an i-set S of size at most
i(G)+i(H)—1. Let S¢ =SNV(G) and Sy = SNV (H).

We claim that v,,, € S. Suppose not. Then Sy is an independent dominating set
of H—y, and |Sy| > i(H). It then follows that S is an independent dominating
set of G — x with |Sg| < i(G — z), a contradiction. This proves the claim.

Since x is not in any i-set of G, we must have that Sg U {z} has size i(G) — 1
and dominates neither v nor v. The set Sy U {y} is an independent dominating set
of H. By our assumption on y and work above, we have

i(H) +1<[Sg Uy} = [S] = [Sel + 1 <i(G) +i(H) =1 = (i(G) = 2) = i(H) + 1.

Hence (b) holds. Statement (c) is shown to hold by a similar argument.

Now suppose (a), (b) and (c) hold. Let u,v € V(G -5, H).

Suppose u,v € V(G — x). If G — x is i-bicritical, then the union of an i-set of
(G — x) — {u,v} and an i-set of H (which exists, and necessarily dominates y but
does not contain it since y is not in any i-set of H), is an independent dominating set
of G-y H — {u, v} of size at most i(G) — 1+ i(H). Suppose, then, that G — x is not
i-bicritical. If there is an i-set of G — {u, v}, of size at most i(G) — 1 which does not
contain x then, as above there is an independent dominating set of G -, H — {u, v}
of size i(G) — 1 +i(H). Otherwise, every i-set of S¢ C G — {u, v} of size at most
i(G) — 1 contains z. By (b) there exists an independent set Dy C V(H) such that
y € Dy and |Dy| = i(H) + 1. Then Sg U Dy is an independent dominating set
of G -yy H — {u,v} of size at most (i(G) — 1) + (i(H) + 1) — 1, as needed. Similar
considerations apply when u,v € V(H —y).

Suppose u = v, and v € V(G — x). Since G is i-bicritical there exists an i-set
Se CV(G)—{x,v} of size at most i(G)—1. Let Sy be any i-set of H. By hypothesis,
y & Su. Then Sg U Sy is an independent dominating set of G -5, H — {v,,, v} =
G -3y H — {u, v} of size at most i(G) — 1+ i(H), as needed. Similar considerations
apply when v = v,, and v € V(H —y).

Finally, suppose v € V(G) and v € V(H). Since G is i-bicritical, G — {z,u} has
an i-set, Sg, of size at most i(G) — 1. Similarly, H —{y, v} has an i-set of size, Sy, at
most i(H ) — 1. Consider the independent set S U Sy. If it dominates vy, then it is
an independent dominating set of G -, H — {u, v} of size at most i(G) —1+i(H)—1.
Otherwise, S¢ U Sy U {vyy} is an independent dominating set of G -,,, H — {u, v} of
size at most (i(G) — 1) + (i(H) — 1) + 1. This completes the proof. O
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Corollary 6.10. Let G and H be disjoint graphs. Let x € V(G) andy € V(H) be
such that x is not in any i-set of G, and y is not in any i-set of H. If the graphs
G,H,G —x and H —y are all i-bicritical, then G -5, H 1is i-bicritical

Let m,n > 3 be integers. We can obtain families of i-bicritical graphs by letting
G = Ky my1 and H = K, ,, 41, and z,y be vertices in the larger independent set of
G, H, respectively. By Corollary 6.10, the graph G -, H is i-bicritical. Furthermore,
this graph has m+n-+1 vertices which do not belong to an ¢-set, so the corollary can
be applied again. If the other graph in the coalescence is, for example, K11, > 3,
then similar considerations hold and the construction can be applied iteratively.

7 Construction of i-Bicritical Graphs via Identification on a
Subgraph

Let H be a graph. Let G| and G5 be graphs for which H is the subgraph of each one
induced by V(G1) N V(Gy). The graph G1(H)®Gy(H) is obtained from Gy U G5 by
adding the set of edges {7172 : 71 € V(G;1) — V(H) and x5 € V(G2) — V(H)}. This
construction can be informally described as coinciding G; and G2 on their common
subgraph H, and then adding all possible edges between vertices of G; — H and
vertices of G — H.

It follows from the definition that i(G1(H)®Gy(H)) = min{i(G,),i(Gs)}, and
that any independent dominating set of this graph is a subset of V(G1) or of V(G3).

Let G be a graph. In what follows, we call a pair of different vertices z,y € V(G)
a bicritical pair of G if i(G — {z,y}) < i(Q).

We first consider the case where i(G1) = i(G3) and characterize the situations
where G (H)®Gy(H) is i-bicritical. Somewhat remarkably, it is not required that
G or GGy be bicritical.

Theorem 7.1. Let H be a graph. Let Gi and Gy be graphs for which H 1is the
subgraph of each one induced by V(G1) NV (Gs), and are such that i(G1) = i(G2).
Then, G = G1(H)®Gy(H) is i-bicritical if and only if, for all pairs of vertices .y,

(a) for each j € {1,2}, if x,y € V(G,; — H) then x,y is an i-bicritical pair of G;;
(b) if x,y € V(H), then x,y is an i-bicritical pair of G1 or of Ga;

(c) for each j € {1,2}, if v € V(G; — H) and y € V(H), then either x,y is an
i-bicritical pair of G, ory is an i-critical vertex of Ga—ji1;

and every verter of Gy — H is an i-critical vertex of G or every vertex of Go — H is
an i-critical vertex of Gs.

Proof. We have i(G) = i(G;) = i(G2).

Suppose G is i-bicritical. Let z,y € V(G) and consider G — {z,y}. Since, by
definition of G, any independent dominating set of G is a subset of V(G1) — {z,y}
or V(Gs) — {z,y}, it is clear that conditions (a) through (c) must hold. Suppose,
without loss of generality, that the vertex x € V(G; — H) is not an i-critical vertex
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of Gy. Since, for any vertex y € V(G — H) we must have i(G — {z,y}) < i(G), it
follows that y must be an ¢-critical vertex of GG5. Therefore, every vertex of G; — H
is an i-critical vertex of Gy or every vertex of Gy — H is an i-critical vertex of G.
Now suppose the given conditions all hold. Let x,y € V(G) and consider G —
{z,y}. If 2,y € V(G — H) then, by (a), i(G; — {z,y}) < i(Gy) = i(G). Therefore
i(G — {x,y}) < i(G). Similarly, if z,y € V(Gy — H), then (G — {z,y}) < i(G).
If z,y € V(H) then, by (b), either G; — {z,y} or Gy — {z,y} has an independent
dominating set of size less than i(G). Since any such set dominates G — {z,y}, we
have i(G — {z,y}) < i(G). Suppose x € V(Gy — H) and y € V(H). If 2,y is an
i-bicritical pair of Gy, then i(G — {z,y}) < i(G) as before. If y is an i-critical vertex
of Gy, then G5 —y has an independent dominating set of size less than i(Gs) = i(G),
and (G — {x,y}) < i(G) as before. A similar argument applies if © € V(Gy — Ha)
and y € V(H). Finally, suppose z € V(G; — H) and y € V(G2 — H). Then either x
is an i-critical vertex of Gy or y is an i-critical vertex of Gy, and i(G —{z, y}) < i(G)
as before. O

Corollary 7.2. Let H be a graph. Let Gi and Gy be graphs for which H 1is the
subgraph of each one induced by V(G1) NV (Gs), and are such that i(Gy) = i(G2).
If Gy is i-critical and i-bicritical, and Gy is i-bicritical, then Gy(H)OGy(H) is i-
bicritical.

Corollary 7.3. Let H be a graph. Let Gy and Gy be graphs for which H is the
subgraph of each one induced by V(G1) NV (Gs), and are such that i(Gy) = i(G2).
Then Gy (H)®Gy(H) is i-critical and i-bicritical if and only if

(a) for each j € {1,2}, any pair of vertices x,y € V(G; — H) is an i-bicritical pair
Of G]7

(b) any pair of vertices x,y € V(H) is an i-bicritical pair of Gy or Ga;
(c) for each j € {1,2}, all vertices in V(G; — H) are i-critical vertices of G;; and
(d) every vertex in V(H) is an i-critical vertex of Gy or Gs.

Proof. Suppose G = G1(H)®Go(H) is i-critical and i-bicritical. Then (a) and (b)
hold by Theorem 7.1.

Let x € V(G — H). Since G is i-critical, and every independent dominating set
of G is a subset of V(G;) or of V(G,), we must have i(Gy — ) < i(Gy), so that z is
an i-critical vertex of G;. Therefore, all vertices of Gy — H are i-critical vertices of
G1. Similarly, all vertices of Gy — H are i-critical vertices of Gbs.

Let x € V(H). Then G — z has an independent dominating set, D, of size less
than i(G). Thus either G; — 2z has an independent dominating set of size less than
i(G71) or Go —x has an independent dominating set of size less than i(Gz). Therefore,
every vertex of H is an i-critical vertex of Gy or of Gs.

For the converse, suppose GG; and Gy are different graphs such that V(G;) N
V(Gs) = V(H), i(G1) = i(Gs), and conditions (a) through (d) hold. Then G =
G1(H)®Gy(H) is i-bicritical by Theorem 7.1.
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Let x € V(G). If v € V(G; — H), then since x is an i-critical vertex of Gj,
the graph (7 has an independent dominating set of size less than i(G;). The same
set is an independent dominating set of G — z, hence x is an i-critical vertex of G.
Similarly, if z € V(G2 — H), then x is an i-critical vertex of G. And similarly again,
if x € V(H), then x is an i-critical vertex of G. Therefore, G is i-critical. O

More generally, let Gy, G, ..., Gk be graphs for which H is the subgraph of each
one induced by V(G;) N V(Gy), 1 < j < £ < k. The graph G,(H)OG(H)® - - -

k
OGE(H) is the graph obtained from (J G; by adding the set of edges {z;z, : z; €
t=1

V(G;) —V(H)and zp € V(Gy) — V(H),j # (}. The same graph is obtained it-
eratively as (((G1(H)OGo(H))OG3(H))® - --OGk(H)). This construction can be

informally described as coinciding the graphs G, G, ..., Gy on their common sub-
graph H, and then adding all possible edges between vertices in G; — H and G, — H,
where j # (.

As in the case when k& = 2, it follows from the definition that
i(GL(H)OG(H)O - - - OGL(H)) = min{i(G1),i(Ga), . .. ,i(Gr)},

and that any independent dominating set of this graph is a subset of V(G;) for some
j,1 < j < k. Essentially the same arguments as above prove the following.

Theorem 7.4. Let H be a graph. Let G1,Gs, ..., Gy be graphs for which H is the
subgraph of each one induced by V(G;) NV (Gy), 1 < j <l <k, and are such that
i(G1) = i(Gy) = --- = i(Gy). Then, G = G1(H)OG(H)O - --OGy(H) is i-bicritical

if and only if, for all pairs of vertices x,y,
(a) if v,y € V(G; — H), then x,y is an i-bicritical pair of G;;

(b) if x,y € V(H), then there exists j,1 < j < k such that x,y is an i-bicritical
pair of Gj;

(c) ife € V(G; — H) and y € V(H), then either x,y is an i-bicritical pair of G,
or there exists 0,1 < € < k,{ # j such that y is an i-critical vertex of Gy;

and there is at most one subscript j such that not all vertices of G; — H; are i-critical
vertices of G.

Corollary 7.5. Let H be a graph. Let G1,Gs, ..., Gy be graphs for which H is the
subgraph of each one induced by V(G;) NV (Gy), 1 < j < £ < k, and are such
that i(G1) = i(Ge) = -+ = i(Gy). If Gy is i-bicritical, and Go,Gs, ..., Gy are both
i-critical and i-bicritical, then G1(H)OGo(H)® - - - OGy(H) is i-bicritical.

Corollary 7.6. Let H be a graph. Let G1,Gs, ..., Gy be graphs for which H is the
subgraph of each one induced by V(G;) NV (Gy), 1 < j < <k, and are such that
i(Gy) = i(Gy) = -+ = i(Gr). Then, G = GL(H)OG(H)® - - - OGy(H) is i-critical

and i-bicritical if and only if
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(a) foreachj € {1,2,... k}, any pair of vertices v,y € V(G;—H) is an i-bicritical
pair of Gj;

(b) for two vertices x,y € V(H) there exists { such that x,y is an i-bicritical pair
Of GZ;'

(c) for each j € {1,2,...,k}, all vertices of G; — H; are i-critical vertices of G;;
and

(d) for every vertex x € V(H) there exists { such that x is an i-critical vertex of

Gy.

We now consider i-bicriticality of G1(H)®Go(H) when i(Gy) # i(Gy). Note
that, if i(G1) < i(Gs), then G1(H)®G5(H) can not be i-critical because, for any
z € V(Gy — H) we have i(G(H)OGy(H) — z) > i(Gy — ) > i(Ga) — 1 > i(GY).

Another definition is needed. A pair x,y of different vertices of a graph G is
called a strongly i-bicritical pair if i(G — {x,y}) = i(G) — 2. Observe that a strongly
1-bicritical pair of vertices are non-adjacent.

Theorem 7.7. Let H be a graph. Let Gy and Gy be graphs for which H 1is the
subgraph of each one induced by V(G1) NV (Gs), and are such that i(G1) < i(Gs).
Then, G = G1(H)OGy(H) is i-bicritical if and only if

(a) either i(Gy) = i(Gy) + 1, or |V(G, — H)| = 1;

(b) E(Gy — H) = 0, and any pair of vertices x,y € V(Gy — H) is a strongly
1-bicritical pair of Go;

(c) ifx,y € V(H), then either x,y is an i-bicritical pair of Gy, ori(Gs) = i(G1)+1
and x,y are a strongly i-bicritical pair of Ga;

(d) Gy is bicritical; and
(e) every vertex in V(Gy — H) is i-critical.

Proof. Suppose first that G is i-bicritical. Note that i(G) = i(G1).

Suppose |V (Ge — H)| > 1 and let x,y be vertices in V(G — H). In order for
G — {x,y} to have an independent dominating set of size less than i(G) = i(Gy),
we must have i(Gy — {z,y}) < i(Gy). Since i(G1) < i(Gy) — 1 and i(Gy) — 2 <
i(Gy — {z,y}), it follows that i(Gy — {z,y}) = i(G2) — 2 and i(Gs) = i(Gy) + 1.
Hence (a) holds. If x and y are adjacent then i(Gy — {x,y}) > i(G2) — 1; hence (b)
also holds.

Let z,y € V(H). An independent dominating set of G — {z,y} of size less than
i(G) = i(Gy) is either a subset of V(G1) or a subset of V(G2). In the former case
x,y is an i-bicritical pair of G;. In the latter case, as above i(Gs) = i(G1) + 1 and
x,y is a strongly i-bicritical pair of G5. Hence (c) holds.

Let z,y € V(Gy). Since an independent dominating set of G — {x, y} of size less
than ¢(G) = i(G1) must be a subset of V(Gy), it follows that z,y is an i-bicritical
pair of G;. Hence (d) holds.
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Finally, let z € V(Gy — H), and y € V(Gy — H). Since i(Gy — y) > i(Gy) —
1 > i(Gy) = i(G), an independent dominating set of G — {z,y} of size less than
i(G) = i(G1) must be a subset of V(G; — x). Hence x is an i-critical vertex of Gy,
and (e) holds.

Now suppose that conditions (a) through (e) hold. Let z,y € V(G) and consider
G —{z,y}. fz,y € V(H), then i(G — {z,y}) < i(G) = i(G1) by (c) and (a). If
z,y € V(G1—H), theni(G—{z,y}) < i(G) = i(Gy) by (d). Ifz,y € V(Ga—H), then
i(G—A{x,y}) <i(G) =i(Gy) by (b). Finally, if x € V(G — H) and y € V(Gy), then
(G —{x,y}) <i(G) =1i(Gy) by (d), if y € V(H), and by (e) if y € V(Gs — H). O

A graph G is called strongly i-bicritical if i(G — {z,y}) = i(G) — 2 for all pairs of
non-adjacent vertices x,y. For example, for any n > 2, the complete bipartite graph
K, , is strongly i-bicritical.

Corollary 7.8. Let G1 and G5 be graphs for which H 1is the subgraph of each one

induced by V(G1) NV (G3), and are such that i(G1) = i(G2) — 1. If Gy is i-critical

and i-bicritical, and Gy is strongly i-bicritical, then G1(H)OGy(H) is i-bicritical.
The following is by way of analogy with Theorem 7.4. There is no analog of Corol-

lary 7.6 when the graphs being operated on do not all have the same independent
domination number.

Lemma 7.9. Let H be a graph. Let Gy,Gs,...,Gy be graphs such that H is the
subgraph of each one induced by V(G;) NV (Gy), 1 < j <€ <k, and are such that
i(Gh) <i(Gy) < --- < i(Gg). If there exist subscripts j and ¢ such that i(G1) < i(G;)
and i(G1) < i(Gy), then, G = G1(H)OGo(H)® - - OGL(H) is not i-bicritical.

Proof. Note that i(G) = i(G1). Let v € V(G; — H) and y € V(G — H). An
independent dominating set of G — {z, y} of size less than i(G) = i(G;) must be a
subset of V(G; — x) or of V(G —y). Since i(G1) < i(G;) —1 < i(G; — ), and
similarly for Gy — x, no such set exists. Therefore GG is not i-bicritical. O
Theorem 7.10. Let H be a graph. Let G1,Gs, ..., Gy be graphs such that G is the
subgraph of each one induced by V(G;) NV (Gy), 1 < j <l <k, and are such that
i(Gh) = i(Gy) = -+ = i(Gr—r) < i(Gr). Then, G = G1(H)OGo(H)® - - - OGy(H) is

1-bicritical of and only iof
(a) either i(Gy) =i(G1) + 1, or V(G — H)| =1;

(b) E(Gy — H) = 0, and any pair of vertices x,y € V(Gy — H) is a strongly
t-bicritical pair of Gy;

(c) if z,y € V(H), then either there exists j,1 < j < k — 1 such that z,y is an
i-bicritical pair of G, or x,y s a strongly i-bicritical pair of Gi;

(d) if v € V(H) andy € V(G; — H) for j < k, then either x,y is an i-bicritical
pair of G, or there exists { # j such that 1 < ¢ <k —1 and y is an i-critical
vertexr of Gy; and

(e) for each j € {1,2,...,k — 1}, every vertex in V(G; — H) is i-critical.
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8 Construction of i-Bicritical Graphs via Wreath Product

Let G and H be disjoint graphs. The wreath product of G with H, also known as
the lexicographic product of G and H, is the graph G[H| with vertex set V(G[H]) =
{(g,h) : g € V(G),h € V(H)} and edge set E(G[H]) = {(g1,h1)(g2,h2) : g1g2 €
E(G) or g1 = go and hihy € E(H)}.

If D is an independent dominating set of G[H], then we define

Sp={9€V(G):(g9,h) € D for some h € V(H)}

and, for each g € Sp,
T,={he€V(H): (g,h) € D}.

The straightforward proof of the following proposition is omitted.

Proposition 8.1. Let G and H be disjoint graphs. If D is an independent domi-
nating set of G[H]|, then Sp is an independent dominating set of G and, for each
g € Sp, T, is an independent dominating set of H.

Corollary 8.2. For any disjoint graphs G and H, i(G[H]) = i(G)i(H).

Proof. Let D be an i-set of G[H|. By Proposition 8.1, |Sp| > i(G) and, for each
g € Sp, |T,| > i(H). Hence |D| > i(G)i(H).

On the other hand, if A is an i-set of G and B is an i-set of H, then the Cartesian
product A x B is an independent dominating set of G[H| with size i(G)i(H). The
result now follows. O

Theorem 8.3. Let G and H be disjoint graphs that each have at least two vertices.
Then G[H] is i-bicritical if and only if H is both i-critical and i-bicritical, and either
[V(H)| =2 and G 1is i-critical, or |V(H)| > 3 and every vertex of G is in an i-set
of G.

Proof. We first consider the case where E(G) = (). The graph G[H] is isomorphic to
the disjoint union of |V(G)| copies of H. By Theorem 4.1, G[H] is bicritical if and
only if H is both i-critical and i-bicritical. Also, the graph G is i-critical, so every
vertex of G is in an i-set of G. Thus the statement holds when E(G) = ). Hence, in
what follows, we assume E(G) # 0.

Suppose G[H] is i-bicritical.

We first show that H is i-critical. Let ¢190 € E(G), and h € V(H). Let D be
an i-set of G[H| — {(g1,h), (g2, h)}. Since |D| = i(G[H]) — 1 and H has at least 2
vertices, by Proposition 8.1 and Corollary 8.2 either g; or g» belongs to Sp. Without
loss of generality g; € Sp. By Proposition 8.1 and Corollary 8.2 again, we must have
that |T,,| = i(H) — 1. Therefore H is i-critical. Furthermore, since H has at least 2
vertices, i(H) > 2.

Next, we show that H is ¢-bicritical. If H has only 2 vertices, then since it is -
critical, it is isomorphic to the disjoint union of two copies of K, which is ¢-bicritical.
Suppose, then, that H has at least 3 vertices. Let hy, hy € V(H), and g € V(G). Let
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D be an i-set of G[H]| — {(g,h1), (g, ha)}. Since |D| < i(G[H]), by Proposition 8.1
and Corollary 8.2, we must have g € Sp and |T,| < i(H). Therefore H is i-bicritical.

Finally, we show that either |V (H)| = 2 and G is i-critical, or |V(H)| > 3 and
every vertex of G is in an i-set of G. Let hy,hy € V(H), and g € V(G). Consider
G[H] o {(97 h1>7 (ga hQ)}

If V(H) = {hq, ha}, then G[H] — {(g, 1), (g9, h2)} = (G — g)[H]. By Corollary
8.2, this graph has independent domination number i(G — g)i(H). Since G[H] is
i-bicritical, i(G — ¢)i(H) < i(G)i(H). Therefore g is an i-critical vertex of G, from
which it follows that G is i-critical.

Now suppose that H has at least 3 vertices. Let D be an i-set of G[H] —
{(g,M), (g, h2)}. As above, we must have g € Sp and |T,| < ¢(H). By Proposi-
tion 8.1 and Corollary 8.2 we then have

W(GIH] = {(g, M), (9, h2)}) < [Spli(H) =1 <i(G)i(H) — 1,

from which it follows that |Sp| < i(G). Therefore g is in an i-set of G.

We now prove the converse. Suppose that H is both i-critical and i-bicritical.
Let (g1, h1), (g2, he) € G[H], and consider G[H| — {(g1, h1), (g2, ho) }.

Suppose that |V(H)| =2 and G is i critical. If g; = go, then

GH] —{(g1, 1), (g2, h2) } = (G — g1)[H].

Since G is i-critical, by Corollary 8.2 we have
W(GIH] = A{(g1, M), (92, h2)}) = (i(G) — 1)i(H) < i(G)i(H) = i(G[H]).

Otherwise, g1 # go. Since G is i-critical, there exists an i-set, S, of G such that g; €
S. Since H is i-critical, there exists an i-set, 7", of H — hy such that, T'=T"U {h;}
is an i-set of H. Then S x T — {(g1, h1)} is an independent dominating set of G[H]
of size i(G)i(H) — 1. Therefore, G[H] is i-bicritical.

Now suppose that |V(H)| > 3 and every vertex of ¢ is in an i-set of G. By
hypothesis, there exists an i-set, S, of G such that ¢g; € S.

Assume first that g; = ¢go. Since H is i-bicritical, there exists an i-set, T", of
H — {hi,ha} which is a proper subset of an i-set T' of H that contains hy or ha,
possibly both. Then S x T — {(g1, h1), (g2, h2)} is an independent dominating set of
G[H] of size i(G)i(H) — 1 or i(G)i(H) — 2.

Otherwise, g1 # g2. Suppose g192 € E(G). Since H is i-critical, there exists an
i-set, T', of H — hy such that, T'=T"U{h;} is an i-set of H. Then S xT —{(g1,h1)}
is an independent dominating set of G[H| of size i(G)i(H) — 1. Finally, suppose
9192 € E(G). Since H is i-critical, there exists an i-set, 77, of H — h; such that
Ty =T{U{hy} is an i-set of H, and an i-set, Ty, of H — hy such that Ty, = Ty U {hs}
is an i-set of H. Let D be the set

_ ) g0 xT) U{g} xTHU ({92} xT3) ifg2 €85
(S ={g}) xT) U ({g} x T7) if go & 5.

Then D is an independent dominating set of G[H]| — {(g1,h1), (g, h2)} of size
i(G)i(H) — 2 or i(G)i(H) — 1. Therefore, G[H] is i-bicritical. O
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