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Abstract

Let G be a graph. An independent dominating set of G is a subset
D ⊆ V (G) such that no two vertices in D are adjacent, and every vertex
of G either belongs to D or is adjacent to a vertex in D. The size of a
smallest independent dominating set of G is the independent domination
number, i(G). The graph G is i-critical if i(G−x) < i(G) for all vertices
x, and is i-bicritical if i(G − {x, y}) < i(G) for all 2-subsets of vertices
{x, y}. It is shown that i-bicritical graphs differ structurally from γ-
bicritical graphs, which are those in the corresponding collection defined
with respect to the domination number. Several methods of constructing
i-bicritical graphs from other graphs are described. Conditions that must
be satisfied by the constituent graphs in order for the resulting graph to
be i-bicritical are given. Some of these graphs are also i-critical.
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1 Introduction

Let G = (V,E) be a simple graph with vertex set V = V (G) and edge set E = E(G).
A subset D ⊆ V (G) is called an independent dominating set of the graph G if it is
both a dominating set and an independent set. The minimum cardinality among all
independent dominating sets of G is the independent domination number, i(G). An
independent dominating set of minimum cardinality is called an i-set.

For a vertex v ∈ V (G), the number i(G − v) may be greater than, less than,
or equal to i(G). A graph G is independent domination critical, or i-critical if
i(G − v) < i(G) for every v ∈ V (G). More generally, for an integer t ≥ 1, a graph
G is (i, t)-critical if i(G − S) < i(G) for any S ⊆ V (G) with |S| = t. Independent
domination critical graphs are (i, 1)-critical graphs. For surveys about independent
domination and independent domination critical graphs, see [9, 11].

In this paper we study (i, 2)-critical graphs, which we refer to as i-bicritical graphs.
These were first considered by Xu, Xu, and Zhang [15], who described some of their
basic properties and gave a construction that produces a new i-bicritical graph from
a graph which is both i-critical and i-bicritical. Examples of i-bicritical graphs given
in [15] include Kn,n, Kn,n+1 and the Cartesian product Kn�Kn, where n ≥ 3 in each
case. The graph G shown in Figure 1 can also be seen to be i-bicritical.

Figure 1: An i-bicritical graph.

Bicriticality for domination was first studied in [2]. We shall reference these
results, in context, throughout this paper. The (γ, t)-critical graphs, defined analo-
gously to the (i, t)-critical graphs, were introduced by Mojdeh, Firoozi, and Hasni
[13]. The (γ, 1)-critical graphs are the γ-critical graphs. The (γ, 2)-critical graphs are
commonly referred to as γ-bicritical graphs. Constructions of bicritical graphs with
edge connectivity 2 can be found in [3]. It is easy to observe that if G is i-bicritical
and γ(G) = i(G), then G is γ-bicritical. For each n ≥ 3, the Cartesian product
Kn�Kn is an example of such a graph. The (γ, k)-critical graphs have been further
studied in [12] and [7].

This paper is organized as follows. Notation, terminology and basic properties
of i-bicritical graphs are reviewed in the next section. It is shown that i-bicritical
graphs have different structural properties than γ-bicritical graphs. In particular,
they may have cut vertices or cut-edges. In Section 3 we characterize the i-bicritical
graphs with independent domination number 2, and show that for each k ≥ 4 and
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every graph G there exists an i-bicritical graph H with i(H) = k such that G is
an induced subgraph of H . When i(G) ≥ 4 the graph H can be chosen so that
i(G) = i(H). When i(G) = 3 it is an open question whether there exists such an
H with i(H) = 3. In the remaining sections we consider constructions of i-bicritical
graphs using the operations of disjoint union, join, coalescence, identification on a
subgraph, and wreath product.

2 Notation, terminology and basic properties

Definitions and notation for graphs and domination are followed from [9, 10], and
[14].

For a set of vertices S ⊆ V (G), 〈S〉 denotes the subgraph of G induced by the
vertices in S. For a set S ⊆ V (G), G− S is the graph 〈V (G)− S〉 and for a vertex
v ∈ V (G), G− v is 〈V (G)− {v}〉. For a vertex x ∈ V (G), the open neighbourhood,
NG(x), is the set {y | xy ∈ E(G)}, and the closed neighbourhood, NG[x], is the set
NG[x] = NG(x) ∪ {x}. Analogously, for a set S ⊆ V (G), the open neighbourhood of
S, NG(S), is the set {x | xy ∈ E(G) for some y ∈ S}, and the closed neighbourhood
of S, NG[S], is the set NG[S] = NG(S) ∪ S. When the graph G is obvious from
context, we simply write N(x), N [x], N(S), and N [S].

Let G1 and G2 be graphs. The union of G1 and G2, denoted by G1 ∪ G2, is the
graph with vertex set V (G1 ∪ G2) = V (G1) ∪ V (G2) and edge set E(G1 ∪ G2) =
E(G1) ∪ E(G2). Note that the graphs G1 and G2 may have vertices or edges in
common. For k ≥ 3, the union of the graphs G1, G2, . . . , Gk can be recursively
defined by

k⋃
i=1

Gi =

(
k−1⋃
i=1

Gi

)⋃
Gk.

The operation of disjoint union of graphs corresponds to the union of disjoint graphs.
Let D be a subset of vertices of a graph G. We say that D dominates a vertex v

if either v ∈ D or v is adjacent to a vertex in D. For a set of vertices S ⊆ V we say
that D dominates S if it dominates every vertex of S. The set D is a dominating set
if it dominates V . The domination number of G, γ(G), is the smallest cardinality of
a dominating set of G.

Let G be a graph. We identify the following three disjoint subsets whose union
is V :

(i) V +
i = {v : i(G− v) > i(G)};

(ii) V 0
i = {v : i(G− v) = i(G)};

(iii) V −
i = {v : i(G− v) < i(G)}.

The set V 0
i is the set of i-stable vertices, and the set V −

i is the set of i-critical vertices.
A graph is i-critical if and only if V = V −

i . If G is i-critical and i(G) = k we say
that G is k-i-critical. The corresponding concepts for the domination number, γ, are
defined similarly. Notice that the cycles C4 and C7 are both i-critical and γ-critical.

The following properties of i-bicritical graphs are proved in [15].
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Theorem 2.1. [15] Let G be an i-bicritical graph with at least two vertices. Then,

(a) i(G)− 2 ≤ i(G− {x, y}) ≤ i(G)− 1;

(b) for any vertex v, i(G)− 1 ≤ i(G− v) ≤ i(G);

(c) if i(G− v) = i(G), then G− v is i-critical;

(d) if x, y ∈ V are such that i(G− {x, y}) = i(G)− 2, then d(x, y) ≥ 2;

(e) G has no vertex of degree 2;

(f) G is not a tree.

Statements (a), (b) and (c) above follow from the general observation that, for
any graph G and S ⊆ V (G), i(G − S) ≥ i(G) − |S|. To see that both extremes
can occur in the inequality in (a), consider Kn,n and Kn,n+1. The graph Kn,n+1 also
demonstrates that both extremes can occur in the inequalities in (b). Statement (e)
can be seen as the i-bicritical equivalent of the result that a γ-bicritical graph can
not have a vertex of degree 1 [1]. In fact, a connected γ-bicritical graph must have
δ ≥ 3, γ ≥ 3 and edge connectivity at least 2. To see that i-bicritical graphs can
have cut vertices and cut edges, consider the graph constructed from K3,4 by adding
a new vertex and joining it to one of the vertices in the independent set of size 4.

Graphs with the property that i(G−{x, y}) = i(G)− 2 for any two independent
vertices x and y are called strongly i-bicritical graphs. These are studied in detail in
[5]. They have more structure than i-bicritical graphs. For example, if G is strongly
i-bicritical then G is 2-connected and has minimum degree δ ≥ 3.

We now establish several other properties of i-bicritical graphs.

Proposition 2.2. If G is i-bicritical, then there does not exist v ∈ V (G) such that
〈N(v)〉 has K2,m, m ≥ 0, as a spanning subgraph.

Proof. Suppose G is i-bicritical and let v ∈ V (G) such that 〈N(v)〉 has K2,m as
a spanning subgraph. Let {v1, v2} be the vertices in the independent set of size 2
in this copy of K2,m and let D be an i-set of G − {v1, v2}. If there is a vertex x
with x ∈ (N [v] − {v1, v2}) ∩ D, then D is also an independent dominating set of
G, a contradiction. If (N [v] − {v1, v2}) ∩ D = ∅, then D does not dominate v, a
contradiction. The result follows.

Proposition 2.3. If G is connected and i-bicritical, then at most one vertex of G
has a neighbour of degree 1. Furthermore, if v ∈ V (G) has a neighbour of degree 1,
then v is the only vertex of G which is not an i-critical vertex.

Proof. Suppose there exist u, v ∈ V (G) such that u �= v and both of these vertices
have a neighbour of degree 1. Let u′ be a degree 1 neighbour of u, and v′ be a degree
1 neighbour of v.

Since G is i-bicritical, G− {u, v} has an independent dominating set, D, of size
at most i(G)−1. But u′, v′ are isolated vertices of G−{u, v}, hence u′, v′ ∈ D. Thus
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D is an independent dominating set of G, a contradiction. Therefore at most one
vertex of G has a neighbour of degree 1.

Suppose v ∈ V (G) is the only vertex of G with a neighbour of degree 1, say
v′. As above, since v′ is in any independent dominating set of G − v, any such set
dominates G. Therefore, i(G− v) = i(G), so that v is not an i-critical vertex of G.

Now let x ∈ V (G) − {v}. We claim that x is a critical vertex of G. Since G is
i-bicritical, i(G − {v, x}) < i(G). Since v′ is in any independent dominating set of
G− {v, x}, any such set dominates G− x. This completes the proof.

For n ≥ 3, the graph constructed from Kn,n+1 by adding a new vertex and joining
it to one of the vertices in the independent set of size n+1 is a connected i-bicritical
graph with a vertex of degree 1 (also, see Figure 2). We do not know if it is possible
for an i-bicritical graph with at least 3 vertices to have more than one vertex of
degree 1.

Proposition 2.4. If G is connected and i-bicritical, then diam(G) ≤ 2i(G)− 1.

Proof. We use the fact that 2i−2 is a sharp upper bound on the diameter of connected
i-critical graphs [4]. Suppose G is a connected, i-bicritical graph. If G is i-critical,
then the above bound holds. Otherwise, by Theorem 2.1, there exists a vertex v such
that G − v is i-critical. If G − v is connected, then diam(G) ≤ diam(G − v) + 1 ≤
2i(G − v) − 2 + 1 = 2i(G) − 2 + 1 ≤ 2i(G) − 1. Suppose G − v is disconnected.
Then each component is i-critical. Suppose G1, G2, . . . , Gk are the components of
G − v and assume G1, G2 are the components with the largest and second largest
diameter. Then diam(G) ≤ diam(G1)+diam(G2)+2 ≤ 2i(G1)−2+2i(G2)−2+2 ≤
2i(G)− 2.

The simplicity of the above proof suggests that the bound in the proposition is
weak. On the other hand, the diameter of a connected γ-critical graph is at most
2γ − 2 [6], and the diameter of a connected γ-bicritical graph is at most 2γ − 3 [8].
Both bounds are sharp. The diameter of a strongly i-bicritical graph G is at most
3i(G)/2. The bound is not known to be sharp [5].

The following construction was introduced by Brigham et al. [2] as a way of
producing γ-bicritical graphs that are not γ-critical, and was considered by Xu, Xu,
and Zhang in the context of i-bicritical graphs [15]. For a graph G and a vertex v ∈
V (G), the expansion of G via v is the graph G[v] with vertex set V (G[v]) = V (G)∪{v′}
(where v′ /∈ V (G)) and edge set E(G[v]) = E(G) ∪ {uv′ : u ∈ NG[v]}. We note that,
for any graph G, i(G[v]) = i(G) and G[v] is not i-critical since G[v] − v′ ∼= G.

Proposition 2.5. [15] If G is i-bicritical and i-critical, then G[v] is i-bicritical.

The previous proposition is formally identical to a statement about γ-bicritical
graphs from [2]. The graph in Figure 2 provides an example which shows that
the hypothesis that G is i-critical can neither be deleted, nor be replaced by the
hypothesis that i(G − v) = i(G) − 1. Referring to the figure, note that G is i-
bicritical, i(G) = 4 and i(G− d) = i(G); hence G is not i-critical. The graph G[v] is
not i-bicritical because i(G[v]) = i(G[v] − {v′, d}) = 4.



M. EDWARDS ET AL. /AUSTRALAS. J. COMBIN. 72 (3) (2018), 446–471 451

c

b

a

d

e

f

g

v

c

b

a

d

e

f

g

v

v′

Figure 2: graphs G and G[v] from left to right

Graphs that are both i-critical and i-bicritical, for example Kn,n or Kn�Kn,
where n ≥ 3, have no i-stable vertices, that is, |V 0

i | = 0. For n ≥ 3, the complete
bipartite graph Kn,n+1 is an i-bicritical graph with |V 0

i | = n+ 1 ≥ 4.
The expansion construction is useful in creating i-bicritical graphs with |V 0

i | = 2.
If G is both i-critical and i-bicritical, then for any vertex v ∈ V (G) the only stable
vertices of G[v] are v and v′. To see this, let x ∈ V (G[v]) − {v, v′}, and let D be an
i-set of G− x. Since D dominates v in G− x, D dominates v′ in G[v] − x. Thus D
is an independent dominating set of G[v] − x and i(G[v] − x) ≤ |D| < i(G) = i(G[v]).

3 Characterizations

In this section we characterize the 2-i-bicritical graphs, and show that for k ≥ 4,
there is no characterization of the k-i-bicritical graphs in terms of a finite collection
of forbidden subgraphs. Characterizing the 3-i-bicritical graphs is an open problem.

The only 2-i-critical graphs are K2n−F , where F is a 1-factor [1]. We show that
there are only two 2-i-bicritical graphs.

Theorem 3.1. The only 2-i-bicritical graphs are K2 and the disjoint union K1∪K2.

Proof. Let G be a 2-i-bicritical graph. Since i(G) = 2, there exists an independent
dominating set {x, y} ⊆ V (G). Consider G − {x, y}. If i(G − {x, y}) = 0 then
G ∼= K1∪K1. If i(G−{x, y}) = 1, then there exists a vertex w ∈ V (G−{x, y}) that
dominates G − {x, y}. In addition, w is not adjacent to at least one of x and y in
G, say y. Then xw ∈ E(G) since {x, y} is an independent dominating set. Consider
G − {w, y}. Since i(G − {w, y}) = 1 there exists a vertex z ∈ V (G − {w, y}) that
dominates G − {w, y}. Since w dominates G− {x, y}, z ∈ N(w). Then zy /∈ E(G)
for otherwise i(G) = 1.

Suppose z �= x. Consider G − {w, z}. Since i(G − {w, z}) = 1, there exists a
vertex v ∈ V (G−{w, z}) such that v dominates G−{w, z}. Notice that v �= y since
yx /∈ E(G) and likewise v �= x. Also, vw ∈ E(G) since w dominates G− {x, y} and
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vz ∈ E(G) since z dominates G − {w, y}. Then v dominates G and i(G) = 1, a
contradiction.

Suppose z = x and N(w)−{x} �= ∅. Consider G−{w, x}. Since i(G−{w, x}) = 1
there exists a vertex v ∈ V (G−{w, x}) that dominates G−{w, x}. Then vx ∈ E(G)
since x = z dominates G − {w, y} and vw ∈ E(G) since w dominates G − {x, y}.
Thus v dominates G and i(G) = 1, a contradiction. Therefore N(w)− {x} = ∅ and
G ∼= K1 ∪K2.

Ao used the following construction to prove that for any graph G there is a 3-i-
critical graph H1 = H1(G) such that G is an induced subgraph of H1 [1]. Let G be a
graph. Construct H1 = H1(G) from the disjoint union G′ = G ∪K2 as follows: For
each v ∈ V (G′), add independent vertices {v1, v2} and all edges between V (G′ − v)
and {v1, v2}. Additionally, for all pairs x, y ∈ V (G′) add all edges between {x1, x2}
and {y1, y2}. Then i(H1) = 3, the graph H1 is 3-i-critical, and G is an induced
subgraph of H1.

It can be seen from considering G = K3 that H1 may not be i-bicritical. We now
use a similar construction to obtain a similar result for i-bicritical graphs.

Let G be a graph. For j ≥ 1, let Hj = Hj(G) be the graph constructed from the
disjoint union G′ = G∪Kj+2 as follows: For each vertex v ∈ V (G′) add independent
vertices Iv = {v1, v2, . . . , vj+1} and add all edges between V (G′ − v) and Iv. Addi-
tionally, for all pairs x, y ∈ V (G′) add all edges between Ix and Iy. Observe that
i(Hj) = j + 2, and that G is an induced subgraph of Hj .

Theorem 3.2. For j ≥ 2, the graph Hj is (j + 2)-i-critical and (j + 2)-i-bicritical.

Proof. Consider z ∈ V (Hj). If z ∈ V (G′), then Iz is an independent dominating set
of Hj − z. If z ∈ Iv for some v ∈ V (G′), then {v} ∪ (Iv − {z}) is an independent
dominating set of Hj − z. Thus i(Hj − z) ≤ j + 1 < i(Hj) so Hj is i-critical.

Now consider {x, y} ⊆ V (Hj). If {x, y} ⊆ V (G′), then Ix is an independent
dominating set of Hj − {x, y}. If x ∈ V (G′) and y ∈ Iz for some z ∈ V (G′),
then Ix − {y} is an independent dominating set of Hj − {x, y}. If x ∈ Iu for some
u ∈ V (G′) and y ∈ Iv for some v ∈ V (G′), then {u} ∪ (Iu − {x}) is an independent
dominating set of Hj − {x, y}. Finally, if {x, y} ⊆ Iv for some v ∈ V (G′), then
{v} ∪ (Iv − {x, y}) is an independent dominating set of Hj − {x, y}. It now follows
that Hj is i-bicritical.

Corollary 3.3. For any graph G and for all k ≥ 4, there exists a k-i-bicritical graph
H such that G is an induced subgraph of H.

When i(G) ≥ 4, the graph H can be chosen so that i(H) = i(G). Consequently,
for k ≥ 4 there is no characterization of the k-i-bicritical graphs in terms of a finite
collection of forbidden subgraphs. It is unknown whether the same statement holds
when k = 3.

Since the characterization problem is difficult it is useful to know ways to pro-
duce i-bicritical graphs. In the next several sections, operations such as disjoint
union, join, and coalesence are used to present a collection of methods to construct
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i-bicritical graphs. Many of the constructions presented rely on the use of already
known i-bicritical graphs to create new i-bicritical graphs.

We conclude this section by noting that a slight strengthening of the statement
about i-critical graphs is also a consequence of Theorem 3.2.

Corollary 3.4. For any graph G and for all k ≥ 3, there exists a k-i-critical graph
H such that G is an induced subgraph of H.

4 Construction of i-Bicritical Graphs via Disjoint Union

Let G1, G2, . . . , Gk be disjoint graphs. Note that i(
k⋃

t=1

Gt) =
k∑

t=1

i(Gt). Also note that

K1 is both i-critical and i-bicritical.

Theorem 4.1. Let G1, G2, . . . , Gk be disjoint graphs. For k ≥ 2, the graph
⋃k

t=1 Gt

is i-bicritical if and only if each of G1, G2, . . . , Gk is i-bicritical and at most one of
these graphs is not i-critical.

Proof. For convenience, let G =
k⋃

t=1

Gt.

Suppose G is i-bicritical. Any component of G which is isomorphic to K1 is
i-bicritical. Let 1 ≤ j ≤ k and suppose |V (Gj)| ≥ 2. Let {u, v} ⊆ V (Gj). By

hypothesis, i(G− {u, v}) ≤ i(G)− 1. But i(G− {u, v}) =
(

k∑
t=1,t�=j

i(Gt)

)
+ i(Gj −

{u, v})), so that

1 ≤ i(G)− i(G− {u, v}) = i(Gj)− i(Gj − {u, v}).

Therefore Gj is i-bicritical. Therefore each of G1, G2, . . . , Gk is i-bicritical.

Suppose u ∈ V (Gj) and v ∈ V (G�) for some 1 ≤ j < � ≤ k. Then

i(G)− 1 ≥ i(G− {u, v}) =
(

k∑
t=1,t�=j,�

i(Gt)

)
+ i(Gj − u) + i(G� − v),

so that

1 ≤ i(G)− i(G− {u, v}) = i(Gj)− i(Gj − u) + i(G�)− i(G� − v).

Since u and v are arbitrary vertices of Gj and G�, respectively, at most one of these
graphs is not i-critical. Therefore at most one of G1, G2, . . . , Gk is not i-critical.

For the converse, suppose each of G1, G2, . . . , Gk is i-bicritical and at most one
of them is not i-critical. Without loss of generality, say Gk may not be i-critical.
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Consider G − {u, v} for some {u, v} ⊆ V (G). If u, v ∈ V (Gj) for some 1 ≤ j ≤ k,
then

i(G− {u, v}) =

(
k∑

t=1,t�=j

i(Gt)

)
+ i(Gj − {u, v})

≤
(

k∑
t=1,t�=j

i(Gt)

)
+ i(Gj)− 1

= i(G)− 1

If u ∈ V (Gj) and v ∈ V (G�) for some 1 ≤ j < � ≤ k, then

i(G− {u, v}) =

(
k∑

t=1,t�=j,�

i(Gt)

)
+ i(Gj − u) + i(Gl − v)

≤ i(G)− 1

since at most one ofGj andGl is not i-critical. It now follows thatG is i-bicritical.

5 Construction of i-Bicritical Graphs via Join

Let G and H be disjoint graphs. Recall that the join of G and H , denoted G ∨H ,
is the graph with vertex set V (G ∨ H) = V (G) ∪ V (H) and edge set E(G ∨ H) =

E(G) ∪ E(H) ∪ {uv : u ∈ V (G) and v ∈ V (H)}. The graph
k∨

t=1

Gt is defined

recursively by
k∨

t=1

Gt =

(
k−1∨
t=1

Gt

)
∨Gk. Note that i(

k∨
t=1

Gt) = min{i(Gt), 1 ≤ t ≤ k}.
Note that, if G � K1, then K1 ∨G is not i-bicritical. Thus, in studying the join

of graphs, we only consider graphs with at least two vertices.

Theorem 5.1. Let G1, G2, . . . , Gk be disjoint graphs with |V (Gt)| ≥ 2 for each

t ∈ {1, 2, . . . , k}. Then
k∨

t=1

Gt is i-bicritical if and only if each of G1, G2, . . . , Gk is

i-bicritical and either

(a) i(G1) = i(G2) = · · · = i(Gk), and at most one of G1, G2, . . . , Gk is not i-
critical, or

(b) i(G1) − 1 = i(G2) = · · · = i(Gk), the graph G1 has no edges, and each of
G2, G3, . . . , Gk is i-critical.

Proof. Let G =
k∨

t=1

Gt.

Suppose G is i-bicritical. Suppose, without loss of generality, that G1 is not i-
bicritical. Let {x, y} ⊆ V (G1) such that i(G1 − {x, y}) ≥ i(G1). Let D be an i-set
of G−{x, y}. By definition of join, D ⊆ V (Gj) for some subscript j. If D ⊆ V (G1),
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then i(G− {x, y}) = i(G1 − {x, y}) ≥ i(G1) ≥ i(G), a contradiction. If D ⊆ V (Gj)
for j > 1, then i(G − {x, y}) = i(Gj) ≥ i(G), a contradiction. Therefore, each of
G1, G2, . . . , Gk is i-bicritical.

We claim that at most one of G1, G2, . . . , Gk is not i-critical. Let x ∈ V (Gj) and
y ∈ V (G�), where j �= �. Let D be an i-set of G − {x, y}. As above, D ⊆ V (Gp)
for some subscript p. We show that, further, p ∈ {j, �}. Suppose not. Then i(G) ≤
i(Gp) = i(G − {x, y}) ≤ i(G)− 1, a contradiction. Thus, p ∈ {j, �}. If D ⊆ V (Gj),
then i(G) − 1 ≥ i(G − {x, y}) = i(Gj − x). Therefore, Gj is i-critical. Similarly, if
D ⊆ V (G�) then G� is i-critical. It follows that at least one graph among each pair
of graphs chosen from G1, G2, . . . , Gk is i-critical. This proves the claim.

We now claim that independent domination numbers of G1, G2, . . . , Gk differ by
at most one. Suppose, without loss of generality, that i(G1) ≥ i(G2)+2. Let {x, y} ⊆
V (G1) and let D be an i-set of G−{x, y}. As above, D ⊆ V (Gp) for some subscript
p. If D ⊆ V (G1), then i(G − {x, y}) = i(G1 − {x, y}) ≥ i(G1) − 2 ≥ i(G2) ≥ i(G),
a contradiction. If D ⊆ V (Gj) for j > 1, then i(G − {x, y}) = i(Gj) ≥ i(G), a
contradiction. This proves the claim.

We claim that either i(G1) = i(G2) = · · · = i(Gk) or i(G1) − 1 = i(G2) =
· · · = i(Gk). The statement follows immediately from the argument above if k = 2.
Suppose k ≥ 3 and, without loss of generality, i(G1) + 1 = i(G2) = i(G3). Let
x ∈ V (G2) and y ∈ V (G3), and let D be an i-set of G− {x, y}. If D ⊆ V (G2 − x),
then i(G1) − 1 ≥ i(G) − 1 ≥ i(G − {x, y}) = i(G2 − x) ≥ i(G2) − 1, so that
i(G1) ≥ i(G2), a contradiction. The case where D ⊆ V (G3 − y) similarly leads to
a contradiction. If D ⊆ V (Gj) for j �∈ {2, 3}, then i(G − {x, y}) = i(Gj) ≥ i(G), a
contradiction. Since independent domination numbers of G1, G2, . . . , Gk differ by at
most one, the claim is now proved.

Finally, we claim that if i(G1) − 1 = i(G2) = · · · = i(Gk), then G1 has no edges
and each of G2, G3, . . . , Gk is i-critical. Suppose that i(G1)−1 = i(G2) = · · · = i(Gk)
and G1 has at least one edge. Let xy ∈ E(G1) and let D be an i-set of G− {x, y}.
Note that i(G1 − {x, y}) ≥ i(G1) − 1 since xy ∈ E(G1). If D ⊆ V (G1), then
i(G − {x, y}) = i(G1 − {x, y}) ≥ i(G1) − 1 = i(G2) = i(G), a contradiction. If
D ⊆ V (Gj) for j > 1, then i(G− {x, y}) = i(Gj) ≥ i(G), a contradiction. Hence G1

has no edges.
Continuing the proof of the claim, suppose, without loss of generality, that G2 is

not i-critical. Let x ∈ V (G1) and y ∈ V (G2) such that i(G2−y) ≥ i(G2). LetD be an
i-set ofG−{x, y}. IfD ⊆ V (G1), then i(G−{x, y}) = i(G1−x) = i(G1)−1 = i(G2) ≥
i(G), a contradiction. If D ⊆ V (G2), then i(G−{x, y}) = i(G2− y) ≥ i(G2) ≥ i(G),
a contradiction. If D ∩ V (Gj) �= ∅ for j > 2, then i(G − {x, y}) = i(Gj) ≥ i(G),
a contradiction. Therefore each of G2, G2, . . . , Gk is i-critical. The claim is now
proved.

Now suppose each of G1, G2, . . .Gk is i-bicritical and either (a) or (b) holds. Let
{x, y} ⊆ V (G).

Suppose first that x, y ∈ V (Gj) for some j. If (a) holds, then suppose, without
loss of generality, that j = 1. Then i(G−{x, y}) = i(G1−{x, y}) ≤ i(G1)−1 < i(G).
Now suppose (b) holds. If j = 1, then since G1 has no edges and i(G) = i(G1)− 1,
we have i(G−{x, y}) = i(G1−{x, y}) = i(G1)− 2 = i(G)− 1 < i(G). If j > 1, then
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since i(G) = i(Gj), we have i(G− {x, y}) ≤ i(Gj)− 1 = i(G)− 1 < i(G).
Now suppose that x ∈ V (Gj) and y ∈ V (G�), where 1 ≤ j < � ≤ k. If (a) holds,

then since at most one of G1, G2, . . . , Gk is not i-critical we have i(G − {x, y}) ≤
min{i(Gj−x), i(G�−y)} < i(G). Suppose (b) holds. Then, since � > 1, i(G) = i(G�),
and G� is i-critical, we have i(G− {x, y}) = i(G� − y) = i(G�)− 1 < i(G).

It now follows that G is i-bicritical.

6 Construction of i-Bicritical Graphs via Coalescence

Let G and H be disjoint graphs. Let x ∈ V (G) and y ∈ V (H). The coalescence G
and H with respect to x and y is the graph G ·xy H with vertex set V (G ·xy H) =
(V (G) − {x}) ∪ (V (H) − {y}) ∪ {vxy}, where vxy /∈ V (G) ∪ V (H), and edge set
E(G ·xy H) = E(G− x)∪E(H − y)∪ {vxyw : w ∈ NG(x) ∪NH(y)}. If the context is
clear, or if the vertices x and y are not important, G ·H is used instead of G ·xy H .

We first consider the independent domination number of G ·xy H and show that
i(G) + i(H) − 1 ≤ i(G ·xy H) ≤ i(G) + i(H). When G ·xy H is i-bicritical, either
possibility can arise. This is in contrast to the situation when G ·xy H is i-critical.
In that case the only possibility is that i(G ·xy H) = i(G) + i(H)− 1. We are able to
give necessary and sufficient conditions for G ·xyH to be i-bicritical with independent
domination number i(G)+ i(H)−1, and necessary conditions for i-bicriticality when
i(G ·xy H) = i(G) + i(H).

Proposition 6.1. For any disjoint graphs G and H with x ∈ V (G) and y ∈ V (H),
we have i(G ·xy H) ≥ i(G) + i(H)− 1.

Proof. Let S be an i-set of G ·xy H . Let SG = S ∩ V (G) and SH = S ∩ V (H). Note
that vxy, the vertex arising from the identification of x and y, is in neither of these
sets as it is not an element of V (G) ∪ V (H).

If vxy ∈ S, then SG ∪ {x} is an independent dominating set of G and SH ∪ {y}
is an independent dominating set of H . Thus, i(G ·xy H) = |S| = |SG|+ |SH |+ 1 ≥
i(G)− 1 + i(H)− 1 + 1.

If vxy /∈ S, then a vertex of either G − x or H − y dominates vxy. Suppose a
vertex of G−x dominates vxy. Then SG is an i-set of G and SH is an i-set of H − y.
Since i(H−y) ≥ i(H)−1, we have i(G ·xyH) = |S| = |SG|+ |SH | ≥ i(G)+ i(H)−1.

Thus, in either case the inequality holds.

Proposition 6.2. Let G and H be disjoint graphs with x ∈ V (G) and y ∈ V (H).
If x is an i-critical vertex of G or y is an i-critical vertex of H, then i(G ·xy H) =
i(G) + i(H)− 1.

Proof. It suffices to prove the statement only in the case where x is an i-critical
vertex of G.

Suppose first that y is in an i-set of H . Then i(H) vertices of H , including y, can
be used to dominate (H − y) ∪ {vxy}. Since x is an i-critical vertex of G, i(G) − 1
vertices of G can be used to dominate G−x. Further, since x is i-critical in G, none
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of these vertices of G are adjacent to x. Thus, i(G ·xy H) ≤ i(G) + i(H) − 1, and
equality holds by Proposition 6.1.

Now suppose y is not in any i-set of H . Let SH be an i-set of H . The vertex
vxy is dominated by SH and, again, i(G)− 1 vertices of G can be used to dominate
G−x. Thus, i(G ·xyH) ≤ i(G)+ i(H)−1, and equality holds by Proposition 6.1.

Propositions 6.1 and 6.2 imply that if one of the vertices of identification x or y
is i-critical in its corresponding graph, then i(G ·xy H) = i(G) + i(H)− 1. It is not
necessary for either to be i-critical in its corresponding graph, however, as we now
show.

Proposition 6.3. Let G and H be disjoint graphs. If x is in an i-set of G and y is
in an i-set of H, then i(G ·xy H) = i(G) + i(H)− 1.

Proof. Let SG be an i-set of G such that x ∈ SG and let SH be an i-set of H such
that y ∈ SH . Then S = (SG ∪ SH ∪ {vxy}) \ {x, y} is an independent dominating set
of G ·xy H . Thus, i(G ·xy H) = i(G) + i(H)− 1.

We now consider the two remaining possibilities: neither x is an i-set of G nor y
is in an i-set of H , and one of these vertices is in an i-set of its graph and the other
is not.

Proposition 6.4. Let G and H be disjoint graphs. If x is not in any i-set of G and
y is not in any i-set of H, then i(G ·xy H) = i(G) + i(H).

Proof. Since the union of an i-set ofG and an i-set ofH is an independent dominating
set of G ·xy H , we have i(G ·xy H) ≤ i(G) + i(H).

Since x is not in any i-set of G, it is not i-critical in G. Likewise, y is not i-critical
in H . Let S be an i-set of i(G ·xy H). Let SG = S ∩ V (G) and SH = S ∩ V (H).

Suppose vxy ∈ S. Then S ′
G = SG ∪ {x} and S ′

H = SH ∪ {y} are independent
dominating sets of G and H , respectively. Since x ∈ S ′

G and y ∈ S ′
H , neither of these

are i-sets. Therefore |S| > i(G) + i(H)− 1, and thus |S| = i(G) + i(H).
Now suppose that vxy /∈ S. If SG dominates vxy then SG is an independent

dominating set of G and |SG| ≥ i(G). Hence SH is an independent dominating set of
H − y so |SH | ≥ i(H − y) = i(H). Thus |S| ≥ i(G) + i(H). If SG does not dominate
vxy, then SH does and the same statement follows similarly.

If x is in an i-set of G and y is not in any i-set of H , it is possible to have either
i(G ·xy H) = i(G) + i(H)− 1 or i(G ·xy H) = i(G) + i(H). For example, if G = K3,3

and H = K3,4, then for any vertex x of K3,3 and for any vertex y of degree 3 in K3,4,
we have i(G ·xy H) = 5 = i(G) + i(H) − 1. If G = K3,3[v] (the expansion via v of
K3,3, where v is any vertex in K3,3) and H = K3,4 where x is v′, the vertex added
to K3,3 in the expansion, and y is a vertex of degree 3 in K3,4, then G ·xy H has
i(G ·xy H) = 6 = i(G) + i(H). These two cases are pictured below in Figure 3.
The following result, when combined with the propositions above, helps explain when
these two cases arise.
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Figure 3: The graphs K3,3 ·K3,4 and K3,3[v] ·K3,4.

Proposition 6.5. Let G and H be disjoint graphs. Suppose x is in an i-set of G, y
is not in any i-set of H. Then

(a) if i(G ·xy H) = i(G) + i(H)− 1, then x is i-critical in G; and

(b) if i(G ·xy H) = i(G) + i(H), then x is not i-critical in G.

Proof. Suppose i(G ·xyH) = i(G)+ i(H). Then, by Proposition 6.2, x is not i-critical
in G.

Now suppose i(G ·xy H) = i(G) + i(H) − 1. Let S be an i-set of G ·xy H . Let
SG = S ∩ V (G) and SH = S ∩ V (H).

We claim vxy �∈ S. Suppose the contrary. Then SG ∪ {x} and SH ∪ {y} are
independent dominating sets of G and H , respectively. Thus |SG ∪ {x}| ≥ i(G) and
|SH ∪ {y}| > i(H), as y is not in an i-set of H . Hence |S| ≥ i(G) + i(H) + 1− 1 =
i(G) + i(H), a contradiction. This proves the claim.

Next, we claim SG does not dominate vxy. Suppose the contrary. Then SG and SH

are independent dominating sets G and H − y, respectively. Therefore, |SG| ≥ i(G)
and |SH| ≥ i(H), which implies |S| ≥ i(G) + i(H), a contradiction. This proves the
claim.

It now follows that SG and SH are independent dominating sets of G− x and H ,
respectively. Thus |SG| ≥ i(G)−1 and |SH | ≥ i(H). Since i(G·xyH) = i(G)+i(H)−1
we have that |SG| = i(G)− 1 and |SH | = i(H). Therefore, x is i-critical in G.

Having considered the possibilities for the independent domination number of the
coalescence of G and H , we now consider the situations in which G ·H is i-bicritical.

Theorem 6.6. Let G and H be disjoint graphs. Let x ∈ V (G) and y ∈ V (H)
each have degree at least one. The graph G ·xy H is i-bicritical with i(G ·xy H) =
i(G) + i(H)− 1 if and only if

(a) G and H are i-bicritical;

(b) x is i-critical in G, and y is i-critical in H; and

(c) G or H is i-critical.
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Proof. Suppose that G ·xy H is i-bicritical with i(G ·xy H) = i(G) + i(H)− 1.
We first show that (b) holds. By symmetry it suffices to show that y is an i-critical

vertex ofH . Let u ∈ NG(x). Then, since u and x are adjacent, i(G·xyH−{u, vxy}) =
(i(G) + i(H) − 1) − 1. Hence, i(G) + i(H) − 2 = i(G − {u, x}) + i(H − y) ≥
i(G)− 1 + i(H)− 1. Therefore, i(G− {u, x}) = i(G)− 1 and i(H − y) = i(H)− 1,
so y is i-critical in H .

Next, we show that (a) holds. By symmetry it suffices to show that G is i-
bicritical. Suppose G is not i-bicritical and let {w, z} ⊆ V (G) be such that i(G −
{w, z}) ≥ i(G). Let S be an i-set of G ·xy H − {w, z} and let SG = S ∩ V (G) and
SH = S ∩V (H). Note that vxy belongs to neither SG nor SH , as it is not an element
of V (G) ∪ V (H).

Suppose x = w. Then, i(G ·xy H − {vxy, z}) = i(G − {w, z}) + i(H − y) ≥
i(G) + i(H)− 1 = i(G ·xy H), a contradiction to the i-bicriticality of G ·xy H .

Now suppose x /∈ {w, z}. If vxy ∈ S then SG ∪{x} and SH ∪{y} are independent
dominating sets of G−{w, z} and H , respectively. Therefore, |S| ≥ i(G)+ i(H)−1,
a contradiction. Hence we may assume vxy /∈ S. If SG dominates x, then SG

and SH are independent dominating sets of G− {w, z} and H − y, respectively, and
|S| ≥ i(G)+i(H)−1, a contradiction. If SG does not dominate x, then SG and SH are
independent dominating sets of G−{w, z, x} and H , respectively. Thus |SH | ≥ i(H)
and |SG| ≥ i(G − {w, z, x}) = i((G − {w, z})− x) ≥ i(G− {w, z})− 1 ≥ i(G)− 1.
Therefore, |S| ≥ i(G) + i(H)− 1, a contradiction. This completes the proof that (a)
holds.

Finally, we show that (c) holds. Suppose neither G nor H is i-critical. By (b),
there exists w ∈ V (G− x) such that i(G − w) ≥ i(G) and z ∈ V (H − y) such that
i(H − z) ≥ i(H). Let S be an i-set of G ·xy H − {w, z} and let SG = S ∩ V (G) and
SH = S ∩ V (H).

If vxy ∈ S, then SG∪{x} is an independent dominating set of G−w and SH ∪{y}
is an independent dominating set of H − z. Therefore |S| ≥ i(G) + i(H) − 1, a
contradiction.

On the other hand, suppose vxy /∈ S. Since S dominates vxy, either SG dominates
x or SH dominates y. By symmetry, assume the former. Thus, SG is an independent
dominating set of G − w and SH is an independent dominating set of H − {y, z}.
In this case, |SG| ≥ i(G), and |SH | ≥ i(H − {y, z}) ≥ i(H) − 1 by (a). Therefore
|S| ≥ i(G) + i(H)− 1, a contradiction. This completes the proof that (c) holds, and
the proof that if G ·xy H is i-bicritical with i(G ·xy H) = i(G) + i(H) − 1 than (a),
(b) and (c) hold.

Now suppose that (a), (b) and (c) hold. Let {w, z} ⊆ V (G ·xy H) and consider
G ·xy H − {w, z}. We want to show that i(G ·xy H − {w, z}) ≤ i(G) + i(H)− 2.

Suppose first that vxy = w, say. By symmetry we may assume z ∈ V (G). Let SG

be an i-set of G− {x, z} and SH be an i-set of H − y. Then i(G ·xy H − {w, z}) ≤
|SG|+ |SH | ≤ i(G)− 1 + i(H)− 1, as needed.

Hence, in what follows, we may assume vxy �∈ {w, z}.
Suppose that {w, z} ⊆ V (G). Let SG be an i-set of G − {w, z}. Then SG

dominates x. Let SH be an i-set of H − y. Since y is i-critical in H , we have
that NH(y) ∩ SH = ∅. Thus, S = SG ∪ SH is an independent dominating set of
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G ·xy H−{w, z} and i(G ·xy H−{w, z}) = i((G− {w, z}) ·xy H) ≤ |S| ≤ i(G) − 1 +
i(H)− 1 = i(G) + i(H)− 2, as needed.

If {w, z} ⊆ V (H) we similarly obtain an independent dominating set of the
required size.

Finally, suppose w ∈ V (G)− {x} and z ∈ V (H)− {y}. By (c), we may assume
without loss of generality that G is i-critical. Let SH be an i-set of H − {z, y}.
Then |SH | ≤ i(H) − 1. If SH dominates y, then let SG be an i-set of G − {w, x}.
Then |SG| ≤ i(G) − 1. By definition of SG and SH we have that SG ∪ SH is an
independent dominating set of G ·xy H − {w, z}, and i(G ·xy H−{w, z}) ≤ |SG ∪
SH | ≤ i(G)− 1 + i(H) − 1 = i(G) + i(H)− 2, as needed. If SH does not dominate
y, let SG be an i-set of G − w. Then |SG| ≤ i(G) − 1 by (c). By definition of
SG and SH we have that SG ∪ SH is an independent set of G ·xy H − {w, z}, and
i(G ·xy H−{w, z}) ≤ |SG ∪ SH | ≤ i(G)− 1 + i(H)− 1 = i(G) + i(H)− 2, as needed.

It follows from the above that G ·xy H is i-bicritical.

The previous theorem is not true if x can be an isolated vertex of G. For example,
let G = K2 and H = K2,3 be disjoint graphs. For any vertices x ∈ V (G) and
y ∈ V (H), the graph G ·xyH ∼= K1∪K2,3 is i-bicritical with independent domination
number 3 = i(G) + i(H) − 1. But statement (b) does not hold when y belongs to
the independent set of size 3 in H . No such vertex is i-critical in H .

We now give an example to show that, in Theorem 6.6, if G is i-critical and H
is not i-critical, then it is necessary for vertex y to be i-critical in H . Let G and H
be the disjoint graphs shown in Figure 4 (overleaf). Note that G is both i-bicritical
and i-critical, and H is i-bicritical. However, the vertex y is not i-critical in H . The
coalescence G ·xy H has i(G ·xy H) = 6. On the other hand, G ·xy H − {v, k} ∼=
K3,3 ∪K2,2 ∪K1 (disjoint union), thus i(G ·xy H − {v, k}) = 6. Therefore, G ·xy H is
not i-bicritical.

Using a proof similar to the one in Theorem 6.6, we can show the following.

Theorem 6.7. Let G and H be disjoint graphs with x ∈ V (G) and y ∈ V (H). If
G ·xy H is γ-bicritical with γ(G ·xy H) = γ(G) + γ(H)− 1 then x is γ-critical in G,
y is γ-critical in H, both G and H are γ-bicritical, and at most one of G and H is
not γ-critical.

We are also able to give necessary and sufficient conditions for G ·xyH to be both
i-critical and i-bicritical. In light of Theorem 6.6, the following theorem is useful if
the coalescence construction is applied iteratively to a collection of graphs.

Theorem 6.8. Let G and H be disjoint graphs with x ∈ V (G) and y ∈ V (H). The
graph G ·xy H is i-critical and i-bicritical if and only if

(a) i(G ·xy H) = i(G) + i(H)− 1;

(b) G and H are i-critical; and

(c) G and H are i-bicritical.
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Figure 4: Showing the condition that y is critical in H is needed in Theorem 6.6.

Proof. Suppose G ·xy H is i-critical and i-bicritical. Then i(G) + i(H)− 1 ≤ i(G ·xy
H) ≤ i(G)+i(H). Suppose equality holds in the upper bound. Then, by Proposition
6.2, x is not i-critical in G and y is not i-critical in H . Any independent dominating
set of G ·xy H − vxy must be the union of an independent dominating set Sx of
G − x and an independent dominating set Sy of H − y. Since x is not i-critical in
G, |Sx| ≥ i(G). Similarly, |Sy| ≥ i(H). Thus i(G ·xy H − vxy) ≥ i(G) + i(H), a
contradiction to i-criticality. Hence, (a) holds.

It now follows from Theorem 6.6 that condition (c) holds.
It remains to show that (b) holds. By symmetry it suffices to show that G is

i-critical. The vertex x is i-critical in G by Theorem 6.6. Suppose G is not i-
critical and let w ∈ V (G − x) be such that i(G − w) ≥ i(G). Since w can not
be an i-critical vertex of the i-bicritical graph G ·xy H , it follows that G ·xy H − w
is i-critical, it has an independent dominating set S of size i(G) + i(H) − 2. Let
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SG = S ∩ V (G) and SH = S ∩ V (H). Note that vxy does not belong to either of
these sets as it is not an element of V (G) ∪ V (H). If vxy is in S, then SG ∪ {x}
and SH ∪ {y} are independent dominating sets of G−w and H , respectively. Thus,
i(G ·xy H − w) = |SG| + |SH | + 1 ≥ i(G) − 1 + i(H) − 1 + 1 = i(G) + i(H) − 1,
a contradiction. Suppose, then, that vxy �∈ S. If SG dominates x, then SG is an
independent dominating set of G − w and SH is an independent dominating set of
H− y, so that i(G ·xy H−w) = |SG|+ |SH| ≥ i(G)+ i(H)−1, a contradiction. If SG

does not dominate x, then it is an independent dominating set of G− {w, x}. SH is
an independent dominating set of H . In this case, i(G ·xy H − w) = |SG| + |SH | ≥
i(G)− 1 + i(H), a contradiction. This completes the proof that (b) holds, and that
(a), (b), and (c) hold.

Now suppose (a), (b) and (c) hold. Then G ·xy H is i-bicritical by Theorem 6.6.
It remains to show that it is also i-critical. Let w ∈ V (G ·xy H). If w = vxy, then the
union of an independent dominating set of G−x and an independent dominating set
of H − y is an independent dominating set of G ·xy H−w of size i(G)− 1+ i(H)− 1,
as needed. Otherwise, without loss of generality suppose w ∈ V (G − x). Let SG

be an i-set of G − w. Since G is i-critical, |SG| = i(G) − 1, and SG dominates x.
Let SH be an i-set of H − y. Then, since H is i-critical, |SH | = i(H) − 1, and
SH ∩NH(y) = ∅. Therefore SG∪SH is an independent dominating set of G ·xyH−w
of size i(G) − 1 + i(H) − 1, as needed. Therefore G is i-critical, and the proof is
complete.

It remains to consider the situation where i(G ·xy H) = i(G) + i(H). By Proposi-
tions 6.4 and 6.5, there are two cases: (i) x is not in any i-set of G and y is not in any
i-set of H ; and (ii) x is in an i-set of G but is not i-critical in G, and y is not in any
i-set of H . We are able to give necessary and sufficient conditions for i-bicriticality
of G ·xy H in the first case, but not in the second case.

Theorem 6.9. Let G and H be disjoint graphs. Let x ∈ V (G) and y ∈ V (H) be
such that x is not in any i-set of G, and y is not in any i-set of H. Then G ·xy H is
i-bicritical if and only if

(a) G and H are i-bicritical;

(b) G − x is i-bicritical or there exists an independent set DH ⊆ V (H) such that
y ∈ DH and |DH | = i(H) + 1; and

(c) H − y is i-bicritical or there exists an independent set DG ⊆ V (G) such that
x ∈ DG and |DG| = i(G) + 1.

Proof. By our assumptions on x and y we have i(G ·xy H) = i(G) + i(H). Further,
x is not an i-critical vertex of G and y is not an i-critical vertex of H .

Suppose G ·xy H is i-bicritical. Let u, v ∈ V (G − x) ∪ {vxy}. The graph G ·xy
H −{u, v} has an i-set, S, of size at most i(G) + i(H)− 1. Let SG = S ∩ V (G), and
SH = S ∩ V (H). There are two cases to consider, depending on whether vxy ∈ S.
We show that, in each case, i((G − x) − {u, v}) ≤ |SG| ≤ i(G) − 1, so that G is
i-bicritical. The i-bicriticality of H is established similarly.
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Suppose vxy �∈ S (this case must arise when vxy ∈ {u, v}, and may arise at other
times). Then SH is an independent dominating set of H , so that |SH | ≥ i(H).
Similarly, SG is an independent dominating set of G − {u, v}, and |SG| ≤ i(G) +
i(H)− 1− |SH | ≤ i(G)− 1.

Now suppose vxy ∈ S. Then SH ∪ {y} is an independent dominating set of H .
Since y is not in any i-set of H , we have |SH | ≥ i(H) + 1. Similarly, SG ∪ {x} is an
independent dominating set of G− {u, v}, and |SG| ≤ i(G) + i(H)− 1− |SH | − 1 ≤
i(G)− 1. This completes the proof that statement (a) holds.

We now show that (b) holds. Suppose that G− x is not i-bicritical. Then there
exist u, v ∈ V (G − x) such that i((G − x) − {u, v}) ≥ i(G − x) = i(G) (since (a)
holds, we have i(G − x) ≤ i(G) by Theorem 2.1, and equality holds since x is not
in any i-set of G). Since G ·xy H is i-bicritical, it has an i-set S of size at most
i(G) + i(H)− 1. Let SG = S ∩ V (G) and SH = S ∩ V (H).

We claim that vxy ∈ S. Suppose not. Then SH is an independent dominating set
of H − y, and |SH | ≥ i(H). It then follows that SG is an independent dominating
set of G− x with |SG| < i(G− x), a contradiction. This proves the claim.

Since x is not in any i-set of G, we must have that SG ∪ {x} has size i(G) − 1
and dominates neither u nor v. The set SH ∪ {y} is an independent dominating set
of H . By our assumption on y and work above, we have

i(H) + 1 ≤ |SH ∪ {y}| = |S| − |SG|+ 1 ≤ i(G) + i(H)− 1− (i(G)− 2) = i(H) + 1.

Hence (b) holds. Statement (c) is shown to hold by a similar argument.
Now suppose (a), (b) and (c) hold. Let u, v ∈ V (G ·xy H).
Suppose u, v ∈ V (G − x). If G − x is i-bicritical, then the union of an i-set of

(G − x) − {u, v} and an i-set of H (which exists, and necessarily dominates y but
does not contain it since y is not in any i-set of H), is an independent dominating set
of G ·xy H −{u, v} of size at most i(G)− 1+ i(H). Suppose, then, that G− x is not
i-bicritical. If there is an i-set of G−{u, v}, of size at most i(G)− 1 which does not
contain x then, as above there is an independent dominating set of G ·xy H − {u, v}
of size i(G) − 1 + i(H). Otherwise, every i-set of SG ⊆ G − {u, v} of size at most
i(G) − 1 contains x. By (b) there exists an independent set DH ⊆ V (H) such that
y ∈ DH and |DH | = i(H) + 1. Then SG ∪ DH is an independent dominating set
of G ·xy H − {u, v} of size at most (i(G) − 1) + (i(H) + 1) − 1, as needed. Similar
considerations apply when u, v ∈ V (H − y).

Suppose u = vxy and v ∈ V (G − x). Since G is i-bicritical there exists an i-set
SG ⊆ V (G)−{x, v} of size at most i(G)−1. Let SH be any i-set ofH . By hypothesis,
y �∈ SH . Then SG ∪ SH is an independent dominating set of G ·xy H − {vxy, v} =
G ·xy H − {u, v} of size at most i(G)− 1 + i(H), as needed. Similar considerations
apply when u = vxy and v ∈ V (H − y).

Finally, suppose u ∈ V (G) and v ∈ V (H). Since G is i-bicritical, G− {x, u} has
an i-set, SG, of size at most i(G)−1. Similarly, H−{y, v} has an i-set of size, SH , at
most i(H)− 1. Consider the independent set SG ∪SH . If it dominates vxy, then it is
an independent dominating set of G ·xyH−{u, v} of size at most i(G)−1+ i(H)−1.
Otherwise, SG ∪ SH ∪ {vxy} is an independent dominating set of G ·xy H − {u, v} of
size at most (i(G)− 1) + (i(H)− 1) + 1. This completes the proof.
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Corollary 6.10. Let G and H be disjoint graphs. Let x ∈ V (G) and y ∈ V (H) be
such that x is not in any i-set of G, and y is not in any i-set of H. If the graphs
G,H,G− x and H − y are all i-bicritical, then G ·xy H is i-bicritical

Let m,n ≥ 3 be integers. We can obtain families of i-bicritical graphs by letting
G = Km,m+1 and H = Kn,n+1, and x, y be vertices in the larger independent set of
G,H , respectively. By Corollary 6.10, the graph G ·xy H is i-bicritical. Furthermore,
this graph has m+n+1 vertices which do not belong to an i-set, so the corollary can
be applied again. If the other graph in the coalescence is, for example, Kt,t+1, t ≥ 3,
then similar considerations hold and the construction can be applied iteratively.

7 Construction of i-Bicritical Graphs via Identification on a
Subgraph

Let H be a graph. Let G1 and G2 be graphs for which H is the subgraph of each one
induced by V (G1) ∩ V (G2). The graph G1(H)�̂G2(H) is obtained from G1 ∪G2 by
adding the set of edges {x1x2 : x1 ∈ V (G1)− V (H) and x2 ∈ V (G2)− V (H)}. This
construction can be informally described as coinciding G1 and G2 on their common
subgraph H , and then adding all possible edges between vertices of G1 − H and
vertices of G2 −H .

It follows from the definition that i(G1(H)�̂G2(H)) = min{i(G1), i(G2)}, and
that any independent dominating set of this graph is a subset of V (G1) or of V (G2).

Let G be a graph. In what follows, we call a pair of different vertices x, y ∈ V (G)
a bicritical pair of G if i(G− {x, y}) < i(G).

We first consider the case where i(G1) = i(G2) and characterize the situations
where G1(H)�̂G2(H) is i-bicritical. Somewhat remarkably, it is not required that
G1 or G2 be bicritical.

Theorem 7.1. Let H be a graph. Let G1 and G2 be graphs for which H is the
subgraph of each one induced by V (G1) ∩ V (G2), and are such that i(G1) = i(G2).
Then, G = G1(H)�̂G2(H) is i-bicritical if and only if, for all pairs of vertices x, y,

(a) for each j ∈ {1, 2}, if x, y ∈ V (Gj −H) then x, y is an i-bicritical pair of Gj;

(b) if x, y ∈ V (H), then x, y is an i-bicritical pair of G1 or of G2;

(c) for each j ∈ {1, 2}, if x ∈ V (Gj − H) and y ∈ V (H), then either x, y is an
i-bicritical pair of Gj, or y is an i-critical vertex of G2−j+1;

and every vertex of G1−H is an i-critical vertex of G1 or every vertex of G2 −H is
an i-critical vertex of G2.

Proof. We have i(G) = i(G1) = i(G2).
Suppose G is i-bicritical. Let x, y ∈ V (G) and consider G − {x, y}. Since, by

definition of G, any independent dominating set of G is a subset of V (G1)− {x, y}
or V (G2) − {x, y}, it is clear that conditions (a) through (c) must hold. Suppose,
without loss of generality, that the vertex x ∈ V (G1 −H) is not an i-critical vertex
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of G1. Since, for any vertex y ∈ V (G2 −H) we must have i(G − {x, y}) < i(G), it
follows that y must be an i-critical vertex of G2. Therefore, every vertex of G1 −H
is an i-critical vertex of G1 or every vertex of G2 −H is an i-critical vertex of G2.

Now suppose the given conditions all hold. Let x, y ∈ V (G) and consider G −
{x, y}. If x, y ∈ V (G1 −H) then, by (a), i(G1 − {x, y}) < i(G1) = i(G). Therefore
i(G − {x, y}) < i(G). Similarly, if x, y ∈ V (G2 − H), then i(G − {x, y}) < i(G).
If x, y ∈ V (H) then, by (b), either G1 − {x, y} or G2 − {x, y} has an independent
dominating set of size less than i(G). Since any such set dominates G − {x, y}, we
have i(G − {x, y}) < i(G). Suppose x ∈ V (G1 − H) and y ∈ V (H). If x, y is an
i-bicritical pair of G1, then i(G−{x, y}) < i(G) as before. If y is an i-critical vertex
of G2, then G2−y has an independent dominating set of size less than i(G2) = i(G),
and i(G − {x, y}) < i(G) as before. A similar argument applies if x ∈ V (G2 −H2)
and y ∈ V (H). Finally, suppose x ∈ V (G1 −H) and y ∈ V (G2 −H). Then either x
is an i-critical vertex of G1 or y is an i-critical vertex of G2, and i(G−{x, y}) < i(G)
as before.

Corollary 7.2. Let H be a graph. Let G1 and G2 be graphs for which H is the
subgraph of each one induced by V (G1) ∩ V (G2), and are such that i(G1) = i(G2).
If G1 is i-critical and i-bicritical, and G2 is i-bicritical, then G1(H)�̂G2(H) is i-
bicritical.

Corollary 7.3. Let H be a graph. Let G1 and G2 be graphs for which H is the
subgraph of each one induced by V (G1) ∩ V (G2), and are such that i(G1) = i(G2).
Then G1(H)�̂G2(H) is i-critical and i-bicritical if and only if

(a) for each j ∈ {1, 2}, any pair of vertices x, y ∈ V (Gj −H) is an i-bicritical pair
of Gj;

(b) any pair of vertices x, y ∈ V (H) is an i-bicritical pair of G1 or G2;

(c) for each j ∈ {1, 2}, all vertices in V (Gj −H) are i-critical vertices of Gj; and

(d) every vertex in V (H) is an i-critical vertex of G1 or G2.

Proof. Suppose G = G1(H)�̂G2(H) is i-critical and i-bicritical. Then (a) and (b)
hold by Theorem 7.1.

Let x ∈ V (G1 −H). Since G is i-critical, and every independent dominating set
of G is a subset of V (G1) or of V (G2), we must have i(G1 − x) < i(G1), so that x is
an i-critical vertex of G1. Therefore, all vertices of G1 −H are i-critical vertices of
G1. Similarly, all vertices of G2 −H are i-critical vertices of G2.

Let x ∈ V (H). Then G − x has an independent dominating set, D, of size less
than i(G). Thus either G1 − x has an independent dominating set of size less than
i(G1) or G2−x has an independent dominating set of size less than i(G2). Therefore,
every vertex of H is an i-critical vertex of G1 or of G2.

For the converse, suppose G1 and G2 are different graphs such that V (G1) ∩
V (G2) = V (H), i(G1) = i(G2), and conditions (a) through (d) hold. Then G =
G1(H)�̂G2(H) is i-bicritical by Theorem 7.1.
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Let x ∈ V (G). If x ∈ V (G1 − H), then since x is an i-critical vertex of G1,
the graph G1 has an independent dominating set of size less than i(G1). The same
set is an independent dominating set of G − x, hence x is an i-critical vertex of G.
Similarly, if x ∈ V (G2 −H), then x is an i-critical vertex of G. And similarly again,
if x ∈ V (H), then x is an i-critical vertex of G. Therefore, G is i-critical.

More generally, let G1, G2, . . . , Gk be graphs for which H is the subgraph of each
one induced by V (Gj) ∩ V (G�), 1 ≤ j < � ≤ k. The graph G1(H)�̂G2(H)�̂ · · ·
�̂Gk(H) is the graph obtained from

k⋃
t=1

Gt by adding the set of edges {xjx� : xj ∈
V (Gj) − V (H) and x� ∈ V (G�) − V (H), j �= �}. The same graph is obtained it-
eratively as (((G1(H)�̂G2(H))�̂G3(H))�̂ · · · �̂Gk(H)). This construction can be
informally described as coinciding the graphs G1, G2, . . . , Gk on their common sub-
graph H , and then adding all possible edges between vertices in Gj −H and G�−H ,
where j �= �.

As in the case when k = 2, it follows from the definition that

i(G1(H)�̂G2(H)�̂ · · · �̂Gk(H)) = min{i(G1), i(G2), . . . , i(Gk)},

and that any independent dominating set of this graph is a subset of V (Gj) for some
j, 1 ≤ j ≤ k. Essentially the same arguments as above prove the following.

Theorem 7.4. Let H be a graph. Let G1, G2, . . . , Gk be graphs for which H is the
subgraph of each one induced by V (Gj) ∩ V (G�), 1 ≤ j < � ≤ k, and are such that
i(G1) = i(G2) = · · · = i(Gk). Then, G = G1(H)�̂G2(H)�̂ · · · �̂Gk(H) is i-bicritical
if and only if, for all pairs of vertices x, y,

(a) if x, y ∈ V (Gj −H), then x, y is an i-bicritical pair of Gj;

(b) if x, y ∈ V (H), then there exists j, 1 ≤ j ≤ k such that x, y is an i-bicritical
pair of Gj;

(c) if x ∈ V (Gj −H) and y ∈ V (H), then either x, y is an i-bicritical pair of Gj,
or there exists �, 1 ≤ � ≤ k, � �= j such that y is an i-critical vertex of G�;

and there is at most one subscript j such that not all vertices of Gj−Hj are i-critical
vertices of Gj.

Corollary 7.5. Let H be a graph. Let G1, G2, . . . , Gk be graphs for which H is the
subgraph of each one induced by V (Gj) ∩ V (G�), 1 ≤ j < � ≤ k, and are such
that i(G1) = i(G2) = · · · = i(Gk). If G1 is i-bicritical, and G2, G3, . . . , Gk are both
i-critical and i-bicritical, then G1(H)�̂G2(H)�̂ · · · �̂Gk(H) is i-bicritical.

Corollary 7.6. Let H be a graph. Let G1, G2, . . . , Gk be graphs for which H is the
subgraph of each one induced by V (Gj) ∩ V (G�), 1 ≤ j < � ≤ k, and are such that
i(G1) = i(G2) = · · · = i(Gk). Then, G = G1(H)�̂G2(H)�̂ · · · �̂Gk(H) is i-critical
and i-bicritical if and only if
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(a) for each j ∈ {1, 2, . . . , k}, any pair of vertices x, y ∈ V (Gj−H) is an i-bicritical
pair of Gj;

(b) for two vertices x, y ∈ V (H) there exists � such that x, y is an i-bicritical pair
of G�;

(c) for each j ∈ {1, 2, . . . , k}, all vertices of Gj −Hj are i-critical vertices of Gj;
and

(d) for every vertex x ∈ V (H) there exists � such that x is an i-critical vertex of
G�.

We now consider i-bicriticality of G1(H)�̂G2(H) when i(G1) �= i(G2). Note
that, if i(G1) < i(G2), then G1(H)�̂G2(H) can not be i-critical because, for any
x ∈ V (G2 −H) we have i(G1(H)�̂G2(H)− x) ≥ i(G2 − x) ≥ i(G2)− 1 ≥ i(G1).

Another definition is needed. A pair x, y of different vertices of a graph G is
called a strongly i-bicritical pair if i(G−{x, y}) = i(G)− 2. Observe that a strongly
i-bicritical pair of vertices are non-adjacent.

Theorem 7.7. Let H be a graph. Let G1 and G2 be graphs for which H is the
subgraph of each one induced by V (G1) ∩ V (G2), and are such that i(G1) < i(G2).
Then, G = G1(H)�̂G2(H) is i-bicritical if and only if

(a) either i(G2) = i(G1) + 1, or |V (G2 −H)| = 1;

(b) E(G2 − H) = ∅, and any pair of vertices x, y ∈ V (G2 − H) is a strongly
i-bicritical pair of G2;

(c) if x, y ∈ V (H), then either x, y is an i-bicritical pair of G1, or i(G2) = i(G1)+1
and x, y are a strongly i-bicritical pair of G2;

(d) G1 is bicritical; and

(e) every vertex in V (G1 −H) is i-critical.

Proof. Suppose first that G is i-bicritical. Note that i(G) = i(G1).
Suppose |V (G2 − H)| > 1 and let x, y be vertices in V (G2 − H). In order for

G − {x, y} to have an independent dominating set of size less than i(G) = i(G1),
we must have i(G2 − {x, y}) < i(G1). Since i(G1) ≤ i(G2) − 1 and i(G2) − 2 ≤
i(G2 − {x, y}), it follows that i(G2 − {x, y}) = i(G2) − 2 and i(G2) = i(G1) + 1.
Hence (a) holds. If x and y are adjacent then i(G2 − {x, y}) ≥ i(G2)− 1; hence (b)
also holds.

Let x, y ∈ V (H). An independent dominating set of G− {x, y} of size less than
i(G) = i(G1) is either a subset of V (G1) or a subset of V (G2). In the former case
x, y is an i-bicritical pair of G1. In the latter case, as above i(G2) = i(G1) + 1 and
x, y is a strongly i-bicritical pair of G2. Hence (c) holds.

Let x, y ∈ V (G1). Since an independent dominating set of G− {x, y} of size less
than i(G) = i(G1) must be a subset of V (G1), it follows that x, y is an i-bicritical
pair of G1. Hence (d) holds.
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Finally, let x ∈ V (G1 − H), and y ∈ V (G2 − H). Since i(G2 − y) ≥ i(G2) −
1 ≥ i(G1) = i(G), an independent dominating set of G − {x, y} of size less than
i(G) = i(G1) must be a subset of V (G1 − x). Hence x is an i-critical vertex of G1,
and (e) holds.

Now suppose that conditions (a) through (e) hold. Let x, y ∈ V (G) and consider
G − {x, y}. If x, y ∈ V (H), then i(G − {x, y}) < i(G) = i(G1) by (c) and (a). If
x, y ∈ V (G1−H), then i(G−{x, y}) < i(G) = i(G1) by (d). If x, y ∈ V (G2−H), then
i(G−{x, y}) < i(G) = i(G1) by (b). Finally, if x ∈ V (G1−H) and y ∈ V (G2), then
i(G− {x, y}) < i(G) = i(G1) by (d), if y ∈ V (H), and by (e) if y ∈ V (G2 −H).

A graph G is called strongly i-bicritical if i(G−{x, y}) = i(G)− 2 for all pairs of
non-adjacent vertices x, y. For example, for any n ≥ 2, the complete bipartite graph
Kn,n is strongly i-bicritical.

Corollary 7.8. Let G1 and G2 be graphs for which H is the subgraph of each one
induced by V (G1) ∩ V (G2), and are such that i(G1) = i(G2) − 1. If G1 is i-critical
and i-bicritical, and G2 is strongly i-bicritical, then G1(H)�̂G2(H) is i-bicritical.

The following is by way of analogy with Theorem 7.4. There is no analog of Corol-
lary 7.6 when the graphs being operated on do not all have the same independent
domination number.

Lemma 7.9. Let H be a graph. Let G1, G2, . . . , Gk be graphs such that H is the
subgraph of each one induced by V (Gj) ∩ V (G�), 1 ≤ j < � ≤ k, and are such that
i(G1) ≤ i(G2) ≤ · · · ≤ i(Gk). If there exist subscripts j and � such that i(G1) < i(Gj)
and i(G1) < i(G�), then, G = G1(H)�̂G2(H)�̂ · · · �̂Gk(H) is not i-bicritical.

Proof. Note that i(G) = i(G1). Let x ∈ V (Gj − H) and y ∈ V (G� − H). An
independent dominating set of G − {x, y} of size less than i(G) = i(G1) must be a
subset of V (Gj − x) or of V (G� − y). Since i(G1) ≤ i(Gj) − 1 ≤ i(Gj − x), and
similarly for G� − x, no such set exists. Therefore G is not i-bicritical.

Theorem 7.10. Let H be a graph. Let G1, G2, . . . , Gk be graphs such that G is the
subgraph of each one induced by V (Gj) ∩ V (G�), 1 ≤ j < � ≤ k, and are such that
i(G1) = i(G2) = · · · = i(Gk−1) < i(Gk). Then, G = G1(H)�̂G2(H)�̂ · · · �̂Gk(H) is
i-bicritical if and only if

(a) either i(Gk) = i(G1) + 1, or |V (Gk −H)| = 1;

(b) E(Gk − H) = ∅, and any pair of vertices x, y ∈ V (Gk − H) is a strongly
i-bicritical pair of Gk;

(c) if x, y ∈ V (H), then either there exists j, 1 ≤ j ≤ k − 1 such that x, y is an
i-bicritical pair of Gj, or x, y is a strongly i-bicritical pair of Gk;

(d) if x ∈ V (H) and y ∈ V (Gj − H) for j < k, then either x, y is an i-bicritical
pair of Gj, or there exists � �= j such that 1 ≤ � ≤ k − 1 and y is an i-critical
vertex of G�; and

(e) for each j ∈ {1, 2, . . . , k − 1}, every vertex in V (Gj −H) is i-critical.
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8 Construction of i-Bicritical Graphs via Wreath Product

Let G and H be disjoint graphs. The wreath product of G with H , also known as
the lexicographic product of G and H , is the graph G[H ] with vertex set V (G[H ]) =
{(g, h) : g ∈ V (G), h ∈ V (H)} and edge set E(G[H ]) = {(g1, h1)(g2, h2) : g1g2 ∈
E(G) or g1 = g2 and h1h2 ∈ E(H)}.

If D is an independent dominating set of G[H ], then we define

SD = {g ∈ V (G) : (g, h) ∈ D for some h ∈ V (H)}

and, for each g ∈ SD,
Tg = {h ∈ V (H) : (g, h) ∈ D}.

The straightforward proof of the following proposition is omitted.

Proposition 8.1. Let G and H be disjoint graphs. If D is an independent domi-
nating set of G[H ], then SD is an independent dominating set of G and, for each
g ∈ SD, Tg is an independent dominating set of H.

Corollary 8.2. For any disjoint graphs G and H, i(G[H ]) = i(G)i(H).

Proof. Let D be an i-set of G[H ]. By Proposition 8.1, |SD| ≥ i(G) and, for each
g ∈ SD, |Tg| ≥ i(H). Hence |D| ≥ i(G)i(H).

On the other hand, if A is an i-set of G and B is an i-set of H , then the Cartesian
product A × B is an independent dominating set of G[H ] with size i(G)i(H). The
result now follows.

Theorem 8.3. Let G and H be disjoint graphs that each have at least two vertices.
Then G[H ] is i-bicritical if and only if H is both i-critical and i-bicritical, and either
|V (H)| = 2 and G is i-critical, or |V (H)| ≥ 3 and every vertex of G is in an i-set
of G.

Proof. We first consider the case where E(G) = ∅. The graph G[H ] is isomorphic to
the disjoint union of |V (G)| copies of H . By Theorem 4.1, G[H ] is bicritical if and
only if H is both i-critical and i-bicritical. Also, the graph G is i-critical, so every
vertex of G is in an i-set of G. Thus the statement holds when E(G) = ∅. Hence, in
what follows, we assume E(G) �= ∅.

Suppose G[H ] is i-bicritical.
We first show that H is i-critical. Let g1g2 ∈ E(G), and h ∈ V (H). Let D be

an i-set of G[H ] − {(g1, h), (g2, h)}. Since |D| = i(G[H ]) − 1 and H has at least 2
vertices, by Proposition 8.1 and Corollary 8.2 either g1 or g2 belongs to SD. Without
loss of generality g1 ∈ SD. By Proposition 8.1 and Corollary 8.2 again, we must have
that |Tg1| = i(H)− 1. Therefore H is i-critical. Furthermore, since H has at least 2
vertices, i(H) ≥ 2.

Next, we show that H is i-bicritical. If H has only 2 vertices, then since it is i-
critical, it is isomorphic to the disjoint union of two copies ofK1, which is i-bicritical.
Suppose, then, that H has at least 3 vertices. Let h1, h2 ∈ V (H), and g ∈ V (G). Let
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D be an i-set of G[H ] − {(g, h1), (g, h2)}. Since |D| < i(G[H ]), by Proposition 8.1
and Corollary 8.2, we must have g ∈ SD and |Tg| < i(H). Therefore H is i-bicritical.

Finally, we show that either |V (H)| = 2 and G is i-critical, or |V (H)| ≥ 3 and
every vertex of G is in an i-set of G. Let h1, h2 ∈ V (H), and g ∈ V (G). Consider
G[H ]− {(g, h1), (g, h2)}.

If V (H) = {h1, h2}, then G[H ] − {(g, h1), (g, h2)} ∼= (G − g)[H ]. By Corollary
8.2, this graph has independent domination number i(G − g)i(H). Since G[H ] is
i-bicritical, i(G − g)i(H) < i(G)i(H). Therefore g is an i-critical vertex of G, from
which it follows that G is i-critical.

Now suppose that H has at least 3 vertices. Let D be an i-set of G[H ] −
{(g, h1), (g, h2)}. As above, we must have g ∈ SD and |Tg| < i(H). By Proposi-
tion 8.1 and Corollary 8.2 we then have

i(G[H ]− {(g, h1), (g, h2)}) ≤ |SD|i(H)− 1 ≤ i(G)i(H)− 1,

from which it follows that |SD| ≤ i(G). Therefore g is in an i-set of G.
We now prove the converse. Suppose that H is both i-critical and i-bicritical.

Let (g1, h1), (g2, h2) ∈ G[H ], and consider G[H ]− {(g1, h1), (g2, h2)}.
Suppose that |V (H)| = 2 and G is i critical. If g1 = g2, then

G[H ]− {(g1, h1), (g2, h2)} ∼= (G− g1)[H ].

Since G is i-critical, by Corollary 8.2 we have

i(G[H ]− {(g1, h1), (g2, h2)}) = (i(G)− 1)i(H) < i(G)i(H) = i(G[H ]).

Otherwise, g1 �= g2. Since G is i-critical, there exists an i-set, S, of G such that g1 ∈
S. Since H is i-critical, there exists an i-set, T ′, of H − h1 such that, T = T ′ ∪ {h1}
is an i-set of H . Then S × T − {(g1, h1)} is an independent dominating set of G[H ]
of size i(G)i(H)− 1. Therefore, G[H ] is i-bicritical.

Now suppose that |V (H)| ≥ 3 and every vertex of g is in an i-set of G. By
hypothesis, there exists an i-set, S, of G such that g1 ∈ S.

Assume first that g1 = g2. Since H is i-bicritical, there exists an i-set, T ′, of
H − {h1, h2} which is a proper subset of an i-set T of H that contains h1 or h2,
possibly both. Then S × T − {(g1, h1), (g2, h2)} is an independent dominating set of
G[H ] of size i(G)i(H)− 1 or i(G)i(H)− 2.

Otherwise, g1 �= g2. Suppose g1g2 ∈ E(G). Since H is i-critical, there exists an
i-set, T ′, of H−h1 such that, T = T ′∪{h1} is an i-set of H . Then S×T −{(g1, h1)}
is an independent dominating set of G[H ] of size i(G)i(H) − 1. Finally, suppose
g1g2 �∈ E(G). Since H is i-critical, there exists an i-set, T ′

1, of H − h1 such that
T1 = T ′

1 ∪ {h1} is an i-set of H , and an i-set, T ′
2, of H − h2 such that T2 = T ′

2 ∪ {h2}
is an i-set of H . Let D be the set

D =

{
(S − {g1, g2})× T1) ∪ ({g1} × T ′

1) ∪ ({g2} × T ′
2) if g2 ∈ S

(S − {g1})× T1) ∪ ({g1} × T ′
1) if g2 �∈ S.

Then D is an independent dominating set of G[H ] − {(g1, h1), (g2, h2)} of size
i(G)i(H)− 2 or i(G)i(H)− 1. Therefore, G[H ] is i-bicritical.
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