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Abstract

If G and H are two cubic graphs, then an H-coloring of G is a proper
edge-coloring f with edges of H, such that for each vertex x of GG, there
is a vertex y of H with f(0g(x)) = 0g(y). If G admits an H-coloring,
then we will write H < G. The Petersen coloring conjecture of Jaeger
states that for any bridgeless cubic graph G, one has: P < G. The
second author has recently introduced the Sylvester coloring conjecture,
which states that for any cubic graph G, one has: S < GG. Here S is the
Sylvester graph on 10 vertices. In this paper we prove the analogue of
the Sylvester coloring conjecture for cubic pseudo-graphs. Moreover, we
show that if G'is any connected simple cubic graph G with G < P, then
G = P. This implies that the Petersen graph does not admit an Sig-
coloring, where Sy4 is the smallest connected simple cubic graph without
a perfect matching. Sjs has 16 vertices. Finally, we obtain two results
towards the Sylvester coloring conjecture. The first result states that any
cubic graph G has a coloring with edges of the Sylvester graph S such
that at least % of the vertices of G meet the conditions of the Sylvester
coloring conjecture. The second result states that any claw-free cubic
graph admits an S-coloring. This result is an application of our result on
cubic pseudo-graphs.

* Part of the results of this paper were presented in CID 2013.
t Corresponding author.
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1 Introduction

In this paper we consider finite pseudo-graphs, which may contain loops and parallel
edges. The edges of pseudo-graphs are not directed, and as usual, a loop contributes
2 to the degree of a vertex. A graph is a pseudo-graph which may contain parallel
edges but no loops. A graph is simple if it does not contain any parallel edges.

Within this paper, we assume that graphs, pseudo-graphs and simple graphs are
considered up to isomorphism. This implies that the equality G = G’ means that G
and G’ are isomorphic.

For a graph G, let V(G) and E(G) be the set of vertices and edges of G, respec-
tively. Moreover, let Oz () be the set of the edges of G which are incident to the
vertex x of G. A matching of GG is a set of edges of G such that any two of them
do not share a vertex. A matching of G is perfect if it contains &f)‘ edges. For a
positive integer k, a k-factor of GG is a spanning k-regular subgraph of G. Observe
that the edge-set of a 1-factor of GG is a perfect matching of G. Moreover, if G is
cubic and F' is a 1-factor of G, then the set E(G)\E(F') is an edge-set of a 2-factor
of G. This 2-factor is said to be complementary to F. Conversely, if F is a 2-factor
of a cubic graph G, then the set E(G)\E(F) is an edge-set of a 1-factor of G or is a

perfect matching of G. This 1-factor is said to be complementary to F.

If P is a path of a graph G, then the length of P is the number of edges of G
lying on P. For a connected graph G and two of its vertices u and v, the distance
between u and v is the length of the shortest path connecting these vertices. The
distance between edges e and f of G, denoted by pg(e, f), is the shortest distance
among end-vertices of e and f. Clearly, adjacent edges are at distance zero.

A subgraph H of G is even if every vertex of H has even degree in H. A block of
G is a maximal 2-connected subgraph of G. An end-block is a block of G containing
at most one vertex that is a cut-vertex of G. If G is a cubic graph containing cut-
vertices, then any end-block B of G is adjacent to a unique bridge e. We will refer to
e as a bridge corresponding to B. Moreover, if e = (u,v) and v € V(B), v ¢ V(B),
then v is called the root of B.

If K is a triangle in a cubic pseudo-graph G, then let G/K be the cubic pseudo-
graph obtained from G by contracting K. If G is a cubic graph and K does not
contain a parallel edge, then we will say that K is contractible in G. Observe that if
K is not contractible, then two vertices of K are joined with two parallel edges, and
the third vertex is incident to a bridge (see the end-blocks of the graph from Figure
2). If K is a contractible triangle and e is an edge of K, then let f be the edge of G
that is incident to a vertex of K and is not adjacent to e. The edges e and f will be
called opposite edges.

If T is a set, H is a subgraph of a graph G, and f : F(G) — T, then a mapping
g: E(H) — T, such that g(e) = f(e) for any e € E(H), is called the restriction of f
to H.
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Let G and H be two cubic graphs, and let f: E(G) — E(H). Define:
V(f) ={z e V(G) : 3y € V(H) [(9c(x)) = Iu(y)}.

An H-coloring of G is a mapping f : E(G) — E(H) such that V(f) = V(G).
If G admits an H-coloring, then we will write H < G. It can be easily seen that if
H < G and K < H, then K < G. In other words, < is a transitive relation defined
on the set of cubic graphs.

If H< G and f is an H-coloring of G, then for any adjacent edges e, €’ of G, the
edges f(e), f(e’') of H are adjacent. Moreover, if the graph H contains no triangle,
then the converse is also true; that is, if a mapping f : E(G) — E(H) has a property
that for any two adjacent edges e and €’ of G, the edges f(e) and f(e’) of H are
adjacent, then f is an H-coloring of G.

Figure 1: The Petersen graph

Let P be the well-known Petersen graph (Figure 1) and let S be the graph from
Figure 2. The graph S is called the Sylvester graph [11]. We would like to point
out that usually the name “Sylvester graph” is used for a particular strongly regular
graph on 36 vertices, and this graph should not be confused with S, which has 10
vertices.

The Petersen coloring conjecture of Jaeger states:

Conjecture 1.1 (Jaeger, 1988 [6]) For each bridgeless cubic graph G, one has
P<d.

The conjecture is difficult to prove, since it can be seen that it implies the following
two classical conjectures [6]:

Conjecture 1.2 (Berge-Fulkerson, 1972 [4, 12]) Any bridgeless cubic graph G con-
tains siz (not necessarily distinct) perfect matchings Fi, ..., Fg such that any edge of
G belongs to exactly two of them.
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Figure 2: The Sylvester graph

Conjecture 1.3 ((5,2)-cycle-cover conjecture, [1, 10]) Any bridgeless graph G (not
necessarily cubic) contains five even subgraphs such that any edge of G belongs to

exactly two of them.

Figure 3: The graph Sig

Related to the Jaeger conjecture, the following conjecture was introduced in [8]:
Conjecture 1.4 (Mkrtchyan, 2012 [8]) For each cubic graph G, one has S < G.

In direct analogy with Conjecture 1.1, we call Conjecture 1.4 the Sylvester coloring
conjecture.

In this paper, we consider the analogues of this conjecture for simple cubic graphs
and cubic pseudo-graphs. Let Sig be the simple graph from Figure 3, and let S, be
the pseudo-graph from Figure 4.
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Figure 4: The pseudo-graph S,

In this paper we show that not all simple cubic graphs admit an Sig-coloring.
On the positive side, we prove that all cubic pseudo-graphs have an S;-coloring. We
complete the paper by proving two results towards Conjecture 1.4. The first one
states that for any cubic graph G there is a mapping f : E(G) — E(S), such that
[V(f)| > 5-|V(G)]. The second one states that any claw-free cubic graph admits
an S-coloring. The latter result is derived as a consequence of the Sy-colorability of
cubic pseudo-graphs.

Terms and concepts that we do not define in this paper can be found in [5, 15].

2 Some Auxiliary Statements

In this section we present some auxiliary statements that will be used in Section 3.

Theorem 2.1 (Petersen, 1891 [7]) Let G be a cubic graph containing at most two
bridges. Then G has a 1-factor.

Lemma 2.1 Let G be a bridgeless graph with d(v) € {2,3} for any v € V(G).
Assume that all vertices of G are of degree 3 except one. Then G has a 2-factor.

Proof: Take two copies G; and G5 of GG, and consider a graph H obtained from
them by joining degree 2 vertices by an edge e. Observe that H is a cubic graph
containing only one bridge, which is the edge e. By Theorem 2.1, H contains a
1-factor F'. Since e is a bridge of H, we have e € F. Consider the complementary
2-factor I of F. Clearly, the edges of the set F(F)N E(G,) form a 2-factor of G;. O

Proposition 2.1 Let G be a simple cubic graph without a perfect matching and

Lemma 2.2 Suppose that G and H are two cubic graphs with H < G, and let f be
an H-coloring of G. Then:
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(a) if M is any matching of H, then f~*(M) is a matching of G;

(b) X'(G) < X'(H), where X'(G) is the chromatic index of G;

(c) if M is a perfect matching of H, then f~Y(M) is a perfect matching of G;
(d) for every even subgraph C' of H, f~1(C) is an even subgraph of G;

(e) for every bridge e of G, the edge f(e) is a bridge of H.

Proof: Statements (a), (b) and (c) are proved in Lemma 2.3 of [8]. For the proof of
(d), let C' be an even subgraph of H. We shall show that any vertex v of G has even
degree in f~1(C'). Since H is cubic, C is a disjoint union of cycles. Assume that in
f the three edges incident to v are colored with three edges incident to a vertex w
of H. Now if w is isolated in C, then clearly v is isolated in f~!(C). On the other
hand, if w has degree 2 in C then v is of degree two in f~}(C). Thus v always has
even degree in f~1(C), or f~}(C) is an even subgraph of G.

Finally, for the proof of (e) let e be a bridge of G and let (X, V(G)\X) be a partition
of V(G) such that 0g(X) = {e}. Here 0g(X) denotes the set of edges of G which
connect a vertex of X to a vertex of V(G)\X. Assume that the edge f(e) is not
a bridge in H. Then there is a cycle C' in H containing the edge f(e). By (d),
f7YC) is an even subgraph of G that has non-empty intersection with dg(X). Since
the intersection of an even subgraph with dg(X) always contains an even number of
edges, 0g(X) contains at least two edges, which contradicts our assumption. 0

Proposition 2.2 Let G be a connected non-3-edge-colorable simple cubic graph such
that |V(G)| < 10. Then G =P or G = 5" (see Figure 5).

We will also need some results that were obtained in [3, 13, 14]. Let G be a graph
of maximum degree at most 3, and assume that c is a proper coloring of some edges
of G with colors 1, 2 and 3. The edges of G that have not received colors in ¢ are
called uncolored edges. Now assume that ¢ is chosen so that the number of uncolored
edges is smallest. It is known that, for such a choice of ¢, uncolored edges must form
a matching [3, 13, 14].

Figure 5: The graph S’ on 10 vertices
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Take an arbitrary uncolored edge e = (u,v). Since ¢ is chosen so that the number
of uncolored edges is smallest, we see that e is incident to edges that have colors
1, 2, and 3. Since G is of maximum degree at most 3, it follows that there are
colors o, B € {1,2,3} such that no edge incident to u and v is colored with § and
a, respectively. Consider a maximal o — f-alternating path P, starting from u. As
shown in [3, 13, 14], this path must terminate in v, and hence it is of even length.
This means that P, together with the edge e forms an odd cycle C,. The cycle C is
called the cycle corresponding to the uncolored edge e. It is known that

Lemma 2.3 (/3, 13, 14]) If G is a graph of mazimum degree at most 3, and e, €
(e # €') are two uncolored edges of G, then V(C,) NV (Cy) = 0.

Finally, we will need some results on claw-free cubic graphs. Recall that a graph
G is claw-free if it does not contain 4 vertices such that the subgraph of G induced
on these vertices is isomorphic to Kj 5. In [2], arbitrary claw-free graphs are char-
acterized. In [9], Oum has characterized simple, claw-free bridgeless cubic graphs.
Following the approach of Oum, below we will characterize claw-free (not necessarily
bridgeless) cubic graphs.

We need some definitions. A 2-cycle is a cycle of length 2 (2 parallel edges). In a
claw-free cubic graph G any vertex belongs to 1, 2, or 3 triangles or 1 or 3 2-cycles.
If a vertex v belongs to 3 triangles of G, then the component of G containing v is
isomorphic to K4 (Figure 6). An induced subgraph of G that is isomorphic to Ky —e
is called a diamond [9]. It can be easily checked that in a claw-free cubic graph no
two diamonds intersect. If v belongs to three 2-cycles of G, then the component of
G containing v is isomorphic to Kj (Figure 6).

&

Figure 6: The graphs K4 and K3.

A string of diamonds or 2-cycles of G is a maximal sequence F}, ..., F}, of diamonds
or 2-cycles, in which F; has a vertex adjacent to a vertex of Fj,1, 1 <1 < k—1
(Figure 7). A string of diamonds or 2-cycles has exactly 2 vertices of degree 2, which
are called the head and the tail of the string. A string J of a claw-free cubic graph G
is trivial, if J is comprised of 1 2-cycle, and G contains a vertex that is adjacent to
both the head and tail of J. Replacing an edge e = (u, v) with a string of diamonds
or 2-cycles with the head x and the tail y is to remove e and add edges (u,z) and

(v, ).
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Figure 7: A string of diamonds or 2-cycles.

If G is a connected claw-free cubic graph such that each vertex lies in a diamond
or a 2-cycle, then G is called a ring of diamonds or 2-cycles. It can easily be checked
that each vertex of a ring of diamonds or 2-cycles lies in exactly one diamond or a
2-cycle. As in [9] we require that a ring of diamonds or 2-cycles contains at least two
diamonds or 2-cycles.

We are now ready to present the characterization of claw-free cubic graphs.

Proposition 2.3 G is a connected claw-free cubic graph, if and only if

(1) G is isomorphic to Ky or K3, or
(2) G is a ring of diamonds or 2-cycles, or

(3) there is a cubic pseudo-graph H, such that G can be obtained from H by re-
placing some edges of H with strings of diamonds or 2-cycles, and by replacing
any vertex of H with a triangle.

Proof: We omit the proof of the proposition, since it can be done in the same way
as the proof of Proposition 1 of [9]. O

3 The Main Results

In this section we obtain the main results of the paper. Our first theorem shows that
the statement analogous to the Sylvester coloring conjecture holds for cubic pseudo-
graphs. Actually, we will show that all cubic pseudo-graphs G' admit an Sy-coloring.
We use the labels of edges of S, from Figure 4.

In the theorem, we need the concept of a list. A list is a collection of elements,
where the order of elements is not important and elements may appear more than
once. Two lists are equal if they consist of the same elements, with the frequency of
appearance of each element in the lists being the same. In contrast with sets, which
we denote by {...}, lists will be denoted by (...). According to our definitions, we
have for example (1,1,2) = (1,2,1) and (1,2,2) # (2,1,1).

Theorem 3.1 Let G be a cubic pseudo-graph, and let 9(Sy) be the following set of
lists:
9(Sy) = {{a,b,c), (a,a,a"y, (b, V', V), {c,d, )}

Then there is a mapping f : E(G) — E(S4) such that
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(a) if a vertexv of G is incident to a loop €' and a bridge e, then the list (f(e), f(€'),
f(€)) is one of the three lists of 9(Ss)\{{a,b,c)},

(b) if a vertex v is incident to 3 edges e, €' and €”, then the list {f(e), f(€'), f(€"))
is one of the four lists of O(S4).

Proof: It is clear that we can prove the theorem only for connected cubic pseudo-
graphs G. First of all, we prove the theorem when G is a connected graph. We
proceed by induction on the number of bridges of G.

If there are at most two bridges in G, then due to Theorem 2.1, the graph G has a
1-factor. Color the edges of the 1-factor by a, and the edges of the complementary
2-factor by a’. One can verify that the described coloring meets condition (b) of the
theorem.

Now assume that the statement is true for graphs with at most k bridges; we prove
it for those with k + 1 bridges (k + 1 > 3). We will consider the following cases:

Case 1: For any two end-blocks B and B’ of GG, the bridges e and ¢, corresponding
to them, are adjacent.

In this case, G consists of three end-blocks By, By, Bs, such that the bridges ey,
e9, e3 corresponding to them are incident to the same cut-vertex v. We obtain an
S,-coloring of G as follows: let Fy, F,, F3 be 2-factors in By, B, Bs, respectively
(see Lemma 2.1). Color the edges of F} with @’ and the edges of (E(B;)\Fi) U {e1}
with a, the edges of F, with b and the edges of (E(By)\Fy) U {es} with b, the edges
of I3 with ¢ and the edges of (E(Bs3)\F3) U {e3} with c. One can check that the
described coloring meets condition (b) of the theorem.

Case 2: There are two end-blocks B and B’ of GG, such that the bridges e and ¢
corresponding to them, are not adjacent.

Assume that e = (u,u'), € = (v,v') and v’ € V(B), v' € V(B’). Consider a cubic
graph H obtained from G as follows:

H=[G\(V(B)uV(B))]U{(u,v)}.

If initially G had an edge (u,v), then in H we will just get two parallel edges between
u and v.

Observe that H is a cubic graph containing at most k bridges. By induction hy-
pothesis, H admits an Sy-coloring g satisfying condition (b) of the theorem. Now we
obtain an Sy-coloring for the graph G using the coloring g of H. For that purpose
we consider 2 cases.

Subcase 2.1: g((u,v)) € {a,b, c}.

Without loss of generality, we can assume that g((u,v)) = a. Other cases can be come
up in a similar way. By Lemma 2.1, B and B’ contain 2-factors F' and F”, respectively.
Consider the restriction of g to G. We extend it to an Sy-coloring of G as follows:
color the edges of F'U F’ with @’ and the edges of (E(B)\F) U (E(B)\F') U {e,e'}
with a. Observe that the described coloring meets the condition (b) of the theorem.
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Subcase 2.2: g((u,v)) € {a’,V,}.

Without loss of generality, we can assume that ¢g((u,v)) = a’. Other cases can be
come up in a similar way. Observe that the edges of H colored with o’ (the edges of
f~(a")) form vertex disjoint cycles in H. Consider the cycle C, of G containing the
edge (u,v), and let P,, = Cyy — (u,v) (Figure 8). By Lemma 2.1, B and B’ contain

2-factors F' and F', respectively.

Figure 8: The cycle Cy, and the path P,, in the graph H

Define edges d and d’ of Sy as follows: if P,, is of odd length, then d = b, d' = ¥/, and
d=c, d = ¢, otherwise. Consider the restriction of g to G. We extend it to an S-
coloring of G as follows: color the edges of F' with ¥’ and the edges of (E(B)\F)U{e}
with b, re-color the edges of P,, by coloring them with colors b and ¢ alternatively
beginning from ¢, color the edges of F” with d’ and the edges of (E(B')\F') U {e'}
with d (Figure 9). One can check that the described coloring meets condition (b) of
the theorem.

Figure 9: The path P,, in the graph G

Finally, we consider the case when G contains loops. Let H be a graph obtained
from G by replacing all vertices of G incident to loops by triangles (Figure 10).
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Figure 10: Modification of loops of G

Now H has an Sy-coloring f satisfying condition (b) of the theorem. We claim that
any bridge of H has a color from {a, b, c}.

For the sake of contradiction, assume that there is a bridge e of H such that f(e) = a
(the cases f(e) = b and f(e) = ¢ can arise in a similar way). Observe that the edges
of H colored with @’ (the edges of f~!(a’)) form vertex disjoint cycles in H. Consider
the cycle C containing e. Since e is a bridge, C' intersects this cut in one edge, which
is a contradiction to the fact that cycles intersect edge-cuts in an even number of
edges.

Thus all bridges of H have colors from {a,b,c}. In particular, any bridge e of H
which is adjacent to a loop of G has a color f(e) = d, where d € {a,b,c}. Color the
loop €' of G that is adjacent to e with d’, where d' = d', d =V or d' =, if d = a,
d = b or d = ¢, respectively. Observe that the described coloring meets conditions
(a) and (b) of the theorem. O

Conjecture 1.4 states that all cubic graphs admit an S-coloring. On the other
hand, in the previous theorem we have shown that all cubic pseudo-graphs have an
Sy-coloring. One may wonder whether there is a statement analogous to these in the
class of simple cubic graphs? More precisely, is there a connected simple cubic graph
H such that all simple cubic graphs admit an H-coloring? A natural candidate for
H is the graph Si6. Next we prove a theorem that justifies our choice of Sig. On
an intuitive level it states that the only way of coloring the graph Sis with some
connected simple cubic graph H is to take H = Sig. This result is analogous to the
following theorem proved in [8].

Theorem 3.2 (Mkrtchyan, [8]) Let G be a connected cubic graph with G < S. Then
G=S5.

This is the precise formulation of our second result.
Theorem 3.3 Let G be a connected simple cubic graph with G < Sig. Then G = Sig.

Proof: As G < Sis and S has no a perfect matching, then due to (c) of Lemma
2.2, the graph G also has no a perfect matching.

Let f be a G-coloring of Sis. If e € E(G), then we will say that e is used (with
respect to f), if f~1(e) # 0. First of all, let us show that if an edge e of G is used,
then any edge adjacent to e is also used.
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So let e = (u,v) be a used edge of G. For the sake of contradiction, assume that
v is incident to an edge z € E(G) that is not used. Assume that dg(u) = {a,b, e}
(Figure 11).

Figure 11: The edge e in the graph G

We will use the labels of edges of Si¢ from Figure 3. The following cases are possible:

Case 1: The edge e colors an edge that is not a bridge in Sig. So it is used in
end-blocks of Sig. Due to the symmetry of Sig, there will be the following subcases:

Subcase 1.1: f((v1,v9)) = €.

Since z is not a used edge, we can assume that f((vy,v3)) =a and f((v1,v4)) = b.
Since adjacent edges receive different colors and z is not a used edge, we have
f((vg,v3)) = b and f((ve,vs4)) = a. This implies that

f((vs, v5)) = f((va, 05)) = e,
which contradicts the fact that adjacent edges receive different colors.

Subcase 1.2: f((v1,v3)) = e.

Since z is not a used edge, we can assume that f((vy,v2)) =a and f((v1,v4)) = b.
As adjacent edges receive different colors and z is not a used edge, we have that
f((vg,v3)) =b and f((vs,vs)) =a. But then f((va,v4)) =e, which implies that
f((v4,v5)) = a. This contradicts the fact that adjacent edges receive different colors.

Subcase 1.3: f((vs,v5)) = e.

Since z is not a used edge, we can assume that f((vy,vs)) =a and f((v2,v3)) = b.
Consider the edge (v, v3). Observe that its color is either e, or else there is an edge
h of G such that a, b and h form a triangle in G' and h is not incident to u. Since
we have ruled out Subcase 1.1, we can assume that the color of (vy,vy) is not e,
and hence there is the above-mentioned edge h. Let x and y be the edges of GG
that are adjacent to b and h, and a and h, respectively, that are not incident to w.
Observe that f((vi,v4)) = y and f((ve,v4)) = x. On the other hand, observe that
since z is not a used edge and f((vs,vs)) =e, we have f((v4,v5)) € {a,b}. This
is a contradiction since there is no vertex w of G such that dg(w) = {a,z,y} or

Og(w) ={b,z,y}.
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Case 2: The edge e colors an edge that is a bridge in Sig.

The consideration of Case 1 implies that, without loss of generality, we can assume
that the edge e is not used in end-blocks of Sig. Assume that f((v,v5)) = e. Since z
is not a used edge, we can assume that f((vs,vs)) = a and f((v4,v5)) = b.

Assume that a = (u,u,) and b = (u,up). We claim that u, and u;, are not joined
with an edge in G. Assume the opposite. Let h = (uq, up) € E(G). Let x and y be
the edges of G incident to u, and wy, respectively, that are different from a and h,
and b and h, respectively. Then, we can assume that

f((v1,v3)) =z, f((v2,03)) = h,

and
f((v2,v4)) =y, f((v1,v4)) = D
This implies that
a = f((v,v9)) = b.
Hence a and b are parallel edges of (G, which contradicts the simpleness of G. Thus,
u, and u, are not joined with an edge in GG. Let x and y be the edges of GG incident

to ug, that are different from a. Similarly, let o and [ be the edges of G incident to
up, that are different from b. We can assume that

f((v1,v3)) =, f((v2,03)) = ¥,

and
f((v2,v4)) = B, f((v1,v4)) = .

This implies that = and « are sharing a vertex u, o of GG, y and g are sharing a vertex
uy 3 of G, and w4, u, 3 are joined with an edge g of G, such that f((vi,v2)) = g.
Observe that the edges a and b are lying on a cycle of G. Now, since z is not a used
edge, we have that the other two bridges of G (# (v, vs)) are colored with a and b.
This contradicts (e) of Lemma 2.2, since a and b are not bridges of G.

The consideration of the above two cases implies that any used edge of G is adjacent
to a used edge. Since G is connected, we have all edges of G used. Since |E(Si6)| =
24, we have |E(G)| < 24, or |V(G)| < 16. Proposition 2.1 implies that G = Sig. O

In [8], the following result is obtained:

Theorem 3.4 (Mkrtchyan, [8]) Let G be a connected bridgeless cubic graph with
G < P; then G = P.

Below, we prove the analogue of this result for simple cubic graphs that may
contain bridges. Our proof strategy is similar to that of given in [8].

Theorem 3.5 If G is a connected simple cubic graph with G < P, then G = P.
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Proof: By (b) of Lemma 2.2, G is non-3-edge-colorable. Let f be a G-coloring of
P. As in the proof of the previous theorem, we say that an edge e € E(G) is used
(with respect to f) if f~(e) # (). First of all let us show that if an edge of G is used,
then all edges adjacent to it are used.

Suppose that e = (u,v) is a used edge, and for the sake of contradiction, assume
that the edge z incident to v is not used. Assume that dg(u) = {a, b, e}. We use the
labels of vertices of P given on Figure 1.

Since e is a used edge, due to symmetry of P, we can assume that f((us, ug)) = e,
f((ug,us)) = a and f((ug,v4)) =b. As z is not a used edge, due to the symmetry of
P we can assume that f((us,v3)) =b, f((u2,u3)) = a.
Define

a; = f((uy,us)), and ag = f((u1,uz)).
Observe that since f is a G-coloring of P, we have a; and ay adjacent edges of G.
Moreover, each of them is adjacent to a.

Similarly, define the edges

by = f((v1,v4)), and by = f((v1,v3)).

Again, we have b; and by adjacent edges of G. Moreover, each of them is adjacent
to b.

We will consider three cases:

Case 1: The edges a1, as and a do not form a triangle in G.

Observe that in this case f((u1,v1)) = a. This implies that the edges a, by, by must
be incident to the same vertex w. Moreover, b; and by differ from b. Hence w # u.
This is possible only when b; and by are two parallel edges connecting the other (# u)
end-vertices of a and b. This is a contradiction, since G is a simple graph.

Case 2: The edges b1, by and b do not form a triangle in G.

This case is similar to Case 1.

Case 3: The edges ay, ay and a form a triangle in G. Similarly, b;, by and b form a
triangle.
Let a3 be the edge of G that is adjacent to a;, as and is not adjacent to a. Similarly,
let b3 be the edge of GG that is adjacent to by, by and is not adjacent to b. Note that
the edges as and b3 exist, since G is simple.
Observe that

az = f((u1,v1)) = b,

and hence ag = bs3. Depending upon whether a and b belong to the same triangle or
not, we will consider the following sub-cases:

Subcase 3.1: a and b belong to different triangles.
Observe that in this case the edge e must belong to both of them, hence we have the
situation depicted on Figure 12. In this case az # b3, which is a contradiction.
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Subcase 3.2: a and b belong to the same triangle (See Figure 13).
In this case b3 should be adjacent to a, and az should be adjacent to b. In this case
az # bs, which is a contradiction.

Figure 12: a and b belong to dif- Figure 13: a and b belong to the
ferent triangles. same triangle.

Consideration of the above three cases implies that any used edge of G is adjacent
to a used edge. Since G is connected, all edges of G are used. Since |E(P)| = 15, we
have |E(G)| < 15, or [V(G)| < 10. Proposition 2.2 implies that G = P or G = 5.

In order to complete the proof of the theorem, it suffices to show that P does not
admit an S’-coloring such that all edges of S" are used. We will use the labels of
edges of S’ given in Figure 5.

For the sake of contradiction, assume that P admits an S’-coloring f such that all
edges of S” are used. Due to symmetry of P, we can assume that f((us,us)) = a.
Consider the connected components A and B of S” —a. Since P is 2-edge-connected,
there is a vertex w of P such that w is incident to at least one edge that has color
from A, and at least one edge that has color from B. Observe that this vertex violates
the definition of an S’-coloring. This is a contradiction, and hence P does not admit
an S’-coloring either. O

The theorem proved above implies:
Corollary 3.1 P does not admit an Sy-coloring.

This corollary and Theorem 3.3 suggest that a statement analogous to the Sylvester
coloring conjecture is impossible in the class of simple cubic graphs.

Our next result states that any cubic graph admits a coloring with edges of S,
such that 80% of vertices meet the constraints of the Sylvester coloring conjecture.

Theorem 3.6 Let G be a cubic graph. Then there is a mapping f : E(G) — S such
that

4
V(N =z IV(G)],
and for any v € V(G)\V (f) there are two edges e, e’ € dg(v), such that f(e) = f(€').
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Proof: We prove the theorem by induction on the number of vertices. If |V/(G)| = 2,
we can take an arbitrary vertex w of S, and color the three edges of G with edges
incident to w. It is trivial to see that this coloring satisfies the condition of the
theorem. Now, assume that the statement of the theorem holds for all cubic graphs
with |V(G)| < n, and consider an arbitrary cubic graph G containing n > 4 vertices.
Clearly we can assume that G is connected.

We will consider two cases.

Case 1: G contains a contractible triangle 7.

Consider the cubic graph H = G/T, and let vy be the vertex of H obtained by
contracting T'. Since H contains n — 2 vertices, we have that there is a mapping
g: E(H)— S, such that

V(g)l >

[GAN N

and for any v € V(H)\V(g) there are two edges e, ¢’ € dy(v) such that g(e) = g(¢').
We will consider two subcases.

Subcase 1.1: vy € V(g).

There is a vertex s € V(5), such that g(dy(v)) = 0s(s). Let 9s(s) = {a, 8,7}
Consider a mapping f : E(G) — S, obtained from g as follows: color the edges of
T with a color from {«, 8,~}, such that its end-vertices are not incident to an edge
with that color. Observe that

V(OI=1V(g)]+2, and |V(G)| = |V(H)| +2,
and hence

VNI _ Vigl+2 o V(9]
V(& [VH)[+2~ [V(H)

4
> =
-5
and therefore 4

V2 V@),
Subcase 1.2: vy ¢ V(g).

There are two edges e, e’ € dy(vr), such that g(e) = g(e’). Let z = g(e), and let y
and z be two edges of S that are incident to the same end-vertex of x in S.
Consider a mapping f : E(G) — S, obtained from g as follows: color the edges of T'
that are opposite to the edges with color x by y, and color the remaining third edge
of T" with z. Observe that

VNI = V(g +2, and [V(G)] = [V(H)| +2,

hence

VOl _ Vigl+2 _ Vgl _ 4
V(& VH)[+2~ [V(H)| — 5

and therefore

V(NI =z V(G

[GAR AN
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Moreover, for each vertex w ¢ V(f), there are two edges h,h’ € Og(w) such that
f(h) = f(N).

Case 2: No triangles of GG are contractible.

Let T be the set of all triangles of GG. Observe that 7 can be empty. If each vertex
of GG lies on a triangle 7, then, since G is connected, we have that G is the unique
cubic graph with six vertices and one bridge. It is a matter of direct verification that
this graph admits an S-coloring, and hence the statement of the theorem is true in
this case. Thus we can assume that there is a vertex of G that does not lie on a
triangle of 7. Consider a graph G’ obtained from G by removing all vertices of G
that lie on a triangle of 7. Observe that G’ is a non-empty, connected, triangle-free
graph of maximum degree at most 3.

We will use the labels of edges of S given in Figure 2. Consider a coloring of edges
of G" with colors a, b and ¢, such that the number of uncolored edges is smallest. Let
e be an uncolored edge. Color e with a color d from {a, b, ¢}, such that there is only
one edge adjacent to e, such that it has also color d. Observe that all edges of G’ are
colored.

Now we are going to extend this coloring to that of G. Choose a triangle T from 7.
As T is not contractible, it follows that the subgraph of G' induced by the vertices
of T' form an end-block B of G. Moreover, B is isomorphic to end-blocks of S. Let
v the root of B. Choose a color d € {a,b, c} such that d is missing on the vertex v
in the coloring of G’. Color the bridge joining a vertex of T to v by d, and color the
edges of B by corresponding edges of the end-block of S, which contains a vertex
incident to d. Let f be the resulting coloring.

Observe that all edges of G are colored in f. Moreover, vertices of V(G)\V (f) lie
in G'. Since G’ is triangle-free, we have that the cycles corresponding to uncolored
edges are of length at least 5. Since they are vertex-disjoint (Lemma 2.3), we have

that their number is at most W(E)—G/)‘ Observe that each uncolored edge e is incident

to a vertex v such that v € V(G)\V(f). Moreover, |V (G)\V(f)| coincides with the
number of uncolored edges, which implies that

V&)l _ V(G

Vel < N < EEL

or A
GENe
Finally, for each vertex w ¢ V(f) there are two edges h,h’ € Jg(w) such that
f(h) = f(N).
0

Corollary 3.2 Let G be a cubic graph. Then there is a mapping f : E(G) — S such
that

VI = V(O]
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In the end of the paper, we verify Conjecture 1.4 in the class of claw-free cubic
graphs. Our main ingredients are the characterization of claw-free cubic graphs
(Proposition 2.3) and Theorem 3.1 about Sy-colorability of arbitrary cubic pseudo-
graphs.

Figure 14: The graph Sio

Let Si2 be the cubic graph from Figure 14. We prove a somewhat stronger
statement.

Theorem 3.7 Let G be a claw-free cubic graph. Then Sio < G.

Proof: Our proof is by induction on |V(G)|. Clearly, the statement of the theorem
is true when |V(G)| = 2 (K3 is 3-edge-colorable). Assume that it remains true for all
claw-free cubic graphs with |V (G)| < n, and consider a claw-free cubic graph with
|[V(G)| = n. Without loss of generality, we can assume that G is connected.

We apply Proposition 2.3. If G meets conditions (1) or (2) of the proposition, then
G is 3-edge-colorable, and hence this case is similar to the base case of induction.
Thus we can assume that G meets condition (3) of Proposition 2.3.

Let us show that we can assume, that in G all strings of diamonds and 2-cycles of G
are trivial. On the opposite assumption, consider a non-trivial string J of diamonds
and 2-cycles of GG. Let a and b be the head and tail of J, respectively. Moreover, let
¢ and d be the neighbors of a and b, respectively, that lie outside J. If ¢ # d, then
consider a cubic graph G’ defined as follows:

G = (G- V() + (c.d).

Observe that G’ is a claw-free cubic graph with |V (G’)| < n, hence by the induction
hypothesis, it admits an Sjp-coloring g. Let g((c,d)) = «, where « is an edge of Ss.
Moreover, let 5 and v be 2 edges of S5 leaving the same end-vertex of o in Sys.
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Color the edges (a,c) and (b,d) with a. Since rings of diamonds and 2-cycles are
3-edge-colorable, we can color the edges of J with «, 8 and +, so that each vertex of
J is incident to edges with colors «, # and 7. It can be easily checked that this new
coloring is an Sis-coloring of G.

If ¢ = d, then since G is claw-free, we have that a and b are joined by 2 parallel
edges, hence J is a trivial string contradicting our assumption.

Thus all strings of diamonds or 2-cycles of G are trivial. This and (3) of Proposition
2.3 imply that there is a cubic pseudo-graph H, such that G can be obtained from
H by replacing any vertex of H with a triangle. By Theorem 3.1, H admits an
Sy-coloring such that its loops are colored by loops of S, (see (a) of Theorem 3.1).
Now, observe that Si» can be obtained from S, by replacing any vertex of S; by a
triangle.

Extend the Sj-coloring of H to an Sis-coloring of G' by coloring the edges of new
triangles of G by the edges of the corresponding new triangles of Si5. One can easily
see that there is always a way of doing this, which results in an Sis-coloring of G. [J

Taking into account that S < S, and < is transitive, we have the following
corollary of Theorem 3.7:

Corollary 3.3 Let G be a claw-free cubic graph. Then S < G.
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