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Abstract

Let G be a simple planar graph, X, Y disjoint subsets of E(G) and let
1 ≤ � ≤ 3 be an integer. If one of the following four conditions holds then
the graph G−X contains a fractional �-factor with indicator function h
such that h(e) = 1 for every e ∈ Y .

(a) δ(G) ≥ 4, � = 1, |X| ≤ 2 and |Y | = 0.

(b) δ(G) ≥ 4, � = 1, |X| = 0 and |Y | ≤ 1.

(c) δ(G) ≥ 4, � = 2 and |X|+ |Y | ≤ 2.

(d) δ(G) ≥ 5, � = 3, |X|+ |Y | ≤ 3 and |X| ≤ 2 if all the elements of X
have a common end-vertex.

1 Introduction and Terminology

All graphs considered are assumed to be simple and finite. We refer the reader to [2]
for standard graph theoretic terms not defined in this paper.

Let G be a graph. The degree dG(u) of a vertex u in G is the number of edges
of G incident with u. The minimum degree of G is denoted by δ(G). If X and Y
are subsets of V (G), the set and the number of the edges of G joining X to Y are
denoted by EG(X, Y ) and eG(X, Y ) respectively. For any set X of vertices in G,
the subgraph induced by X is denoted by G[X] and the neighbour set of X in G
by NG(X). Similarly, for any set X of edges in G, the subgraph induced by X is
denoted by G[X]. The number of connected components of G is denoted by ω(G).
A cut edge of G is an edge e such that ω(G− {e}) > ω(G).

A bipartite graph is one whose vertex set can be partitioned into two subsets X
and Y , so that each edge has one end in X and one end in Y ; such a partition
(X, Y ) is called a bipartition of the graph. The following result is a well-known
characterization of bipartite graphs.
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Theorem 1.1 A graph is bipartite if and only if it contains no odd cycle.

Let g and f be two nonnegative integer-valued functions defined on V (G) such
that g(x) ≤ f(x) for each x ∈ V (G) and let h : E(G) �→ [0, 1] be also a function
such that g(x) ≤ dhG(x) ≤ f(x) for every x ∈ V (G), where dhG(x) =

∑
e∈E(x) h(e) and

E(x) denotes the set of edges incident with vertex x. If we define Fh = {e ∈ E(G) :
h(e) > 0}, then we call G[Fh] a fractional (g, f)-factor of G with indicator function
h. If g(x) = a and f(x) = b for all x ∈ V (G), then we will call such a fractional
(g, f)-factor, a fractional [a, b]-factor. A fractional (f, f)-factor is called simply a
fractional f -factor. If f(x) = � for every x ∈ V (G), then a fractional f -factor is
called a fractional �-factor.

Furthermore if function h takes only integral values (0 and 1), then a fractional
k-factor and fractional [a, b]-factor are called k-factor and [a, b]-factor respectively.
Clearly a k-factor of G is a k-regular spanning subgraph of that graph.

The following necessary and sufficient condition for a graph to have a fractional
(g, f)-factor was obtained by Anstee [1]. Liu and Zhang [5] later presented a simple
proof.

Theorem 1.2 Let G be a graph and let g, f be two nonnegative integer-valued func-
tions defined on V (G) such that g(x) ≤ f(x) for all x ∈ V (G). Then, G has a
fractional (g, f)-factor if and only if for any S ⊆ V (G),

∑

x∈T
(g(x)− dG−S(x)) ≤

∑

x∈S
f(x)

where T = {x : x ∈ V (G)− S, dG−S(x) ≤ g(x)}.

A graph is said to be planar or embeddable in the plane, if it can be drawn in the
plane so that its edges intersect only at their ends. Such a drawing of a planar graph
G is called a planar embedding of G. It can be regarded as a graph isomorphic to G
and we sometimes refer to it as a plane graph. A planar embedding of planar graph
divides the plane into a number of connected regions, called faces, each bounded by
edges of the graph. We shall denote by F (G) and φ(G) the set and the number
respectively of faces of a plane graph G.

Each plane graph has exactly one unbounded face called the exterior face. For
every plane graph G, we denote the boundary of a face f of G by b(f). If G is
connected, b(f) can be regarded as a closed walk in which each cut edge of G in b(f)
is traversed twice. A face f is said to be incident with the vertices and edges in its
boundary. If e is a cut edge in G, just one face is incident with e, otherwise there
are two faces incident with e. The degree dG(f), of a face f of G is the number of
edges with which it is incident (cut edges are counted twice).

The following proposition and three theorems related to planar graphs are well-
known results.

Proposition 1.3 If G is planar, then every subgraph of G is also planar.
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Theorem 1.4 (Euler’s formula) If G is a connected plane graph, then

|V (G)| − |E(G)|+ φ(G) = 2.

Theorem 1.5 If G is a plane graph, then

∑

f∈F (G)

dG(f) = 2|E(G)|.

Theorem 1.6 For every planar graph G, δ(G) ≤ 5.

The following result can be easily derived as a corollary of Theorems 1.4 and 1.5.

Corollary 1.7 If G is a connected plane triangle-free graph with at least three ver-
tices, then |E(G)| ≤ 2|V (G)| − 4.

2 The main result

The discussion concerning the existence of a (fractional) k-factor or a (fractional)
[a, b]-factor in a planar graph is meaningful only for the cases when k ≤ 5 and a ≤ 5
respectively, by using Theorem 1.6. The existence of such [a, b]-factors in planar
graphs were studied recently by the author [4] and related results for the existence
of connected [a, b]-factors can also be found in [3].

The main purpose of this paper is to present the following sufficient minimum
degree conditions for the existence of fractional k-factors in planar graphs, having
indicator function which assigns to a prescribed number of edges integral values, 0
and 1.

Theorem 2.1 Let G be a planar graph, X, Y disjoint subsets of E(G) and let 1 ≤
� ≤ 3 be an integer. If one of the following four conditions holds then the graph
G−X contains a fractional �-factor with indicator function h such that h(e) = 1 for
every e ∈ Y .

(a) δ(G) ≥ 4, � = 1, |X| ≤ 2 and |Y | = 0.

(b) δ(G) ≥ 4, � = 1, |X| = 0 and |Y | ≤ 1.

(c) δ(G) ≥ 4, � = 2 and |X|+ |Y | ≤ 2.

(d) δ(G) ≥ 5, � = 3, |X| + |Y | ≤ 3 and |X| ≤ 2 if all the elements of X have a
common end-vertex.
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Proof. Let G∗ be the graph obtained from G−X by inserting to every edge belonging
to Y , a vertex of degree 2. Clearly G − X has a fractional �-factor with indicator
function h such that h(e) = 1 for every e ∈ Y if and only if G∗ has a fractional
f -factor satisfying f(x) = 2 for x ∈ V (G∗)− V (G) and f(x) = � for x ∈ V (G).

Suppose that the theorem does not hold. Then G∗ does not contain a fractional f -
factor having the properties described above. So by using Theorem 1.2, there exists
S ⊆ V (G∗) such that

∑

x∈T
(f(x)− dG∗−S(x)) >

∑

x∈S
f(x) (2.1)

where T = {x ∈ V (G∗)− S : dG∗−S(x) ≤ f(x)}.
We suppose that S is minimal with respect to (2.1). We will first prove the following
claim.

Claim 2.2 For every u ∈ S,

|NG∗(u) ∩ T ′| ≥ f(u) + 1

where T ′ = {x ∈ T : dG∗−S(x) < f(x)}.

Proof. Suppose that there exists z ∈ S such that |NG∗(z) ∩ T ′| ≤ f(z). If we define
So = S − {z} and To = {x ∈ V (G∗)− So : dG∗−So(x) ≤ f(x)},

∑

x∈To

(f(x)− dG∗−So(x)) ≥
∑

x∈T
(f(x)− dG∗−S(x))− |NG∗(z) ∩ T ′|

≥
∑

x∈T
(f(x)− dG∗−S(x))− f(z)

>
∑

x∈S
f(x)− f(z) by (2.1)

≥
∑

x∈So

f(x). (2.2)

But (2.2) contradicts the minimality of S with respect to (2.1). So Claim 2.2 holds.
�

Now define W = V (G∗) − V (G). For every x ∈ W , f(x) = dG∗(x) = 2. Thus if
x ∈ S ∩W , then |NG∗(x) ∩ T ′| ≤ f(x) contradicting Claim 2.2. So we may assume
that S ∩W = ∅. Hence W ⊆ V (G∗)− S and in fact

W ⊆ T (2.3)

since for every x ∈ W , dG∗−S(x) ≤ f(x) because as we mentioned earlier f(x) =
dG∗(x) = 2. Thus using (2.3), (2.1) yields

∑

x∈W
(2− dG∗−S(x)) +

∑

x∈T−W

(�− dG∗−S(x)) > �|S|. (2.4)
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Suppose that S = ∅. Then
∑

x∈W
(2− dG∗−S(x)) = 0 (2.5)

since dG∗−S(x) = dG∗(x) = 2 for every x ∈ W . Moreover for every x ∈ ((V (G∗)−S)−
W ) = V (G∗) −W = V (G), dG∗−S(x) = dG∗(x) ≥ dG(x) − |X| and so this together
with the minimum degree condition implies that dG∗−S(x) ≥ 2, when conditions
(a),(b),(c) hold, and dG∗−S(x) ≥ 3, when condition (d) holds.

Thus �− dG∗−S(x) ≤ 0 and hence
∑

x∈T−W

(�− dG∗−S(x)) = 0. (2.6)

But if we use (2.5) and (2.6), then (2.4) yields a contradiction. So we may assume
that

S 
= ∅. (2.7)

We next suppose that T ′ −W = ∅. Then (2.4) implies
∑

x∈W
(2− dG∗−S(x)) > �|S|. (2.8)

But |W | = |Y | ≤ � by the conditions of the theorem. Thus we have
∑

x∈W
(2− dG∗−S(x)) ≤ 2|W |

≤ 2�

and so (2.7) and (2.8) imply |S| = 1.

On the other hand if this is the case then

dG∗−S(x) ≥ dG∗(x)− |S|
≥ 1

for every x ∈ W ; and thus
∑

x∈W
(2− dG∗−S(x)) ≤ |W | ≤ �,

which contradicts (2.8). So we may also assume that

T ′ −W 
= ∅. (2.9)

Let M1 be the set of edges of G− S belonging to X having exactly one end-vertex
in T ′ −W and let M2 be the set of edges belonging to X having both end-vertices
in T ′ −W . Define |M1| = m1 and |M2| = m2. Then

∑

x∈T ′−W

dG∗−S(x) ≥
∑

x∈T ′−W

dG−S(x)−m1 − 2m2
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since dG∗−S(x) ≥ d(G−X)−S(x) for every x ∈ T ′ −W . Thus (2.4) yields that

2|W |+ �|T ′ −W | −
∑

x∈T ′−W

dG−S(x) +m1 + 2m2 > �|S|. (2.10)

At this point we consider the induced bipartite subgraphH of G having as bipartition
the sets S and T ′ −W . As we saw earlier in (2.7) and (2.9), S and T ′ −W are non-
empty sets. Furthermore for every x ∈ S,

|NG∗(x) ∩ T ′| ≥ �+ 1 by Claim 2.2

and so

dH(x) ≥ �+ 1− |W |
≥ �+ 1− |Y | ≥ 1 (2.11)

since |Y | ≤ � by the conditions of the theorem.

On the other hand for every x ∈ T ′−W , dG∗−S(x) ≤ �−1 and so dG−S(x) ≤ �−1+|X|.
Thus

dH(x) ≥ δ(G)− �+ 1− |X| ≥ 1 (2.12)

by using again the conditions of the theorem.

Hence (2.11) and (2.12) yield that every element of S is adjacent in H to at least
one element of T ′ −W and conversely every element of T ′ −W is adjacent in H to
at least one element of S.

Suppose now that there exists an element x of S, which is adjacent in H to exactly
one element of T ′ − W , say y. Then (2.11) implies that |Y | = �. So by using the
conditions of the theorem, either δ(G) ≥ 4, 1 ≤ � ≤ 2 and |X|=0 or δ(G) ≥ 5, � = 3
and |X|=0.

Thus (2.12) yields
dH(y) ≥ δ(G)− �+ 1− |X| ≥ 3,

and hence we may assume that every component of H contains at least 3 vertices.
Clearly the bipartite graph H is a planar graph by Proposition 1.3; and so

|E(H)| ≤ 2|V (H)| − 4

≤ 2(|S|+ |T ′ −W |)− 4 (2.13)

by using Theorem 1.1 and Corollary 1.7.

But |E(H)| ≥ δ(G)|T ′ −W | −∑
x∈T ′−W dG−S(x) and thus

(δ(G)− 2)|T ′ −W | −
∑

x∈T ′−W

dG−S(x) ≤ 2|S| − 4,

which implies

�(δ(G)− 2)

2
|T ′−W |−

∑

x∈T ′−W

dG−S(x) ≤ �|S|−2�+
(�− 2)

2

∑

x∈T ′−W

dG−S(x). (2.14)
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At this point, we consider the following cases:

Case 1: � = 1, δ(G) ≥ 4.

Then (2.14) implies

|T ′ −W | −
∑

x∈T ′−W

dG−S(x) ≤ |S| − 2− 1

2

∑

x∈T ′−W

dG−S(x). (2.15)

On the other hand (2.10) yields

|T ′ −W | −
∑

x∈T ′−W

dG−S(x) > |S| −m1 − 2m2 − 2|W |. (2.16)

We consider the following subcases:

Case 1a: |X| ≤ 2 and |Y | = 0.

Then we have from (2.15),

|T ′ −W | −
∑

x∈T ′−W

dG−S(x) ≤ |S| − 2− 1

2
(m1 + 2m2)

since
∑

x∈T ′−W dG−S(x) ≥ m1 + 2m2. But m1 +m2 ≤ |X| ≤ 2, so it follows

|T ′ −W | −
∑

x∈T ′−W

dG−S(x) ≤ |S| − 3

2
m1 − 2m2,

which contradicts (2.16) since |W | = |Y | = 0.

Case 1b: |X| = 0 and |Y | ≤ 1.

Then (2.16) implies,

|T ′ −W | −
∑

x∈T ′−W

dG−S(x) > |S| − 2 (2.17)

since m1 +m2 = 0 and |W | = |Y | ≤ 1. But (2.17) contradicts (2.15).

Case 2: � = 2, δ(G) ≥ 4, |X|+ |Y | ≤ 2.

Then (2.14) yields

2|T ′ −W | −
∑

x∈T ′−W

dG−S(x) ≤ 2|S| − 4. (2.18)

On the other hand (2.10) implies

2|T ′ −W | −
∑

x∈T ′−W

dG−S(x) > 2|S| −m1 − 2m2 − 2|W |

≥ 2|S| − 2(|W |+m1 +m2)

≥ 2|S| − 2(|X|+ |Y |)
≥ 2|S| − 4 since |X|+ |Y | ≤ 2,
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which contradicts (2.18).

Case 3: � = 3, δ(G) ≥ 5, |X|+ |Y | ≤ 3 and |X| ≤ 2 if all the elements of X have a
common end-vertex.

We consider the following subcases.

Case 3a: |X| = 3.

It is obvious in this case that |W | = |Y | = 0 since |X|+ |Y | ≤ 3, so (2.10) implies

3|T ′| −
∑

x∈T ′
dG−S(x) +m1 + 2m2 > 3|S|. (2.19)

But

∑

x∈T ′
dG−S(x) ≥ δ(G)|T ′| − eG(S, T

′)

≥ 5|T ′| − |E(H)|
≥ 5|T ′| − (2(|S|+ |T ′|)− 4) by (2.13)

≥ 3|T ′| − 2|S|+ 4.

So (2.19) yields
m1 + 2m2 − 5 ≥ |S|. (2.20)

But as we saw earlier S 
= ∅ and m1 + 2m2 ≤ 2|X| ≤ 6. So we obtain from (2.20),
|S| = 1 and m1 + 2m2 = 6. On the other hand,

∑

x∈T ′
dG−S(x) ≥

∑

x∈T ′
(dG(x)− |S|)

≥ 4|T ′|, since |S| = 1 and δ(G) ≥ 5.

Thus (2.19) implies
m1 + 2m2 − 3|S| > |T ′|

or
|T ′| ≤ 2

since |S| = 1 and m1 + 2m2 = 6. But if |T ′| ≤ 2 then m2 ≤ 1 and so m1 ≥ 4 since
m1 + 2m2 = 6; which contradicts the fact that m1 ≤ |X| ≤ 3.

Case 3b: |X| ≤ 2.

Then (2.14) implies

3|T ′ −W |+ 3

2
|T ′ −W | −

∑

x∈T ′−W

dG−S(x) ≤ 3|S| − 6 +
1

2

∑

x∈T ′−W

dG−S(x).
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But
∑

x∈T ′−W

dG−S(x) ≤
∑

x∈T ′−W

dG∗−S(x) +m1 + 2m2

≤ 2|T ′ −W |+m1 + 2m2

since dG∗−S(x) ≤ 2, for every x ∈ T ′.

Thus

3|T ′ −W |+ |T ′ −W |
2

−
∑

x∈T ′−W

dG−S(x) ≤ 3|S| − 6 +
m1 + 2m2

2
.

But if m2 = 1 then |T ′ −W | ≥ 2 and if m2 = 2 then |T ′ −W | ≥ 3. So by using the
fact that m1 +m2 ≤ |X| ≤ 2, we have

|T ′ −W | −m1 − 2m2 ≥ −1

and thus

3|T ′ −W | − 1

2
−

∑

x∈T ′−W

dG−S(x) ≤ 3|S| − 6.

Hence
3|T ′ −W | −

∑

x∈T ′−W

dG−S(x) ≤ 3|S| − 6. (2.21)

On the other hand since |W |+m1 +m2 ≤ |X|+ |Y | ≤ 3, (2.10) implies

3|T ′ −W | −
∑

x∈T ′−W

dG−S(x) > 3|S| − 6

which contradicts (2.21).

The contradictions that we get in all cases complete the proof of the theorem. �

3 Remarks on the sharpness of the result

We will show in this section that the conditions of the hypothesis of Theorem 2.1
are in some sense best possible. We will first prove this for the minimum degree
condition. We will describe initially a family of graphs having slightly lower minimum
degree and not possessing a fractional �-factor for 1 ≤ � ≤ 2. We start from a
cycle C = u1u2u3 . . . u2ku1, where k ≥ 6 and vertices v1, v2, w. We join w to all
vertices of C, v1 to vertices u1, u3, u5 and v2 to vertices u7, u9, u11. The resulting
family of graphs G are clearly planar and δ(G) = 3. Furthermore graphs G do not
possess a fractional �-factor for � = 1, 2 by Theorem 1.2, because if we let S =
{u1, u3, u5, u7, . . . , u2k−3, u2k−1}∪{w} and define T = {x ∈ V (G)−S : dG−S(x) ≤ �},

∑

x∈T
(�− dG−S(x)) > �|S|
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since |S| = k + 1,
∑

x∈T (�− dG−S(x)) = �|T | and |T | = k + 2.

We will also show that the degree condition is best possible for � = 3. We
consider a cycle C = u1u2u3 . . . uku1, where k ≥ 7 and vertices v1, v2 which are
joined to all vertices of C. The resulting family of graphs G are clearly planar and
δ(G) = 4. Furthermore graphs G do not possess a fractional 3-factor because if we
let S = {v1, v2} and define T = {x ∈ V (G)− S : dG−S(x) ≤ 3},

∑

x∈T
(3− dG−S(x) > 3|S|

since |S| = 2,
∑

x∈T (3− dG−S(x)) = |T | and |T | = k ≥ 7.

We will next show that the elements of X and Y cannot be increased. We will
show in other words that the number of edges to which the indicator function h
assigns integral values, either 1 or 0, cannot be increased. For this purpose we will
first describe a family of graphs G which constitutes counterexamples to an opposite
claim for cases (a), (b), and (c).

Let H be a simple plane graph such that δ(H) ≥ 4 and let z be a vertex belonging
to the exterior face of H . We also consider a cycle C = u1e1u2e2u3e3u4e4u5e5u1 and
vertex w. The family of graphs under consideration are obtained by joining w, z to
all vertices of C. Clearly G are planar and δ(G) ≥ 4.

Claim 3.1 The elements of X in case (a) of Theorem 2.1 cannot be increased.

Proof. Let X = {e1, e4, e5} and G∗ = G − X. The family of graphs G∗ does not
possess a fractional 1-factor because if we let S = {u3, z, w} and define T = {x ∈
V (G∗)− S : dG∗−S(x) ≤ 1}, then

∑

x∈T
(1− dG∗−S(x)) > |S|

since
∑

x∈T (1− dG∗−S(x)) = 4 and |S| = 3. �

Claim 3.2 The number of elements of Y in case (b) of Theorem 2.1 cannot be
increased.

Proof. If |Y | ≥ 2 and all the elements of Y have a common end-vertex then G clearly
does not possess a fractional 1-factor with indicator function h such that h(e) = 1
for every e ∈ Y . We will show that the number of edges of Y cannot be increased,
even if the elements of Y are independent edges in G. Let Y = {e1, e6} where e6 is
the edge of G having as end-vertices w and u4. Define G∗ to be the graph obtained
from G by inserting a vertex of degree 2 to every element of Y . The family of graphs
G∗ does not possess a fractional f -factor such that f(x) = 2 for x ∈ V (G∗)− V (G)
and f(x) = 1 for x ∈ V (G), because if we let S = {u1, u2, u4, w, z} and define
T = {x ∈ V (G∗)− S : dG∗−S(x) ≤ f(x)}, then

∑

x∈T
(f(x)− dG∗−S(x)) > |S|

since
∑

x∈T (f(x)− dG∗−S(x)) = 6 and |S| = 5. �
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Claim 3.3 The sets X and Y in cases (a) and (b) of Theorem 2.1 cannot be both
non-empty.

Proof. Let X = {e5} and Y = {e6}, where e6 is the edge of G having end-vertices w
and u4, as we mentioned earlier. Define G∗ to be the graph obtained from G−X by
inserting a vertex of degree 2 to edge e6. The family of graphs G∗ does not possess
a fractional f -factor such that f(x) = 2 for x ∈ V (G∗) − V (G) and f(x) = 1 for
x ∈ V (G), because if we let S = {z, w, u2, u4}, then

∑

x∈T
(f(x)− dG∗−S(x)) > |S|

since
∑

x∈T (f(x)− dG∗−S(x)) = 5 and |S| = 4. �

Claim 3.4 The sum |X|+ |Y | cannot be increased in case (c).

Proof. Let X = {e2, e5}, Y = {e6}, where e6 is the edge of G having again end-
vertices w, u4 and let G∗ be the graph obtained from G−X by inserting to edge e6
a vertex of degree 2. The family of graphs G∗ does not possess a fractional 2-factor
because if we let S = {z, w, u4} and define T = {x ∈ V (G∗) − S : dG∗−S(x) ≤ 2},
then ∑

x∈T
(2− dG∗−S(x)) > 2|S|

since
∑

x∈T (2− dG∗−S(x)) = 8 and |S| = 3. �

We will also describe a family of graphs which shows that the elements of X and
Y cannot be increased in case (d). For the construction of such graphs G, we first
consider a simple plane graph H such that δ(H) ≥ 5, whose exterior face is incident
with at least 4 vertices. We take 7 copies of H and for every such copy Hi, we choose
vertices u1,i, u2,i, u3,i, u4,i belonging to the exterior face of Hi, where i = 1, 2, . . . , 7.
We also consider 6 copies of K2 and for every such copy Fi, let V (Fi) = {v1,i, v2,i},
where i = 1, 2, . . . , 6. In addition we consider vertices w1 and w2. The family of
graphs G mentioned above is constructed as follows: For all i = 1, 2, . . . , 6 we join
u3,i, u4,i to v1,i and for all i = 2, . . . , 7 we join u1,i, u2,i to v2,i−1. Finally we join w1, w2

to all the elements of V (F1) ∪ V (F2) ∪ · · · ∪ V (F6) and w1 to w2.

Claim 3.5 The sum |X|+ |Y | in case (d) cannot be increased.

Proof. Let e1, e2 be the edges of G having as end-vertices the elements of the sets
{w1, w2} and {w1, v1,1} respectively and define Y = {e1, e2}, X = E(F2)∪E(F3). Let
also G∗ be the family of graphs obtained from G−X by inserting to every element
of Y a vertex of degree 2. The family of graphs G∗ does not possess a fractional
f -factor such that f(x) = 2 for x ∈ V (G∗) − V (G) and f(x) = 3 for x ∈ V (G),
because if we let S = {w1, w2} and define T = {x ∈ V (G∗)− S : dG∗−S(x) ≤ f(x)},
then ∑

x∈T
(f(x)− dG∗−S(x)) > 3|S|

since
∑

x∈T (f(x)− dG∗−S(x)) = 7 and |S| = 2. �
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Claim 3.6 The number of elements of X in case (d), if all of them have a common
end-vertex, cannot be increased.

Proof. Let e′1, e
′
2, e

′
3 be the edges having v1,1 as a common end-vertex and having

u3,1, u4,1, v2,1 as the other end-vertex respectively. Let also X = {e′1, e′2, e′3} and
define G∗ = G − X. The family of graphs G∗ clearly does not possess a 3-factor
because if we let S = ∅ and define T = {x ∈ V (G∗)− S : dG∗−S(x) ≤ 3}, then

∑

x∈T
(3− dG∗−S(x)) > 3|S|

since
∑

x∈T (3− dG∗−S(x)) = 1 and |S| = 0.

�

Finally a natural question that may arise is whether minimum degree of the
highest value in a planar graph can guarantee the existence of a fractional 4-factor
or of a fractional 5-factor. We will answer the above question by proving the following
claim.

Claim 3.7 Planar graphs having minimum degree of the highest value do not neces-
sarily contain a fractional 4-factor or a fractional 5-factor.

Proof. We will prove the claim by using again the family of graphs, also used for the
proofs of claims 3.5 and 3.6.

Let S = {w1, w2}, � = 4 or � = 5 and define T = {x ∈ V (G) − S : dG−S(x) ≤ �}.
Then ∑

x∈T
(�− dG−S(x)) > �|S|

since
∑

x∈T (� − dG−S(x)) = (� − 3)12 and |S| = 2. Hence although G satisfies
δ(G) = 5, the family of graphs G does not possess a fractional �-factor when � = 4
or � = 5. �

Therefore, all the above claims yield that the conditions of Theorem 2.1 are in
some sense best possible.
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