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Abstract

In this note, we obtain an upper bound on the maximum number of
distinct non-empty palindromes in starlike trees. This bound implies, in
particular, that there are at most 4n distinct non-empty palindromes in a
starlike tree with three branches each of length n. For such starlike trees
labelled with a binary alphabet, we sharpen the upper bound to 4n − 1
and conjecture that the actual maximum is 4n− 2. It is intriguing that
this simple conjecture seems difficult to prove, in contrast to the proof of
the bound.

1 Introduction

We use the usual notation and terminology from graph theory and combinatorics on
words.
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A word of n elements is represented by an array x = x[1 . . n], with x[i] being the
ith element and x[i . . j] the factor of elements from position i to position j. If i = 1
then the factor is a prefix and if j = n it is a suffix. The letters in x come from
some alphabet A. The length of x, written |x|, is the number of letters x contains.
If x = x[1 . . n] then the reverse of x, written R(x), is x[n]x[n − 1] · · ·x[1]. A word x
that satisfies x = R(x) is called a palindrome.

A starlike tree T is a tree consisting of a root vertex, called the central vertex,
from which there extends 3 or more branches (i.e., simple paths) where each edge
of a path directed from the central vertex to the terminal vertex (leaf) of a branch
is labelled with a single letter of an alphabet A. Thus every path from the central
vertex to a leaf in the tree, as well as every simple path passing in reverse order
from a leaf through the central vertex to the leaf of another branch, constitutes a
word. If a starlike tree T consists of k branches, each of length n, we say that T is
a (k, n)−starlike tree.
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Figure 1: A (3, 4)−starlike tree with edges labelled using the binary alphabet {a, b}.

The maximum number of distinct non-empty palindromes in a word of length n
is n (see Lemma 1 below). Moving from words to graphs we can think of this as the
maximum number of distinct non-empty palindromes in an edge-labelled path Pn of
length n where the labels are single letters. This suggests extending the problem to
other graphs. In [4] it was shown that the maximum number of distinct non-empty
palindromes in a cycle Cn is less than 5n/3. For n divisible by 3 the so-called Biggles
Words contain 5n/3 − 2 distinct palindromes, so the bound is almost sharp. Brlek,
Lafreniére and Provençal [1] studied the palindromic complexity of trees and con-
structed families of trees with n edges containing Θ(n1.5) distinct palindromes. They
conjectured that there are no trees with asymptotically larger palindromic complex-
ity than that, and this was later proved by Gawrychowski, Kociumaka, Rytter and
Waleń [3].

In this note, we consider the maximum number of distinct non-empty palindromes
that can exist in a (k, n)−starlike tree. We call this number P (k, n) and prove that
P (k, n) ≤ (1 +

(
k
2

)
)n. For k = 3 this gives P (3, n) ≤ 4n, but for trees labelled
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with a binary alphabet we sharpen this result to P (3, n) ≤ 4n − 1. On the basis
of computational evidence, we conjecture that for k = 3 the best possible bound is
4n− 2. Trees attaining this bound are easily found, but mysteriously, it seems very
difficult to prove.

2 Results

The following well-known result is due to Droubay, Justin, and Pirillo [2]. We give
a proof since its ideas will be used later.

Lemma 1. The number of distinct non-empty palindromes in a word of length n is
at most n.

Proof. If two palindromes end at the same place then the shorter is a suffix of the
longer. It is therefore also a prefix of the longer and so has occurred earlier in the
word. Thus at each position there is the end of at most one palindrome making its
first appearance in the word. The lemma follows.

Of course it is also true that each position in a word can be the starting point
of the last occurrence of at most one palindrome. Note that a position i that marks
the end of the first appearance of a palindrome in x[1..n] also marks the start of the
last occurrence j = n− i+ 1 of the same palindrome in R(x).

Theorem 2. An edge-labelled starlike tree with branches b1, b2, . . . , bk, where |b1| ≥
|b2| ≥ · · · ≥ |bk|, contains at most

|b1|+
k∑

i=2

(i− 1)|bi|

distinct non-empty palindromes.

Proof. We say that a palindrome within a branch bi is local, while one that overlaps
a path R(bi)bj , j > i, through the central vertex is overlapping.

The path R(b1)b2 contains |b1| + |b2| edge labels and therefore, by Lemma 1,
contains at most |b1| + |b2| distinct palindromes. Now consider the path R(b1)b3.
This contains at most |b1|+ |b3| distinct palindromes, with at most |b3| of their first
appearances ending in b3. Palindromes local to b1 would have been counted in the
path R(b1)b2. Thus, in addition to these palindromes, there are at most |b3| other
palindromes in R(b1)b3, whether local or overlapping. Similarly, there are at most
|bi| new palindromes in each path R(b1)bi for i = 4, 5, . . . , k. Thus the total number
of new palindromes in paths R(b1)bi, i = 2, 3, . . . , k, is at most

∑k
i=1 |bi|.

Now consider the paths R(b2)bi for 3 ≤ i ≤ k. The set of palindromes in R(b2) is
of course exactly the set of palindromes in b2. These local palindromes fall into two
types, as follows.
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Type 1: Those palindromes counted in b1,2 := R(b1)b2 because their first occurrences
were in b1,2, thus not in R(b1). These will of course also occur in R(b2)bi, but
will not be counted a second time.

Type 2: Those palindromes not counted in b1,2. These palindromes must therefore not
have their first occurrences in R(b1)b2, and so must have occurred (and been
counted) previously. These palindromes will therefore not be counted a second
time.

Thus in R(b2)bi there will be no new palindromes local to b2, only (local or overlap-
ping) palindromes ending in bi, of which there will be at most

∑k
i=3 |bi| altogether,

by Lemma 1.

Considering now all the paths R(bi)bj , i = 1, 2, . . . , k − 1, j = i+ 1, i+ 2, . . . , k,
we see that the maximum number of palindromes in all paths of the starlike tree is

k∑
i=1

|bi|+
k∑

i=2

|bi|+ · · ·+
k∑

i=k−1

|bi|+ |bk|

= |b1|+
k∑

i=2

(i− 1)|bi|,

as required.

Corollary 3.

P (k, n) ≤
(
1 +

(
k

2

))
n.

Proof. Substitute n for each |bi| in the theorem.

Table 1 (below) shows values of P (k, n) for low values of k and n when we are
restricted to a binary alphabet. We see that the upper bounds are far from sharp.

n k = 3 k = 4 k = 5
1 3, 4 4, 7 4, 11
2 6, 8 8, 14 9, 22
3 10, 12 14, 21 16, 33
4 14, 16 20, 28 24, 44
5 18, 20 26, 35 32, 55

Table 1: Maximum number of palindromes in various starlike trees of fixed branch length. The
first value in each cell is P (k, n) and the second is the upper bound given by Corollary 3.

Using larger alphabets does not seem to increase the maxima except in the case
of a starlike tree with five branches of length 1. With a binary alphabet we get at
most four palindromes with branches labelled a, a, a, b, b; with a ternary alphabet we
get five palindromes using a, a, b, b, c.
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One might expect there to be an easy induction proof, but there is not. In the
case of starlike trees with 3 branches of length n labelled by a binary alphabet,
Corollary 3 gives an upper bound of 4n. One might assume that by adding an extra
letter to each branch you could only get at most 4 new palindromes, but this is not
implied by our proof. If the three branches are labelled A, B and C, adding an extra
letter to the A branch can give an extra palindrome in the AB branch and in the
AC branch, so 2 more palindromes starting in the A branch. Also 2 more starting
in each of the branches B and C, so up to 6 new palindromes (not 4) altogether.

We conjecture that, for all n ≥ 2, P (3, n) = 4n− 2. This bound can be attained
using branches labelled an, ban−1 and bban−2 (see Figure 1), but it seems very difficult
to prove. One can make similar conjectures for larger k but in these cases there are
many examples attaining the maxima, none of which look suitably canonical.

The following is a slight improvement on the bound for P (3, n) when the alphabet
is binary.

Theorem 4. The maximum number of distinct non-empty palindromes arising when
a binary alphabet is used to edge-label a starlike tree with three length n branches is
at most 4n− 1.

Proof. Label the three branches x, y and z. Since our alphabet is binary, at least
two of these have the same nth letter, say α. Without loss of generality, suppose
y[n] = z[n] = α. There are at most 2n palindromes in R(x)y and at most n more
distinct palindromes in R(y)z. We claim however that there are at most n− 1 new
ones in R(x)z. For suppose that a palindrome in R(x)z ends at z[n]. Then it must
also occur in R(x)y ending at y[n], and so it has already been counted. Thus there
are at most 4n− 1 distinct palindromes in the starlike tree.

Similar results hold whenever paths in the tree share a common suffix.
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