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Abstract

Let G be a graph and f : V(G) — N be a function. An f-coloring of a
graph G is an edge coloring such that each color appears at each vertex
v € V(G) at most f(v) times. The minimum number of colors needed to
f-color G is called the f-chromatic index of G and is denoted by x;(G).
It was shown that for every graph G, A;(G) < X}(G) < Af(G) + 1,

where A¢(G) = maxvev(g)[djf(g)] A graph G is said to be f-Class 1
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if X}(G) = Af(G), and f-Class 2, otherwise. Also, G, is the induced
subgraph of G on {v € V(QG) : d}?(g) = A¢(G)}. In this paper, we show
that if G is a connected graph with A(Ga,) <2 and G has an edge cut
of size at most A¢(G) — 2 which is a star, then G is f-Class 1. Also, we
prove that if G is a connected graph and every connected component of
G, is a unicyclic graph or a tree and G, is not 2-regular, then G is
f-Class 1. Moreover, we show that except one graph, every connected

claw-free graph GG whose f-core is 2-regular with a vertex v such that

f(v) #11is f-Class 1.

1 Introduction

All graphs considered in this paper are simple and finite. Let G be a graph. The
number of vertices of G is called the order of G and is denoted by |G|. Also, V(G)
and F(G) denote the vertex set and the edge set of G, respectively. The degree of a
vertex v in G is denoted by dg(v) and Ng(v) denotes the set of all vertices adjacent
to v. Moreover, for S C V(G), we denote the neighbor set of S in G by Ng(S5).
Also, let A(G) and 0(G) denote the maximum degree and the minimum degree of G,
respectively. A star graph is a graph containing a vertex adjacent to all other vertices
and with no extra edges. A matching in a graph is a set of pairwise non-adjacent
edges. An edge cut is a set of edges whose removal produces a subgraph with more
connected components than the original graph. If the edge cut is the edge set of a
star, then we call it star cut. Moreover, a graph is k-edge connected if the minimum
number of edges whose removal would disconnect the graph is at least k. We mean
G\ H, the induced subgraph on V(G) \ V(H). For two subsets S and T of V(G),
where SNT = (), eq(S,T) denotes the number of edges with one end in S and other
end in 7. For a subset X C V(G), we denote the induced subgraph of G on X by
(X). An induced K 3 is called a claw. A graph is called claw-free if it contains no
claw. Moreover, a graph G is called a unicyclic graph if it is connected and contains
exactly one cycle.

A k-edge coloring of a graph G is a function f : F(G) — L, where |L| = k
and f(e;) # f(ea), for every two adjacent edges e, ez of G. The minimum number
of colors needed to color the edges of G is called the chromatic index of G and is
denoted by x'(G). Vizing [6] proved that A(G) < x/(G) < A(G) + 1, for any graph
G. A graph G is said to be Class 1 if x'(G) = A(G) and Class 2 if X'(G) = A(G) +1.
A graph G is called critical if G is connected, Class 2 and x'(G'\ e) < x/'(G), for every
edge e € E(G). Also, Ga is the induced subgraph on all vertices of degree A(G).

For a function f which assigns a positive integer f(v) to each vertex v € V(G),
an f-coloring of G is an edge coloring of GG such that each vertex v has at most f(v)
edges colored with the same color. The minimum number of colors needed to f-color
G is called the f-chromatic index of G, and denoted by x;(G). For a graph G, if
f(v) =1 for all v € V(G), then the f-coloring of G is reduced to the proper edge
coloring of G. Let Af(G) = max,cv(a) fdfG(—E};)W A graph G is said to be f-Class 1 if
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X3(G) = Af(G) and f-Class 2, otherwise. Also, we say that G has a Ay(G)-coloring
if G is f-Class 1. A vertex v is called an f-mazimum vertez if dg(v) = f(v)Af(G).
A graph G is called f-critical if G is connected, f-Class 2 and x}(G \ e) < x}(G),
for every edge e € E(G). The f-core of a graph G is the induced subgraph of G on
the f-maximum vertices and denoted by Ga,. The following example presents an
f-Class 1 graph.

Example 1.1 Let G be a graph represented in Figure 1 with f(v;) = f(v9) = 2 and
f(vi)) =1, fori=3,...,7. It is easy to see that Ay(G) = 2 and Ga, = K3. Now,
by assigning color « to the edges {vivs, V105, Vov3, V204 } and color § to the edges
{v109, v1V7, V905 }, one can see that G is f-Class 1.

Figure 1: An f-Class 1 graph
In [3], Hakimi and Kariv obtained the following three results.

Theorem 1.1 [3] Let G be a graph. Then

d(;(?}) —|— 1
fw)

Theorem 1.2 [3] Let G be a bipartite graph. Then G is f-Class 1.

Af(G) < X3(G) < maxpey ()| 1 <AqG)+ 1L

Theorem 1.3 [3] Let G be a graph and f(v) be even, for allv € V(G). Then G is
f-Class 1.

The following result is due to Zhang and Liu, who gave a series of sufficient
conditions for a graph G to be f-Class 1 based on the f-core of G.

Theorem 1.4 [8] Let G be a graph. If Ga, is a forest, then G is f-Class 1.

In [5], some properties of f-critical graphs are given. In the following, we review
one of them.

Theorem 1.5 For every vertex v of an f-critical graph G, v is adjacent to at least
2f(v) f-mazimum vertices and G contains at least three f-mazximum vertices.

There are some results on proper edge colorings of graphs as follows:
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Theorem 1.6 [4] Let G be a connected Class 2 graph with A(Ga) < 2. Then:
1. G 1s critical;
2. 0(Gpa) = 2;
3. 0(G) = A(G) — 1, unless G is an odd cycle.

Theorem 1.7 [1] Let G be a connected graph such that A(Ga) < 2. Suppose that
G has an edge cut of size at most A(G) — 2 which is a matching or a star. Then G
is Class 1.

Theorem 1.8 [1] Let G be a connected graph. If every connected component of Ga
is a unicyclic graph or a tree and G is not 2-reqular, then G is Class 1.

Theorem 1.9 [9] If G is a connected f-Class 2 graph with A(Ga,) < 2, then
(i) G is f-critical;
(ii) (GAf) =2;
(iii) V(G) = Na(V(Ga,));
(iv) f(v) =1 for allv € V(Ga,);
(v) da(v) = f(0)Ap(G) — 1, for each v € V(G) \ V(GAf).

Theorem 1.10 [2] Let G be a connected graph such that A(Ga,) < 2. Suppose that
G has an edge cut of size at most Ap(G) — 2 which is a matching. Then G is f-Class
1 and G has a Ay(G)-coloring in which the edges of the edge cut have different colors.

In this paper, we generalize Theorems 1.7 and 1.8 to f-coloring of graphs. More-
over, we show that, with the exception of one graph, every connected claw-free graph
G whose f-core is 2-regular and a vertex v, such that f(v) # 1 for some, is f-Class 1.

2 Results

In this section, we generalize Theorems 1.7 and 1.8 and we obtain some results in
f-coloring of claw-free graphs whose f-core is 2-regular. First we want to prove that
if a connected graph G with A(Ga,) < 2 has an edge cut of size at most A(G) — 2
which is a star, then GG is f-Class 1. To do this, we need the following two lemmas.

Lemma 2.1 [2] Let G be a connected graph with A(Ga,) < 2. Suppose that F' =
{uvy,...,uv}, k < Ay(G) — 2, is an edge cut of G and f(u) = 1. Then G is
f-Class 1.

Lemma 2.2 Let G be a graph. If Ga, = (0, then G is f-Class 1.

Proof. Let v € V(G) be a vertex such that Ay(G) = (d}?((g)} Let H be the graph

obtained from G by adding (fdf(gw - dfc(g)) f(v) new vertices, all adjacent to v. Let

f': V(H) — N be a function defined by
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ooy ) f(z) 2 eV(G),
=) = {1 2 e V(H)\ V(G).

Clearly, |V(Ha,)| = 1 and Ay(H) = Ay(G). Now, by Theorem 1.4, H is f-Class 1
and so is G. O

The following theorem together with Theorem 1.10 generalizes Theorem 1.7.

Theorem 2.1 Let G be a connected graph, Ay(G) > 3 and A(Ga,) < 2. Suppose
that G has a star cut of size at most Ay(G) —2. Then G is f-Class 1.

Proof. Let F = {uwvy,...,uv;} be a minimal star cut of G. If k = 1, we are done
by Theorem 1.10. Next, we assume that 2 < k < Af(G) — 2. Also, let X be the
vertex set of the connected component of G\ F' containing v and let Y be V(G) \ X.
Let G and G5 be the induced subgraphs on X and Y, respectively. Then u € V(G)
and v; € V(Gy), for i = 1,... k. By Lemma 2.1 we can assume that f(u) > 2. For
a contradiction assume that G is f-Class 2. Since A(Ga,) < 2, by Theorem 1.9, we
get that G is f-critical, and because f(u) > 2, by Theorem 1.5, we conclude that
u & V(Ga,). Thus by Theorem 1.9, dg(u) = f(u)Ap(G) —1 > 2A4(G) — 1. Let
Ng, (u) = {wy,...,w;}. This means that ¢ > A;(G) + 1. By the minimality of F,
we can assume that for every component S of Gy \ {u}, we have |Ng, (u) NV (S)| >
k > 2. Let D be one of the components of Gy \ {u} such that wy,w; € V(D). Add
two new vertices z and y to G \ {u} and join z and y to {wi,...,wa @) -+} and
{wa () I TR P ,wy}, respectively. Then call the resultant graph by H. Clearly,
du(2) = 8y(G) — k and dy(y) = ¢ — (A/(G) — K) = (da(u) — k) — (A;(G) — k) =
de(u) — Af(G). Also, add a new vertex z to G and join it to {vy,..., v} and call
it by K. Let f': V(H U K) — N be a function defined by

f() v e V(G),
flv)y=¢1 v € {x, 2},
flu) =1 v=y.

Note that H and K are connected. Moreover, max{Ay (H), Ap(K)} < Af(G),
because

Ll < A(@) veV(G),
dow) _ JAG) =k <Ap(G) v =z,
') k< AHG)—2 < AG) v =2z,

de(-A,(G) _ f)A(G)-1-4;(C) _

ot = g <G v=y

and since |V(G;) NV (Ga,)| > 2, fori=1,2, Ap(H) = Ap(K) = Af(G). Moreover,
note that by adding the new vertices z,y and z, dy(v) = dg(v) and dg(v) = dg(v)
for every v € V/(G) \ {u}. This implies that A(Ha ) = A(Ka,,) = A(Ga,).
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We claim that both H and K are f’-Class 1. Note that if H is f’-Class 2, then
by Theorem 1.9, dy(x) = f'(z)Ap(H) — 1 = Af(G) — 1, but dy(z) = Ap(G) —
k < Af(G) — 2, a contradiction. So, there exists an f’-coloring ¢ of H by colors
{1,...,Ap(H)}. Similarly, there is an f’-coloring 6 of K by colors {1,..., Ap(K)}
and the claim is proved.

By a suitable permutation of colors, one may assume that

{¢($w1), SRR gb(waf(G)fk)v 0(21}1), s ae(zvk)}
are distinct. Now, define an f-coloring ¢ : E(G) — {1,...,Af(G)} as follows:

(
C

(e) = ¢(e) for every e € E(Gy \ {u}),
c(e) =06(e) for every € € E(Gs),
cluv)) = 0(zv;)  for i=1,... k,
o(

(

ww;) = ¢(zw;) for i=1,...,A¢(G) -k,
cluw;) = ¢p(yw;) for i =Ap(G)—k+1,...,t

\

Since f'(y) = f(u) — 1, we conclude that G is f-Class 1 which is a contradiction and
the proof is complete. 0

Now, we want to prove another result on f-coloring of graphs which classifies
some families of f-Class 1 graphs. We need the following lemma subsequently.

Lemma 2.3 [7] Let C denote the set of colors available to color the edges of a simple
graph G. Suppose that e = uwv is an uncolored edge in G, and graph G\ {e} is f-
colored with the colors in C. If for every neighbor x of either u or v, there exists
a color oy, which appears at most f(x) — 1 times at vertex x, then there exists an
f-coloring of G using colors of C.

In fact the following result can be derived either from the main result in [7] and
Theorem 1.9, or from the main result of [9]. We give a proof here, which is distinct
from the above.

Theorem 2.2 Let G be a connected graph. If every connected component of G, is
a unicyclic graph or a tree and Ga, is not 2-regular, then G is f-Class 1.

Proof. First suppose that A(Ga,) < 2. For a contradiction, assume that G is
J-Class 2. By Theorem 1.9, Ga, is 2-regular, which is a contradiction. So one may
suppose that A(Ga;) > 3. Now the proof is by induction on m = |E(Ga,)|. Since
A(GAf) > 3, we have m > 3. First assume that m = 3. Since GAf is not 2-regular
and A(Ga;) > 3, we have Ga, = K 3. Now, by Theorem 1.4, G is f-Class 1 and
we are done.

Now let G be a graph and let ¢ = [E(Ga,)|. Assume that the assertion holds for
all graphs with fewer than m edges, where m < t. Note that since A(Ga,) > 3 and



S. AKBARI ET AL. /AUSTRALAS. J. COMBIN. 75 (1) (2019), 32-49 38

Ga, is not 2-regular, there exists an edge e = uv € E(Ga,) such that day, (v) =1
and dg,, (u) > 2. Let H =G\ {e} with the function f : V(G) — N. We would like

to show that H is f-Class 1. Two cases may occur.

First assume that H is connected. If A(Ha,) > 3, then by the induction hypoth-
esis we are done. If A(HAf) < 2 and Ha, is not 2-regular, then by Theorem 1.9,
H is f-Class 1. Thus assume that Ha, is 2-regular. Note that by deleting the edge
e = uw, it is not hard to see that since A(GAf) > 3, GAf is a disjoint union of some
cycles and the graph shown in the following figure:

Q_u

Figure 2: A part of Ga,

Now, by Theorem 1.9, H is f-critical and so by Theorem 1.5, u should have at
least two neighbors in Ha,, a contradiction.

Next assume that H is not connected. Let P and () be two connected components
of H such that u € V(P) and v € V(Q). Since dGAf (u) > 2, we have Ap(P) =
Ay(G). Now, if A(Pa;) > 3, then by the induction hypothesis, P is f-Class 1. If
A(Pa;) <2 and Pa, is not 2-regular, then by Theorem 1.9, P is f-Class 1. Thus
assume that Pa, is 2-regular. Then it is not hard to see that G4, is the disjoint union
of some unicycles, trees and the graph shown in the Figure 2. Now, by Theorem 1.9,
P is f-critical and so by Theorem 1.5, u should have at least two neighbors in Py,
a contradiction and P is f-Class 1. Now, we want to show that @) is f-Class 1, too.
First note that if Ay(Q) < As(G), then by Theorem 1.1, @ has an f-coloring with
colors {1,...,Ay(G)}. So, assume that Ay(Q) = Ay(G). Now, if Qa, = ), then by
Theorem 2.2, @ is f-Class 1. If A(Qa,) > 3, then @ is f-Class 1 by the induction
hypothesis. Thus, we can assume that A(Qa,) < 2. Now, if Qa, is not 2-regular,
then by Theorem 1.9, @ is f-Class 1. Thus assume that Qa, is 2-regular. Then it is
not hard to see that G, is the disjoint union of some unicycles, trees and the graph
shown in the Figure 2. Now, by Theorem 1.9, ) is f-critical and so by Theorem 1.5,
v should have at least two neighbors in Qa,, a contradiction and @ is f-Class 1.
Now, since for every x € Ng(v) \ {u}, we have x & V(Ga,), there exists a color a,
which appears at most f(z) — 1 times in x and so by Lemma 2.3, G is f-Class 1 and
we are done. OJ

Theorem 2.3 Let G be a connected claw-free graph with A(Ga,) < 2. If there exists
a vertezr v € V(G) such that f(v) # 1 and G # W, where W is the graph shown in
Figure 3, then G is f-Class 1.

Proof. For a contradiction assume that G is f-Class 2. Then by Theorem 1.9,
G is f-critical and Ga, is 2-regular. Now, by Theorem 1.5, f(u) = 1, for every
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1 1

Figure 3: The graph W (the value of each vertex z denotes f(z))

u € V(Ga,) and so by the definition we have
da(u) = Af(G), for every u € V(Ga,). (1)

Note that, if Af(G) = 2, then since G is connected and G4, is 2-regular, G = Ga,
and there is no vertex v with f(v) # 1. Thus we can assume that

A(G) > 3. (2)

Let H = G\ Ga,;. Now, if |NGAf (x)] > 7, for some x € V(H), then clearly there
exists an independent set of size 3 in Ng A (z) which implies that G has a claw, a
contradiction. Thus we have

|NGAf ()] <6, for every x € V(H). (3)

Now, to prove the theorem, first we need the following claim:
Claim 1. f(z) < 2, for every z € V(G).

Proof of Claim 1. To see this for a contradiction, assume that there exists a vertex
z € V(G) such that f(z) > 3. By Theorem 1.5, for every u € V(Ga,), f(u) = 1.
Thus, z € V(H). Now, by (3) and Theorem 1.5, we conclude that |NGAf (2)] =6 and

f(2) = 3. Then by Theorem 1.9, dz(2) = 3A;(G) — 1 and so dy(z) = 3A¢(G) — 7.
Now, we want to show that for every w € Ng(z),

|NGAf (w) A NGAf (Z)| > 3.

Suppose otherwise and note that there are at least 4 vertices, say ui, uq, usg, uy €
Nes, (), such that wu; ¢ E(G), for i = 1,...,4. Since Ga, is 2-regular, with no
loss of generality, we can assume that ujus € E(G). Then ({uq, uz, w, z}) is a claw, a
contradiction. Thus, we conclude that for every w € Ny(2), \NGAf (w)ﬂNGAf (z)| >3
and so e(;(NGAf (2), Nu(2)) > 3(3A7(G) —7). Moreover, since for every u € V(Ga,),
da(u) = Ay(G), we conclude that e(;(NGAf(z),NH(Z)) < 6(Af(G) — 3). Thus,
3(3Af(G)—7) < e(;(NGAf (2), Nu(2)) < 6(Af(G)—3), which yields that Af(G) <1,
a contradiction and the claim is proved.

Now, by the assumption of the theorem and Claim 1, we can assume that there
exists a vertex v € V(H) such that f(v) = 2. Then, by Theorem 1.9, dg(v) =
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2A¢(G) —1. By Theorem 1.5 and using (3), we have 4 < |NGAf (v)] < 6. Thus, three
cases may OCCur:

Case 1. \NGAf (v)| = 4.
Let NGAf(v) = {u1,...,wa} and Ng(v) = {wi,...,won, @5} Since Ga, is 2-
regular, with no loss of generality, there are two non-adjacent vertices wi,us €
Nas, (v). Since G is claw-free, uyw; € E(G) or usw; € E(G), fori=1,...,2A4(G)—
5. Thus, 2A¢(G) — 5 < eq(Nu(v), {u1,us}) < 2(A¢(G) — 3), a contradiction.

Case 2. \NGAf (v)| = 5.
Let Ne,, (v) =A{u1,...,us} and Ng(v) = {wy, ..., wan,()-6} First note that since
G is claw-free, Ng A (v) does not contain an independent set of size 3 and so it can
be easily checked that (Ng A (v)) is one of two following graphs:

Figure 4: <NGAf (v)) when |(NGAf(v)>| =5

Three subcases may occur:

(i) A/(G) =3,
We have dg(v) = 2A¢(G) — 1 = 5. Now, if <NGAf (v)) = C5, then G is the graph
W shown in 3, a contradiction. Thus, assume that (Ng N (v)) is the graph shown in
Figure 4(b). By Theorem 1.9, since G, is 2-regular, there exists ug € Nes, (us)\{ua}
and u7 € Ny, (ug)\{us}. Now, we divide the proof of this subcase into two parts:

o ug # uy. Let L = G\{v,uy,...,us}. Now, add a new vertex z to L and join x

to ug and wuy. Call the resultant graph L'. Let f’: V(L') — N be a function defined
by

ﬂ@:{ﬂ@zevwx

1 Z =T

Note that since Ay(G) = 3, we have dg(u) = 3, for every u € V(Ga,). Now, since
de(v) = 5, we conclude that L’ is connected and Ay (L") = Af(G) = 3. Note that
since dp/(z) = 2, we have = ¢ V(L’Af,) and so 5(L’Af,) = 1. Now, since A(L’Af,) <2
and L’Af/ is not 2-regular, by Theorem 1.9, L’ has an f’-coloring call #, with colors
{1,2,3}. Without loss of generality, assume that 6(zu;) = 1 and 0(zug) = 2. Now,
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define an f-coloring ¢ : E(G) — {1,2,3} as follows.
Define c(e) = 6(e), for every e € E(L) and

c(ugur) = c(vuy) = c(vus) = c(ugus) =1
c(usug) = c(vuy) = c(vuz) = c(ugug) = 2
c(ugus) = c(vug) = c(ugus) = 3

e ug = uy. Since Ay(G) = 3, we have dg(ug) = 3 and so ug has a neighbor ¢,
where ¢ € {v,uq,...,us}. Noting that dg(v) = 5 and dg(u;) = 3, fori = 1,...,6,
we conclude that tug is a cut edge for G and by Theorem 2.1, G is f-class 1, a
contradiction.

(i1) Ap(G) = 4.

Clearly, dg(v) = 2A¢(G) —1 =7 and Ny (v) = {wy, ws}. Now, we divide the proof
of this subcase into two parts:

o <NGAf (v)) is the graph shown in Figure 4(a).

Since G is claw-free, noting that ujus ¢ F(G), we have uwyw; € E(G) or uyw; €
E(G). Without loss of generality assume that wyw; € E(G). Moreover, since
({v,u1, uq, wo}) is not a claw and Ng(u1) = {v, us, us, w1}, we have ugwy € E(G).
Similarly, since ({v,uy, us, wo}) is not a claw and Ng(u1) = {v, ug, us, w;}, we con-
clude that usws € E(G). Also, since ({v,ug,uy,w;1}) is not a claw and Ng(ug) =
{v, us, us, wy }, we obtain that usw; € E(G). Moreover, since ({v, us, us,w;}) is not
a claw and Ng(us) = {v, ug, ug, we}, uswy € E(G). Clearly, ({v, ug, us, we}) is a claw
which is a contradiction.

e (Ng N (v)) is the graph shown in Figure 4(b). Similar to the previous argu-
ment, one can assume that {ujwy, ugwn, uswy, ugwe, uswe} C E(G). Now, since
dg(wy) > 4, f(wy) > 2. By Claim 1 we conclude that f(w;) = 2 and so by
Theorem 1.9, dg(w;) = 7. Assume that Ng(wi) = {v,v1, 02,03, us, us, ug}. Note
that since dg(uy) = dg(us) = 4 and {v,ws} C Ng{ug, us}, we conclude that
{v1,v9,v3} N {ug,us} = @. Now, by Theorem 1.5, we have |NGAf(w1)| > 4. If
\NGAf (w1)| = 4, then by Case 1, we are done. So, we can assume that \NGAf (wy)| >
5. Without loss of generality, assume that

vi,vg € V(Ga,). (4)

Also, since ({uy,v;,vj,w1}) is not a claw, for 4,5 = 1,2,3, 7 # j and Ng(uy) =
{v, ug,ug, w1}, we obtain that

<{1)1,1)2,1)3}> = K3, (5)

Now, we claim that vs # w,. For a contradiction assume that vs = w,. Then
dg(wz) > 6 and since wy & V(Ga, ), we have f(ws) = 2. Let Ng(wa) = {v,v1,v2, uy,
us, wy, Y}, where y & {uy, ug, ug}. Since ({vy, ug, wo,y}) and ({vy, us, wy,y}) are not
claws, we conclude that ({us,us,y}) is a K3 in Ga, and so yv; ¢ E(G). Then
({v,v1,we,y}) is a claw, a contradiction and the claim holds. Consider L = G\
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U, U, Uz, U3, W1 . Add a new vertex x to L and join z to Us, Wa, Vg, V3. Call the
J
resultant graph L.

Let f": V(L") — N be a function defined by

ﬂd:{ﬂazevwx
1 zZ=z.
Clearly, by (5), L’ is connected and vy, uy & V(L’Af,). If v3 € V(Ga,), then clearly
5(L’Af/) =1 and A(L’Af/) < 2 and by Theorem 1.9, L' is f’-Class 1. So assume that
v3 € V(Ga,). Clearly, L’Af/ is not 2-regular and each of the components is a unicyclic
graph or a tree. By Theorem 2.2, I’ has an f’-coloring, say 6, with colors {1, 2, 3,4}.
Without loss of generality, assume that 0(zus) = 1, 0(xwy) = 2, 6(zv3) = 3 and
0(zve) = 4. Define an f-coloring ¢ : E(G) — {1, 2, 3,4} as follows.

Let c(e) = O(e), for every e € E(L), c(vus) = 1, c(vwy) = 2, c(vswy) = 3,
c(vowy) = 4 and c(vuy) = a, ¢(vywy) = b, where a and b are the colors missed in
coloring 6 in uy and vy, respectively.

By a suitable f-coloring of ({v,uy,us, us, w1}), we extend the f’-coloring 6 of L'
to an f-coloring ¢ of G, using four colorings given in Figure 5. For (a,b) = (2,4),
the Figure 5(i) works. If (a,b) = (1,3), then interchange two colors 1 and 2, and
two colors 3 and 4 in igure 5(i). For (a,b) = (1,4) or (a,b) = (2,3), interchange
two colors 1 and 2, and two colors 3 and 4 in Figure 5(7), respectively. For (a,b) €
{(4,2),(4,1),(3,2)}, we can use the same method given in Figure 5(i7). If a,b €
{3,4}, then 5(ii7) works. For a,b € {1, 2}, Figure 5(iv) works, and for (a,b) = (3,1),
Figure 5(v) works.

(i13) Af(G) > 5.
Consider G\ {v}. Now, add two new vertices v; and vy to G \ {v}, join v; to

{ur,wi, ..y wa@)-1} and vy to {uy, ..., us, WA G)s - - -, Wan,(@)—6}- Call the resul-
tant graph by L. Let f': V(L) — N be a function defined by

ﬂ@:{ﬂazevwmﬁ&

1 A {Ul,vg}.

It is easy to see that L is connected, Ay/(L) = Ay(G) and V(La,,) = V(Ga,)U{vi}.
Noting that |NLAf, (v1)] = 1 and using Theorem 2.2, L has an f’-coloring with colors
{1,...,Ap(L)}, call 8. Now, define an f-coloring ¢ : E(G) — {1,...,A¢(G)} as
follows. Let

cle) =0(e) for every e € E(G\ {v})
c(vuy) = 0(uqvy)
c(vu;) = O(uve)  for i=2,...,5
clow;) = 0(vjw;) for i=1,...,A¢(G)—1
L c(vw;) = O(vaw;)  for i = Ap(G),...,24;(G) — 6.
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Figure 5: 4-edge coloring of ({v, u1, ug, ug, w1 })

This implies that G is f-Class 1, a contradiction.
Case 3. |NGAf (v)| = 6.

First note that if there exists a vertex v with f(v) = 2 such that |NGAf (v)| < 5,
then by Cases 1 and 2 we are done. Thus, we can suppose that for every ver-
tex v with f(v) = 2, we have |NGAf(v)| = 6. Let NGAf(’U) = {uy,...,ug} and
Np(v) = {wy, ..., wan)-7} Since G is claw-free, every induced subgraph of order
3 of <NGAf (v)) has at least one edge. Thus <NGAf (v)) is disjoint union of two K.
Without loss of generality, assume that

({ur, ug, uz}) >~ ({ug, us, ug}) ~ Ks. (6)
Thus, one can assume that:

for every vertex z with f(z) = 2, <NGAf (x)) is the disjoint union of two K3. (7)

Clearly, since dg(v) = 2A¢(G) — 1 > 6, we conclude that Ay(G) > 4. Now, three
cases may be considered:

(i) Af(G) = 4.
Clearly, dg(v) = 2A¢(G) — 1 = 7 and Ng(v) = {w;}. We claim that |NGAf (v) N
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Ney, (wy)| > 3. Otherwise, wiu;, € E(G), for j = 1,...,4, where u;, € Ney, (v).
By (7), and without loss of generality, we can assume that w;u;, ¢ E(G). Then
({v, wy, usy,us,}) is a claw, a contradiction. Now, we divide the proof of this subcase
into two parts:

o |NGAf(v) N NGAf(w1)| > 4. Then, dg(wy) > 5 and since Ay(G) = 4, we
conclude that f(w;) > 2 and by Claim 1 we find that f(w;) = 2. Now, using (7),
<NGAf (wy)) is disjoint union of two Kj. Since |NGAf (wy) N {ug, ug,uz}| > 1 and
|NGAf (wy) N {ug, us,ug}| > 1, we conclude that Na,, (w1) = {uy,...,ug}. Then, it
is easy to see that GG is the graph shown in the following figure which is colored with
Af(G) =4 colors and the proof of this subcase is complete.

color 1 —_—
color 2 —_—

color 3 _—
color 4

Figure 6: An f-coloring of G' with 4 colors

o \NGAf (v) N Nes, (w1)] = 3. Since dg(w;) > 4 and wy € V(Ga,), f(w) = 2.
Using (7), without loss of generality we can assume that Ng N (wy) N Ng N (v) =
{u1,us2,u3}, and there are three vertices, say xq, s, 23 € NGAf (wy), such that ({x1,
Tg, x3}) ~ K3. Consider L = G\ {uy, us, us, vwy }. Let f': V(L) — N be a function
defined by f/'(z) = f(2), for every z € V(L). Now we want to prove the following
claim which introduces a coloring of L with some properties.

Claim 2. L has an f’-coloring ¢ with four colors {1,2,3,4} such that
{c(wz), c(wrz), c(wizs), c(vuy), c(vus), c(vug) } = 4.

Proof of Claim 2. We consider two cases.

First assume that L is not connected. So, L has two connected components, one
of them containing v and another containing w;. It is easy to see that for every
connected component I of L, Ap(I) = Ap(L) = Ap(G) and so A(Ia,,) = 2. Now,
since f'(v) = f'(wy) = 2 and d(v) = d(w;) = 3, by Theorem 1.9, every component
of L is f’-class 1. Moreover, noting that f'(v) = f’(w;) = 2, we obtain that there
are at least two distinct colors appeared in the edges incident with v and also with
wi. Now, by a suitable permutation of colors on these edges in one of components,
Claim 2 is proved.

Now, assume that L is connected. Consider K = L \ {wy, x122, 2923, T123}. Let

f": V(K) — N be a function defined by

1 zZ=.

F(z) = {f’<z> 2 € V(L) \ {w},
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We want to show that K is f”-Class 1. It is not hard to see that every connected
component of K has at least one of the three vertices {z1, 22, 23}. Let J be a
connected component of K. If Api(J) < Apv(K), then by Theorem 1.1, J has an
f"-coloring with 4 colors. So, assume that Ay (J) = Ap(K) = 4. Now, since there
exists x; € V(J), for some i € {1,2,3} and noting that d;(z;) = 1, by Theorem 1.9,
J is f"-Class 1 and so K has an f”-coloring with 4 colors {1,2,3,4}, call 6. Let
Ni(z1) = {1}, Nk(x2) = {y2} and Ng(z3) = {y3}. We can assume that

{O0(x1y1), 0(v2y2), 0(z3y3) }| > 2. (8)

Because otherwise, we have |[{0(z1y1), 0(x2y2),0(z3ys3)}| = 1. Now, since for every
vertex u € V(G), f(u) < 2, we conclude that [{y1,y2, 93} > 2. Without loss of
generality, one can suppose that y; is not adjacent to x5 and x3. Using (7), we find
that f(y1) = 1 and so f"(y;) = 1. Thus since dg(y1) = Ay (K) — 1 = 3, there is a
missed color call « in y; different from 6(x;y;). One can replace 0(x1y;) by .

Now, without loss of generality, and noting that f”(v) = 1, one can assume that
O(vuy) = 1, O(vus) = 2, O(vug) = 3, O(z11) = o, O(x2y2) = B and O(x3y3) =
~v. Now, to prove Claim 2, it suffices to extend the f”-coloring of K to an f'-
coloring of L. To see this, in Figure 7 we introduce such a suitable coloring for

({wy, 21, 2, x3}) U {z191, T2y, T3Y3}.

Note that if « = =1 and v = 4 and f”(y;) = 1, then there is a missed color
in y; different from 1. Now, by changing color wyz; by this missed color, similar to
one of the coloring of graphs shown in Figure 7. If f”(y;) = 2, then y; = y» = ys, by
(7). So there is a color, say [, appeared in the neighbors y; once. Now, by changing
the color wyx to [ we obtain one of the cases given in Figure 7.

We can easily color ({v,us,us, us, w1 }) by colors {1,2,3,4} similar to one of the
graphs in Figure 5. This implies that G is f-Class 1 and we are done.

(i1) Ap(G) = 5.
By (6), uyuy € E(G). Thus uyw, € E(G) or uqwy € E(G). Without loss of generality,
assume that wyw; € E(G). Since two graphs ({v, u1, ug, we}) and ({v, ui, ug, ws})
are not claws and dg(u1) = 5, with no loss of generality, we can suppose that ujws €
E(G) and uqws € E(G). Moreover, since ({v,u,us, ws}) and ({v,u1, ug, ws}) are
not claws and Ng(u1) = {v, us, us, wy, ws}, we have usws, ugws € E(G). Now, we
want to show that

ww; € E(G), for i =2,3 and j =1, 2. (9)

For a contradiction and with no loss of generality assume that usw; ¢ E(G). Then
since ({v, ug, u;, wy}) is not a claw, we have w;w;, € E(G), for i = 4,5,6. This implies
that dg(wy) > 5 and since Af(G) = 5, we conclude that f(w;) = 2. Now, by (7),
ugw; € E(G), a contradiction. Similarly, other cases of (9) hold.

Now, we would like to show that G is f-Class 1. Two cases may occur:

® W1W2 ¢ E(G)
Since ({v, u4, w1, ws}) is not a claw, with no loss of generality, uyw; € E(G) and so
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Figure 7: A 4-edge coloring of ({wy, z1,x9, x3}) U {2191, T2ys, T3y3}

dg(wy) > 5, which implies that f(w;) = 2 and by (7), uswi, ugw; € E(G). Since
dg(wy) =9, there exists a vertex z € Ng(wy)\{v,u1, ..., us ws} and ({z, uy, uqg, wy })
is a claw, a contradiction and the proof of this case is complete.

® Wiy € E(G)

Clearly, ({v,uy, us, u3, wy,ws}) ~ Kg and so

for every vertex v with f(v) =2, v is contained in a K. (10)

Note that since dg(w;) > 5 and w; € V(Ga,), by Claim 1 we conclude that
f(w;) =2, fori = 1,2. Let P be the induced subgraph on the union of vertices of all
Kg in G. First note that three vertices of each Ky have degree 5 in G. This implies
that every two Kg have at most three vertices in common. Also, every two K¢ have
not one vertex in common, because otherwise there exists a vertex of degree 10 in
G. On the other hand, every two Kg have not three vertices in common, because
otherwise there exists a vertex v € V(P) such that dp(v) = 8 and it is not hard to
see that v is a center of a claw in GG, a contradiction. Thus, the vertex set of every
two K have empty intersection or they have exactly two vertices in common. Hence
each connected component of P is one of the graphs in Figure 8.

Define f": V(P) — N as follows:
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Figure 8: Every component of the graph P

(o) — 1 if dp(z)

5

It is not hard to see that P has an f’-coloring with colors {1,...,5}.
Now, let L = G\ E(P). We would like to prove the following claim.
Claim 3. \/(L) = 5.
If the claim is proved, then we color all edges of L and P by 5 colors to obtain

an f-coloring of GG. Since for every vertex v which are incident to some edges in L
and P, we have f(v) = 2, we find an f-coloring of G using 5 colors.

Proof of Claim 3. Clearly, the maximum degree of each connected component of
L is at most 5. If the maximum degree is less than 5, then by Vizing’s Theorem
we are done. Now, let I be a connected component of L such that A(I) = 5. Note
that V(Ia) € V(Ga,) and A(Ia) < 2. Note that since G is connected, there exists
a vertex x € V(I)NV(P) and so d;(x) > 1. Since §(P) = 5 and dg(z) = 9, we
conclude that d;(z) = 4. This implies that f(z) = 2 and by (7), it is not hard
to see that | Nj(z) N V(Ga,) |= 3 and so there exists a vertex y € N(x) such
that d;(y) = 4. Let Ni(z) N V(Ga,) = {u,v',u"}. Obviously, since G is claw-free,
yu, yu',yu” € E(I).

Let J = I\ {z,y,uv/,uu”,w'u"}. We show that J has a 5-edge coloring. If
A(J) < 4, then by Vizing’s Theorem, J has a 5-edge coloring. Thus assume that
A(J) =5 and so A(Ja) < 2 and dy(u) = ds(u') = dy(u”) = 1. Hence by Vizing’s
Theorem and Theorem 1.6, every connected component of J has a 5-edge coloring.
Let Nyj(u) = {z}, N;(v') = {#'} and N,(u") = {2"}. We claim that there exists a
5-edge coloring of J in which the colors of edges uz,u'z and u”z"” are distinct. To
see this, if z = 2/ = 2" then we are done. If z # 2/ = 2” and the colors of edges
uz,u'z are the same and different from color of the edge u”2”, then since d;(z') = 4,
we conclude that there exists a missed color in 2z’ which is different from the color
of u'2" and u”z". Now, by substituting this missed color with the color of u'z’, we
are done. Now, assume that z, 2 and 2" are distinct. Then, remove three vertices
u,u’,u” of J. Also, add a new vertex s, join s to the vertices z,2’, z” and call the
resultant graph by K. Now, since A(K) =5, A(Ka) < 2 and §(K) = 3, by Theorem
1.6, K has a 5-edge coloring. Now, by a suitable extending this 5-edge coloring to a
5-edge coloring of J, we conclude that there exists a 5-edge coloring of J such that
three distinct colors appear in edges uz, v’z and u”z".
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Now, we want to extend the 5-edge coloring of J to a 5-edge coloring of I to
complete the proof of Claim 3. To see this, we show that there exists a 5H-edge
coloring for @ = ({u, v/, u”, z,y}) such that three missed colors in u,u’ and u” are
distinct. Add a new vertex ¢ to @@ and join ¢ to u, v, u” and call the resultant graph
by R. Clearly, R is the subgraph of K4 and so x'(R) = 5. Now, Claim 3 is proved.

(i1i) Ap(G) > 6.

Consider G\ {v}, add two new vertices vy, vy to G\ {v}, and join vy, vg to {uy, wy, ...,

wa@)-1) and {uy, ..., Us, WA (@), - - -, War ;(@)-7), respectively. Call the resultant
graph L. Let f': V(L) — N be a function defined by

) = {f(v) v e V(G)\ {v, vy, v},

1 NS {1)1,?}2}.

It is easy to see that L is connected, Ap (L) = Af(G) and V(La,,) = V(Ga,)U{vi }.
Note that |NLAf, (v1)| = 1. Now, by Theorem 2.2, L has an f’-coloring with colors
{1,...,Ap(L)}; call it 6.

Now, define an f-coloring ¢ : E(G) — {1,...,A;(G)} as follows. Let

(
C

e) =0(e) for every e € E(G) N E(L)
uv) = 0(uqvy)

O(u;v2) for i=2,...,6
c(vw;

viw;) for i=1,...,A;(G) -1
vow;) for i = A(G),...,2A4G) —T.

(
(
c(uw) =
(vws) = 6(
c(vw;) = 6(

\

Thus G is f-Class 1, a contradiction, and the proof of the theorem is complete. [J
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