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Abstract

Zero forcing is a process on a graph in which the goal is to force all vertices
to become blue by applying a color change rule. Throttling minimizes
the sum of the number of vertices that are initially blue and the number
of time steps needed to color every vertex. This paper provides a new
general definition of throttling for variants of zero forcing and studies
throttling for the minor monotone floor of zero forcing. The technique of
using a zero forcing process to extend a given graph is introduced. For
standard zero forcing and its floor, these extensions are used to character-
ize graphs with throttling number at most t as certain minors of Cartesian
products of complete graphs and paths. Finally, these characterizations
are applied to determine graphs with extreme throttling numbers.

1 Introduction

Zero forcing is a process on graphs in which an initial set of vertices is colored blue
(with the remaining vertices colored white) and vertices can force white vertices to
become blue according to a color change rule. When using the color change rule,
the goal is to eventually color every vertex in graph. Zero forcing can be used to
model graph searching [11], the spread of information on graphs [5], and control of
quantum systems [4, 9]. Naturally, it is useful to know the smallest possible size of
an initial set that can be used to color all vertices in the graph blue. It is also useful
to know the time it takes to complete this process (often called propagation time).
The idea of throttling is to study the relationship between the size of the initial set
and its propagation time. Richard Brualdi posed the problem of minimizing the sum
of these two quantities in 2011 (see [5]).

Unless otherwise stated, the graphs in this paper are simple, undirected, and
finite. For a graph G, V (G) and E(G) denote the sets of vertices and edges of G
respectively. The cardinality of V (G) is often denoted as |G|. The (standard) color
change rule is that a blue vertex u can force a white vertex w to become blue if
w is the only white neighbor of u. In this case, it is said that u forces w which is
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denoted as u → w. A vertex is active if it is blue and has not yet performed a force.
Note that in standard zero forcing, any vertex that performs a force becomes inactive
and cannot perform another force. Let G be a graph with B ⊆ V (G) colored blue
and V (G) \ B colored white. If every vertex in V (G) can be forced to become blue
by repeatedly applying the standard color change rule, then B is a (standard) zero
forcing set of G. The (standard) zero forcing number, Z(G), is the minimum size of
a standard zero forcing set of G. In [1], it is shown that the zero forcing number can
be used to bound the minimum rank of a matrix associated with a graph.

Zero forcing propagation is studied in [8]. The idea is to simultaneously perform
all possible forces at each time step. Define B(0) = B and for each t ≥ 0, define B(t+1)

to be the set of vertices w for which there exists a vertex b ∈ ⋃t
s=0B

(s) such that w is
the only neighbor of b not in

⋃t
s=0B

(s). The (standard) propagation time of B in G,

denoted pt(G,B), is the smallest integer t′ such that V (G) =
⋃t′

t=0 B
(t). Propagation

time is particularly important in the control of quantum systems (see [9]).
Throttling for standard zero forcing was first studied by Butler and Young in [5].

If B is a zero forcing set of a graph G, the throttling number of B in G is th(G,B) =
|B| + pt(G,B). The (standard) throttling number of G is the minimum value of
th(G,B) where B ranges over all zero forcing sets of G. For a given graph G and an
integer k, the Zero Forcing Throttling problem is to determine if the standard
throttling number of G is less than k. The many variations of zero forcing (see [2])
lead to many variations of throttling. In [3], it was shown that Zero Forcing
Throttling and other variants are NP-Complete.

Commonly studied variants of zero forcing include positive semidefinite zero forc-
ing and loop zero forcing (see [2]). Let G be a graph. A connected component of
G is a maximally connected subgraph of G. Suppose B is a set of blue vertices in
G and G − B has k separate connected components. Let W1, . . . ,Wk be the sets
of (white) vertices of the connected components of G − B. The positive semidefi-
nite color change rule applies the standard color change rule in G[Wi ∪ B] for any
1 ≤ i ≤ k. The positive semidefinite zero forcing number of a graph G is denoted
Z+(G) and the positive semidefinite throttling number (studied in [6]) is defined
analogously to standard throttling. Loop zero forcing (see [2]) arises by considering
a graph where every vertex has a loop. The loop color change rule for simple graphs
is to apply the standard color change rule, or if every neighbor of a white vertex w
is blue, then w can force itself to become blue. The loop zero forcing number of a
graph G is denoted Z�(G).

If G and H are graphs and G is a subgraph of H , write G ≤ H . If G ≤ H and
|V (G)| = |V (H)|, G is a spanning subgraph of H and H is a spanning supergraph of
G. If G is a minor of H , write G � H . Note that this paper breaks the convention of
using H to denote a minor or subgraph of a graph G because it considers many graph
parameters that depend on majors or supergraphs of a given graph. For example,
suppose p is a graph parameter whose range is well-ordered. The minor monotone
floor of p is defined as 	p
(G) = min{p(H) | G � H}. In [2], it was shown that 	Z
,
	Z+
, and 	Z�
 are zero forcing parameters with their own unique color change rules.
In particular, the 	Z
 color change rule is to either apply the standard color change
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rule, or alternatively if a vertex v is active and all neighbors of v are blue, then v can
force any single white vertex w to become blue. The latter condition of the 	Z
 color
change rule is called “hopping”. If this condition is used, then it is said that v forces
w by a hop. It was also shown in [2] that the minor monotone floors of various zero
forcing parameters are related to tree-width, path-width, and proper path-width. In
addition, the concepts of path-width and proper path-width were shown in [10] to
have connections to search games on graphs.

In Section 2, a general definition of propagation and throttling is given that allows
for the study of further variations. Throttling for 	Z
 is studied in Section 3 and an
“extension” technique that can be used to characterize graphs with 	Z
 throttling
number at most t for a fixed positive integer t is introduced. A similar characteriza-
tion for standard throttling is given in Section 4. These characterizations are applied
in Section 5 in order to quickly characterize graphs with extreme throttling numbers.
Finally, in Section 6, an observation is made about proving the complexity of 	Z

throttling and possibilities for future work are given.

2 General Propagation Time and Throttling

This section gives new general definitions of propagation time and throttling for
color change rules. Define an (abstract) color change rule to be a set of conditions
under which a vertex u can force a white vertex w to become blue in a graph whose
vertices are colored white or blue. The notation u → w is used to indicate that
vertex u forced vertex w to become blue. Let G be a graph with B ⊆ V (G) colored
blue and V (G) \ B colored white. Let R be a given color change rule. Repeatedly
apply R to G until it is no longer possible to do so and write down the forces u → w
in the order in which they are performed. This list of forces is called a chronological
list of R forces of B and the unordered set of forces that appear in the list is a set
of R forces of B. Suppose G is a graph and F is a set of R forces of B ⊆ V (G).
An R forcing chain of F is a sequence of vertices (v1, v2, . . . , vk) in G such that
(vi → vi+1) ∈ F for each 1 ≤ i ≤ k − 1. An R forcing chain of F is maximal if it is
not properly contained in any other R forcing chain of F . The set of vertices in G
that are blue after all forces in F have been performed is an R final coloring of B.

Remark 2.1. Suppose B′ is an R final coloring of a set B ⊆ V (G) obtained by
performing the forces in a chronological list of R forces of B (denoted by L). Note
that B′ consists of the vertices in B together with all vertices that become forced in
L. Therefore, B′ does not depend on the chronological ordering of L. This means
that R final colorings depend on sets of forces and not chronological lists of forces.

Let G be a graph and let R be a given color change rule. An R forcing set of G
is a set B ⊆ V (G) of vertices such that V (G) is an R final coloring of B for some
set of R forces. The R forcing parameter, R(G), is the minimum size of an R forcing
set of G. An R forcing set B is a minimum R forcing set of G if |B| = R(G).

Note that the definition of standard propagation time of a set of vertices does
not use sets of forces. This is because final colorings in standard zero forcing are
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unique and depend only on the initial set of blue vertices (see [1]). However, there
are variants of zero forcing that do not have unique final colorings (e.g., 	Z
 forcing).
When performing a 	Z
 force by hopping, there are many choices for the white vertex
that gets forced. Example 2.36 in [2] illustrates that it is possible to start with a blue
	Z
 forcing set B and fail to color every vertex in the graph due to poor hopping
choices. In this case, B has at least two distinct sets of 	Z
 forces with different
propagation times. This motivates the following definitions.

For a set of R forces F of B ⊆ V (G), define F (0) = B and for t ≥ 0, F (t+1) is the
set of vertices w such that the force v → w appears in F and w can be R forced by v
if the vertices in

⋃t
i=0F (i) are colored blue and the vertices in V (G)\ (⋃t

i=0F (i)
)
are

colored white. The R propagation time of F in G, denoted ptR(G;F), is the least

t′ such that V (G) =
⋃t′

i=0F (i). If the R final coloring induced by F is not V (G),
then define ptR(G;F) = ∞. Note that B is colored blue at time 0, and for each
1 ≤ t ≤ ptR(G;F), time step t takes place between time t − 1 and time t in F . A
vertex in G is active at time t if it is blue at time t and has not performed a force in
time step s for any s ≤ t.

Definition 2.2. Let G be a graph with B ⊆ V (G) and let R be a given color change
rule. The R propagation time of B is defined as

ptR(G;B) = min{ptR(G;F) | F is set of R forces of B}.
Note that Definition 2.2 does not require the set B to be an R forcing set of

G. This is because a set F of R forces that fails to color every vertex in G has
ptR(G;F) = ∞. Therefore, such a set F does not realize ptR(G;B) when B is an R
forcing set of G. If B is not an R forcing set of G, then every set of R forces of B
has infinite propagation time and ptR(G;B) = ∞. Another advantage of Definition
2.2 is that it is not required to prove that a subset of vertices is an R forcing set
before discussing its propagation time. This is useful for proving Proposition 3.1 in
the next section.

The (standard) propagation time of a graph (see [8]) considers the smallest prop-
agation time among minimum zero forcing sets. The next definition generalizes this
idea.

Definition 2.3. Let G be a graph and let R be a given color change rule. The R
propagation time of G is defined as

ptR(G) = min{ptR(G;B) | B is a minimum R forcing set of G}.
Definition 2.4. Let G be a graph with B ⊆ V (G) and let R be a given color change
rule. The R throttling number of B in G is

thR(G;B) = |B|+ ptR(G;B).

Definition 2.5. Let G be a graph and let R be a given color change rule. The R
throttling number of G is defined as

thR(G) = min
B⊆V (G)

{thR(G;B)}.
When comparing propagation time and throttling for various color change rules,

Z is used to denote the standard zero forcing color change rule (i.e., ptZ and thZ).
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3 Throttling for the Minor Monotone Floor of Z.

This section investigates propagation and throttling for the 	Z
 color change rule.
Definition 2.2 exhibits the connection between the 	Z
 propagation time of a subset
B ⊆ V (G) and the 	Z
 propagation time of a set of 	Z
 forces of B. The following
proposition shows that the pt�Z�(G;B) can also be calculated by minimizing the
standard zero forcing propagation time of B on spanning supergraphs of G.

Proposition 3.1. If G is a graph and B ⊆ V (G), then

pt�Z�(G;B) = min{ptZ(H ;B) | G ≤ H and |G| = |H|}. (1)

Proof. Let F be a set of 	Z
 forces of B such that pt�Z�(G;B) = pt�Z�(G;F). Note
that every force in F is either a Z force or a force by a hop. Let G′ be the graph
obtained from G by adding the edges uw such that u → w appears in F and u → w
by a hop. Note that for each edge uw ∈ E(G′) \E(G), w is the only white neighbor
of u in G′ and u is active at the time that u → w in F . This means that u → w is
a valid Z force in G′ for each such edge. Thus, F is a set of Z forces of B in G′ and
ptZ(G

′;F) = pt�Z�(G;F). Therefore,

pt�Z�(G;B) = ptZ(G
′;F) ≥ min{ptZ(H ;B) | G ≤ H and |G| = |H|}.

Now letH ′ be a spanning supergraph of G such that the right hand side of (1) is equal
to ptZ(H

′, B). Let F be a set of Z forces of B such that ptZ(H
′,F) = ptZ(H

′, B).
Consider applying F to B in G and hopping when an edge is missing. If (u → w) ∈ F
and uw ∈ E(H ′) \ E(G), then u can 	Z
 force w in H ′ − uw by a hop when u → w
in F . If (u → w) ∈ F and uw /∈ E(H ′) \ E(G), then u will Z force w in G exactly
the way u → w in H ′. If (u → w) /∈ F , then the propagation time of F does not
change regardless of whether uw is removed from H ′ to obtain G. This means that
F is a set of 	Z
 forces of B in G with pt�Z�(G;F) = ptZ(H

′;F). Thus,

pt�Z�(G;B) ≤ pt�Z�(G;F) = ptZ(H
′, B) = min{ptZ(H ;B) |G≤H and |G|= |H|}.

By the definition of minor monotone floor given in Section 1, 	Z
 is minor mono-
tone (i.e., 	Z
(G) ≤ 	Z
(H) if G � H). Since any Z forcing set of a graph G is also
a 	Z
 forcing set of G, 	Z
(G) is bounded above by Z(G). These facts together with
Definitions 2.3, 2.4, and 2.5 can be used to extend the above proposition and give
similar results for pt�Z�(G), th�Z�(G;B), and th�Z�(G).

Corollary 3.2. Let G be a graph. Then

pt�Z�(G) = min{ptZ(H) | G ≤ H with |G| = |H| and 	Z
(G) = Z(H)}.

Proof. Let H be a spanning supergraph of G with B a standard zero forcing set of
H . Then, 	Z
(G) ≤ 	Z
(H) ≤ Z(H) ≤ |B|. Therefore, assuming that |B| = 	Z
(G)
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gives |B| = Z(H) which means that B is a minimum zero forcing set of H . By
Proposition 3.1, it follows that

pt�Z�(G) = min{pt�Z�(G;B) | 	Z
(G) = |B|}
= min{min{ptZ(H ;B) | G ≤ H and |G| = |H|} | 	Z
(G) = |B|}
= min{ptZ(H ;B) | G ≤ H with |G| = |H| and 	Z
(G) = |B|}
= min{ptZ(H) | G ≤ H with |G| = |H| and 	Z
(G) = Z(H)}.

Corollary 3.3. If G is a graph and B ⊆ V (G), then

th�Z�(G;B) = min{thZ(H ;B) | G ≤ H and |G| = |H|}.
Corollary 3.4. Let G be a graph. Then

th�Z�(G) = min{thZ(H) | G ≤ H and |G| = |H|}.
Theorem 3.5. The 	Z
 throttling number is subgraph monotone. In particular, if G
and H are graphs with G ≤ H, then th�Z�(G) ≤ th�Z�(H).

Proof. Let H be a graph. By Corollary 3.4, th�Z�(G′) ≤ th�Z�(H) for any spanning
subgraph G′ of H . Let v ∈ V (H) and let E(v) be the set of all edges in H incident
with v. Define G′ = H − E(v). Choose B′ ⊆ V (G′) such that th�Z�(G′;B′) =
th�Z�(G′). Let F ′ be a set of 	Z
 forces of G′ with pt�Z�(G′;F ′) = pt�Z�(G′;B′). The
goal is to produce a set B ⊆ V (G′ − v) and a set of 	Z
 forces, F , of B such that
|B| ≤ |B′| and pt�Z�(G′ − v,F) ≤ pt�Z�(G′;F ′). Let v1 → v2 → · · · → vk be the
maximal 	Z
 forcing chain of F ′ that contains v. If k = 1, then it suffices to choose
B = B′ \ {v} and F = F ′. Now assume k > 1. Note that v = vi for some 1 ≤ i ≤ k.
Define B and F as

B =

{
(B′ \ {vi}) ∪ {vi+1} if i = 1,

B′ otherwise,

and

F =

⎧⎪⎨
⎪⎩
F ′ \ {vi → vi+1} if i = 1,

(F ′ \ {vi−1 → vi, vi → vi+1}) ∪ {vi−1 → vi+1} if 1 < i < k,

F ′ \ {vi−1 → vi} if i = k.

Recall that v is an isolated vertex in G′. So when 1 < i < k, vi−1 → vi and
vi → vi+1 by hopping in G′. This means at the time that vi−1 → vi in G′, vi−1 can
force vi+1 by a hop in G′−v. In the other cases, simply remove the appropriate force
from F ′. So in all cases, |B| ≤ |B′| and pt�Z�(G′ − v;F) ≤ pt�Z�(G′;F ′). Also note
that G′ − v = H − v. Thus, for all 1 ≤ i ≤ k,

th�Z�(H − v) ≤ |B|+ pt�Z�(G′ − v;F) ≤ |B′|+ pt�Z�(G′;F ′) = th�Z�(G′) ≤ th�Z�(H).

Since v was chosen arbitrarily, it follows that removing vertices from H will not
increase the 	Z
 throttling number.
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Since 	Z
 is minor monotone, it is natural to ask if Theorem 3.5 can be strength-
ened to say that th�Z� is minor monotone. This question is answered negatively (see
Theorem 3.18) once a characterization of th�Z� is obtained. Note that Theorem 3.5
can be extended in other ways. For each p ∈ {Z+,Z�}, the color change rule for 	p

takes the color change rule for p and allows hopping. This leads to the following
corollary.

Corollary 3.6. Suppose G is a graph and B ⊆ V (G). Then for each p ∈ {Z+, Z�},
pt�p�(G;B) = min{ptp(H ;B) | G ≤ H and |G| = |H|},

th�p�(G;B) = min{thp(H ;B) | G ≤ H and |G| = |H|},
and th�p� is subgraph monotone.

It is likely that Corollary 3.6 will hold for any graph parameter p such that 	p
 has
a corresponding color change rule that takes the color change rule for p and allows
hopping. However, no other parameters p have been shown to have this property.
Note that if B is a standard zero forcing set of a graph G, then B is also a 	Z
 forcing
set of G with pt�Z�(G;B) ≤ ptZ(G;B). Thus, it is immediate that for any graph
G, th�Z�(G) is bounded above by thZ(G). Butler and Young showed in [5, page 66]
that for any graph G of order n, thZ(G) is at least �2√n− 1�. By Corollary 3.4, this
lower bound holds for th�Z�(G) as well.

Corollary 3.7. If G is a graph of order n, then

th�Z�(G) = min{thZ(H) | G ≤ H and |G| = |H|} ≥ ⌈
2
√
n− 1

⌉
.

Since the 	Z
 throttling number is bounded above by the standard throttling
number, any graph G that achieves thZ(G) = �2√n− 1� also achieves th�Z�(G) =
�2√n− 1�. It was shown in [5] that thZ(Pn) = �2√n− 1�. Thus, it can be con-
cluded that th�Z�(Pn) = �2√n− 1�. The standard throttling number of a cycle was
determined in [6] as follows.

Theorem 3.8. [6, Theorem 7.1] Let Cn be a cycle on n vertices. Define m to be the
largest integer such that m2 ≤ n and n = m2 + r. Then

thZ(Cn) =

⎧⎪⎨
⎪⎩
2m− 1 if r = 0 and m is even,

2m if 0 < r ≤ m or (r = 0 and m is odd),

2m+ 1 if m < r < 2m+ 1.

Theorem 3.8 can be used to determine the 	Z
 throttling number of a cycle.

Proposition 3.9. Let Cn be a cycle on n vertices. Then th�Z�(Cn) = �2√n− 1�.
Proof. Define m to be the largest integer such that m2 ≤ n and n = m2 + r. Note
that if m is even or r > 0, then the conditions in Theorem 3.8 are equivalent to
the conditions for thZ(Pn) in [5]. Thus, th�Z�(Cn) = thZ(Pn) = �2√n− 1�. Now
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suppose m is odd and r = 0. So n = m2 and thZ(Cn) = 2m = �2√n− 1� + 1. In
this case, construct a 	Z
 forcing set B with |B| = m and pt�Z�(Cn;B) ≤ m − 1
as follows. Draw Cn by arranging the vertices in an m by m array and adding the
edges as in Figure 1. Let B be the set of vertices in the left column. Note that
in each time step, every active vertex can force the vertex to its right to become
blue (sometimes by a hop), so every vertex becomes blue one column at a time.
Let F be the set of 	Z
 forces of B obtained by this process. Since |B| = m and
pt�Z�(Cn;B) ≤ pt�Z�(Cn;F) = m− 1, th�Z�(Cn) ≤ 2m− 1 = �2√n− 1�.

Figure 1: The cycle Cn with n = m2 and m = 5.

Example 3.10 uses Theorem 3.5 to demonstrate that if thZ(G) > �2√n− 1�, then
th�Z�(G) can differ greatly from thZ(G).

K1,n−1 Wn−1

Figure 2: The star on n vertices alongside the wheel as a spanning supergraph.

Example 3.10. Let G be the star K1,n−1 on n vertices as shown on the left in
Figure 2. Since Z(G) = n − 2, it can be verified by inspection that thZ(G) = n.
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Consider the wheel Wn−1 on n vertices as a spanning supergraph of G (shown on the
right of Figure 2). Obtain B ⊆ V (Wn−1) by choosing the center vertex of the wheel
and a set of vertices on the outside cycle that achieves optimal 	Z
 throttling for a
cycle of order n − 1. By Theorem 3.5, th�Z�(G) ≤ th�Z�(Wn−1) ≤ th�Z�(Cn−1) + 1 ≤⌈
2
√
n− 1− 1

⌉
+1. Recall that th�Z�(G) ≥ �2√n− 1�. Note that there are infinitely

many integers n such that
⌈
2
√
n− 1− 1

⌉
+ 1 = �2√n− 1�. So in these cases,

th�Z�(G) = �2√n− 1�.
The largeur d’arborescence of a graph was defined by Colin de Verdière in [7]

to measure the width of trees. Note that largeur d‘arborescence is French for tree
width. The largeur de chemin of G, denoted by lc(G), was introduced in [2] as the
analog of largeur d’arborescence that measures the width of paths. Formally, lc(G)
is defined as the minimum k for which G is a minor of the Cartesian product Kk�P
of a complete graph on k vertices with a path. The proper path width of a graph
G, ppw(G), is the smallest k such that G is a partial linear k-tree (see [2]). These
parameters are connected to 	Z
 by the following theorem.

Theorem 3.11. [2, Theorems 2.18 and 2.39] For every graph G having at least one
edge, lc(G) = ppw(G) = 	Z
(G).

It is known that proper path-width is equivalent to the mixed search number of
a graph (see [10]). Since ppw(G) = 	Z
(G) ≤ th�Z�(G) for any graph G, Theorem
3.11 connects 	Z
 throttling to mixed searching. Theorem 3.11 also exhibits a rela-
tionship between 	Z
 and graphs of the form Kk�P . It is useful to capitalize on this
relationship in order to characterize th�Z�(G). For a given a graph G, the idea is to
extend G by using a set of forces in G. The next definition constructs a graph from
a given graph G, a standard zero forcing set B ⊆ V (G), and a set of standard forces
F . This construction is illustrated in Figure 3.

Definition 3.12. Let G be a graph and let B ⊆ V (G) be a standard zero forcing
set of G. Suppose F is a set of Z forces of B with ptZ(G;B) = ptZ(G;F). Let
P1, P2, . . . , P|B| be the induced paths in G formed by the maximal forcing chains of
F . For each vertex v ∈ V (G), consider the path Pi that contains v and let τ(v) be
the number of times in the propagation process of F at which v is active (possibly
including time 0). Define the (zero forcing) extension of G with respect to B and F ,
denoted E(G,B,F), to be the graph obtained by the following procedure.

1. From each path Pi in G, construct a new path P ′
i so that for each v ∈ Pi, there

are τ(v) copies of v in P ′
i , and for each pair va, vb ∈ Pi such that va is forced

before vb in Pi, every copy of va is to the left of every copy of vb in P ′
i . Note that

for each 1 ≤ i ≤ |B|, |V (P ′
i )| = ptZ(G;B) + 1 and the paths {P ′

1, P
′
2, . . . , P

′
|B|}

can be arranged into a |B| by pt(G;B) + 1 array of vertices.

2. For each edge uv ∈ E(G) \⋃|B|
i=1E(Pi), suppose Pq and Pr are the paths that

contain u and v respectively. Since u and v must both be active before u or v
can perform a force in G, there is at least one column in the |B| by pt(G;B)+1
array such that a copy of u and a copy of v appear in that column. Draw an
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edge connecting the copy of u in P ′
q and the copy of v in P ′

r that are in the
least such column.

Example 3.13. Let G be the graph shown on the left in Figure 3. Choose B =
{v1, v4, v7} and let F be the set of standard forces F = {v1 → v2, v2 → v3, v4 →
v5, v5 → v6, v7 → v8, v8 → v9}. Note that the forces in F correspond to the horizontal
edges in G as shown in Figure 3. The numbers above the vertices of G indicate the
time step in F when that vertex is forced (making that vertex active at the next time
in the propagation process). For example, v7 → v8 in time step 1 and v8 → v9 in
time step 3. Since there are two times in F at which v8 active, there are two copies
of v8 in E(G;B;F), which is shown on the right in Figure 3.

G E(G;B;F)

Figure 3: G, B, and F are illustrated alongside the extension E(G;B;F).

Consider the graph G = Ka�Pb. Define the path edges of G to be the edges in
each copy of Pb in the Cartesian product. Likewise, define the complete edges of G
to be the edges in each copy of Ka in the Cartesian product. For example, if G is
drawn so that V (G) is arranged as an a by b array where each column induces a Ka

and each row induces a Pb, then the path edges of G are the horizontal edges and
the complete edges of G are the vertical edges. Given a graph G, an edge e ∈ E(G),
a standard zero forcing set B ⊆ V (G), and a set F of standard forces in G that uses
e to perform a force, the following definition constructs a standard zero forcing set
in G/e and a set of standard forces in G/e that mimic B and F respectively.

Definition 3.14. Let G be a graph with standard zero forcing set B ⊆ V (G) and
suppose F is a set of forces of B. Let e ∈ E(G) be an edge that is used to perform
a force in F . Define v1 → v2 → · · · → vk to be the maximal forcing chain of F that
contains e. Note that k ≥ 2. For each 1 ≤ j ≤ k − 1, let ej be the edge vjvj+1 and
let �ej denote the force vj → vj+1. So e = ei for some 1 ≤ i ≤ k − 1. Define ve to be
the vertex in G/e obtained by contracting e in G and define the sets B/e and F/e
as follows.

B/e =

{
(B \ {vi}) ∪ {ve} if i = 1,

B if i > 1,
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and

F/e =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(F \ {�ei−1, �ei, �ei+1}) ∪ {vi−1→ve, ve→vi+2} if k > 2 and 1 < i < k−1,

(F \ {�ei, �ei+1}) ∪ {ve → vi+2} if k > 2 and i = 1,

(F \ {�ei−1, �ei}) ∪ {vi−1 → ve} if k > 2 and i = k − 1,

F \ {�ei} if k = 2.

Lemma 3.15 is used to prove Theorem 3.16 which exhibits a relationship between
th�Z� and graphs of the form Ka�Pb+1.

Lemma 3.15. Let G be a graph. Suppose B ⊆ V (G) is a standard zero forcing set
of G with a set of standard forces F . If e = uv is an edge in E(G) and (u → v) ∈ F ,
then F/e is a set of standard forces of B/e in G/e such that ptZ(G/e,F/e) ≤
ptZ(G;F). Furthermore, if F and B satisfy ptZ(G;F) = ptZ(G;B) and thZ(G) =
thZ(G;B), then thZ(G/e) ≤ thZ(G).

Proof. Let G be a graph with standard zero forcing set B ⊆ V (G). Let F be a set
of forces of B and suppose e = uv ∈ E(G) is an edge that is used to perform a force
in F . Assume, without loss of generality, that (u → v) ∈ F . Proceed by induction
on ptZ(G;F). If ptZ(G;F) = 0, then B = V (G) and no such edge e exists and there
is nothing to prove. Suppose ptZ(G;F) = 1. In this case, F/e is a set of forces of
B/e in G/e and ptZ(G/e;F/e) ≤ 1 = ptZ(G;F).

Now suppose that for some k ≥ 1, the result is true for any graph H and set of
forces Q with ptZ(H ;Q) ≤ k. Again, let G be a graph with standard zero forcing set
B ⊆ V (G). Now, suppose F is a set of standard forces of B with ptZ(G;F) = k+1.
Let e = uv be a given edge in G such that (u → v) ∈ F . Define T (F) to be all
vertices in G that are forced last in F (at time step k+1). For all vertices q ∈ T (F),
let q′ be the vertex in G that forces q at time step k+1. Note that for any q ∈ T (F)
and any neighbor y of q in G with y �= q′, y is also in T (F). This is because if
y /∈ T (F), then y cannot perform a force until q is forced. However, q is forced in
time step k + 1 which implies that y forces in a time step greater than ptZ(G;F), a
contradiction. Suppose uv = q′q for some q ∈ T (F). Since N(v) \ {u} ⊆ T (F), F/e
is a set of forces of B/e in G/e such that ptZ(G/e;F/e) ≤ k + 1 = ptZ(G;F).

Finally, suppose u → v in F at a time step less than k + 1. Construct G/e by
the following process. First, remove T (F) from G to obtain H = G − T (F). Next,
contract e in H to obtain H/e. Finally, add T (F) to H so that the neighborhood
in H of each q ∈ T (F) is the same as the neighborhood of q in G (except that
there may be a q ∈ T (F) such that ve ∼ q in G/e whereas v ∼ q in G). Let
F ′ = F \ {q′ → q | q ∈ T (F)}. Since ptZ(H ;F ′) ≤ k, the induction hypothesis
applies and ptZ(H/e;F ′/e) ≤ ptZ(H ;F ′) ≤ k. When T (F) is added to H/e and the
set of forces F/e is considered instead of F ′/e, the propagation time will increase by
at most 1. Thus, ptZ(G/e;F/e) ≤ ptZ(H/e;F ′/e)+1 ≤ k+1 = ptZ(G;F). Note that
if F and B are chosen such that ptZ(G;F) = ptZ(G;B) and thZ(G) = thZ(G;B),
then

thZ(G/e) ≤ |B/e|+ptZ(G/e;F/e) ≤ |B|+ptZ(G;F) = |B|+ptZ(G;B) = thZ(G).
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Theorem 3.16. Given a graph G and a positive integer t, th�Z�(G) ≤ t if and only
if there exist integers a ≥ 1 and b ≥ 0 such that a + b = t and G can be obtained
from Ka�Pb+1 by contracting path edges and deleting edges.

Proof. First suppose th�Z�(G) ≤ t. Let H be a spanning supergraph of G such thatH
has a standard zero forcing set B with thZ(G;B) ≤ t. Let F be a set of Z forces of B
in H such that ptZ(H ;F) = ptZ(H ;B). Let a = |B|, b′ = ptZ(H ;B) = thZ(G;B)−a,
and b = t− a. Then b′ ≤ b and

G ≤ H � E(H,B,F) ≤ Ka�Pb′+1 ≤ Ka�Pb+1.

By the construction of H and E(H,B,F), H can be obtained from Ka�Pb+1 by
contracting path edges. Then G can be obtained from H by deleting edges.

For the other direction, suppose G′ = Ka�Pb+1 with a + b = t and G can be
obtained from G′ by contracting path edges and deleting edges. Choose B′ ⊆ V (G′)
such that B′ induces a copy of Ka in G′ that corresponds to an endpoint of Pb+1.
Note that B′ is a standard zero forcing set of G′ with set of forces F ′ such that the
set {uv | (u → v) ∈ F ′} is the set of path edges in G′, i.e., F ′ propagates along
the path edges of G′. Also note that ptZ(G

′;F ′) = b and |B| = a. Let D be a set
of edges and let C be a set of path edges in G′ such that G can be obtained from
G′ by first contracting the edges in C, then deleting the edges in D. Let H ′ be the
graph obtained from G′ by contracting the edges in C. Note that D ⊆ E(H ′). By
repeated applications of Lemma 3.15, it is possible to obtain a standard zero forcing
set B ⊆ V (H ′) with set of forces F such |B| ≤ |B′| and ptZ(H

′;F) ≤ ptZ(G
′;F ′) = b.

Thus,

th�Z�(H ′) ≤ thZ(H
′) ≤ |B|+ ptZ(H

′;F) ≤ |B′|+ ptZ(G
′;F ′) = a+ b = t.

By Theorem 3.5, th�Z�(G) ≤ th�Z�(H ′) ≤ t.

Note that if a fixed integer t ≥ 1 is given, then the graphs that have 	Z
 throttling
number at most t are exactly the graphs given by Theorem 3.16. The following
corollary is immediate from this observation.

Corollary 3.17. If t is a fixed positive integer, then there are finitely many graphs
with 	Z
 throttling number equal to t.

The next theorem uses Theorem 3.16 to show that th�Z� does not inherit the
property of minor monotonicity from 	Z
. Recall that the maximum degree of a
graph G is denoted as Δ(G).

Theorem 3.18. The 	Z
 throttling number of a graph is not minor monotone.

Proof. Consider the graph K3�P3 and let B ⊆ V (K3�P3) be the three vertices in
a copy of K3 that corresponds to an endpoint of P3. Since pt�Z�(K3�P3;B) ≤ 2,
th�Z�(K3�P3) ≤ 5. Let G be the minor of K3�P3 shown on the left in Figure 4. The
following argument shows that G cannot be obtained fromKa�Pb+1 with a+b = 5 by
contracting path edges and/or deleting edges. Since |V (K1�P5)| = |V (K5�K1)| =



J. CARLSON/AUSTRALAS. J. COMBIN. 75 (1) (2019), 96–112 108

5 < 8 = |V (G)|, G cannot be obtained from K1�P5 or K5�P1 without adding
vertices. Note that |V (K2�P4)| = |V (K4�P2)| = 8 which means that contractions
are not allowed in order to obtain G from those graphs. Notice that G has maximum
degree Δ(G) = 5. Since Δ(K2�P4) = 3 and Δ(K4�P2) = 4, G cannot be obtained
from those graphs by deleting edges. To obtain G from K3�P3 using the operations
in Theorem 3.16, exactly one contraction of a path edge is required since |V (G)| = 8
and |V (K3�P3)| = 9. Note that by the symmetry of K3�P3, contracting any single
path edge yields the same graph. Let G′ be the graph obtained by contracting a path
edge ofK3�P3 shown in the middle of Figure 4. The degree sequences of G′ andG are
(5, 4, 4, 3, 3, 3, 3, 3) and (5, 3, 3, 3, 3, 3, 3, 3) respectively. Thus, the only possible way
to delete edges in G′ and obtain G is by deleting the edge between the two vertices
of degree 4. Delete this edge from G′ and let H be the resulting graph shown on the
right in Figure 4. If v1 and v2 are the vertices of degree 5 in G and H respectively,
then H − v2 contains a 6-cycle and G− v1 does not. Therefore, G is not isomorphic
to H and G cannot be obtained from Ka�Pb+1 with a + b = 5 by contracting path
edges and/or deleting edges. By Theorem 3.16, this means that th�Z�(G) ≥ 6. Since
th�Z�(K3�P3) ≤ 5, it follows that th�Z� is not minor monotone.

G G′ H

Figure 4: The graphs G, G′, and H are minors of K3�P3 used in the proof of
Theorem 3.18.

In the next section, the proof of Theorem 3.16 is modified in order to characterize
standard throttling.

4 A Characterization for Standard Throttling

Since there are graphs (e.g., stars) for which thZ �= th�Z�, the characterization in
Theorem 3.16 does not also characterize thZ. However, the only part of this char-
acterization that does not work for standard throttling is the deletion of edges. In
fact, Example 3.10 demonstrates that standard throttling is not spanning subgraph
monotone. The next theorem shows how thZ can be characterized by being more
careful about which edges can be deleted.
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Theorem 4.1. Given a graph G and a positive integer t, thZ(G) ≤ t if and only if
there exist integers a ≥ 1 and b ≥ 0 such that a + b = t and G can be obtained from
Ka�Pb+1 by contracting path edges and deleting complete edges.

Proof. First suppose thZ(G) ≤ t. Let B ⊆ V (G) be a standard zero forcing set
of G with thZ(G;B) ≤ t and let F be a set of standard forces of B in G with
ptZ(G;F) = ptZ(G;B). Let a = |B|, b′ = ptZ(G;B) = thZ(G;B)− a, and b = t− a.
Then b′ ≤ b and

G � E(G,B,F) ≤ Ka�Pb′+1 ≤ Ka�Pb+1.

Note that by the construction of E(G,B,F), G can be obtained from Ka�Pb+1 by
contracting path edges and deleting complete edges.

For the other direction, suppose G′ = Ka�Pb+1 with a + b = t and G can be
obtained from G′ by contracting path edges and deleting complete edges. Choose
B′ ⊆ V (G′) such that B′ induces a copy of Ka in G′ that corresponds to an endpoint
of Pb+1. Note that B′ is a standard zero forcing set of G′ with set of forces F ′ such
that the set {uv | (u → v) ∈ F ′} is the set of path edges in G′. In other words, F ′

propagates along the path edges of G′. Also note that ptZ(G
′;F ′) = b and |B′| = a.

Let D be a set of complete edges in G′ and let C be a set of path edges in G′ such
that G can be obtained from G′ by first deleting the edges in D, then contracting
the edges in C. Let H ′ be the graph obtained from G′ by deleting the edges in D.
Since no edge in D is used to perform a force in F ′, F ′ is still a set of forces of
B′ in H ′ with ptZ(H

′;F ′) ≤ ptZ(G
′;F ′) = b. Also, G can be obtained from H ′ by

contracting the edges in C. By repeated applications of Lemma 3.15, it is possible
to obtain a standard zero forcing set B ⊆ V (G) with set of forces F such |B| ≤ |B′|
and ptZ(G;F) ≤ ptZ(H

′;F ′) ≤ b. Thus,

thZ(G) ≤ |B|+ ptZ(G;F) ≤ |B′|+ ptZ(H
′;F ′) ≤ |B′|+ ptZ(G

′;F ′) = a+ b = t.

Corollary 4.2. If t is a fixed positive integer, then there are finitely many graphs G
with standard throttling number equal to t.

Suppose G is a graph on n vertices and t is a postive integer with thZ(G) ≤ t.
Note that t can be used to bound the number of vertices in G. Since �2√n− 1� ≤
thZ(G) ≤ t, |V (G)| = n ≤ (t+1)2

4
. By Corollary 3.7, this bound still holds when

th�Z�(G) ≤ t.
In order to construct forcing sets in paths and cycles that are optimal for throt-

tling, it has been useful to “snake” the graph in some way. This idea was used for
thZ(Pn) in [5], and again for thZ(Cn) in [6]. A “snaking” construction was also used
for th�Z�(Cn) in Proposition 3.9 (see Figure 1). Note that in most of these cases, the
“snaked” graph is a spanning subgraph or a minor of a graph of the form Ka�Pb+1.
It is interesting to observe that the “snaking” method is present in Theorems 3.16
and 4.1.
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5 Extreme Throttling

This section uses Theorems 3.16 and 4.1 to quickly characterize graphs with low
throttling numbers. The connection between th�Z� and the independence number of
a graph is also investigated. This connection is used to give a necessary condition
for graphs G with th�Z�(G) = n.

For a fixed positive integer t, Theorem 3.16 characterizes all graphs G with
th�Z�(G) ≤ t. Observe that th�Z�(G) = t if and only if th�Z�(G) ≤ t and th�Z�(G) �
t − 1. So all graphs with th�Z�(G) = t can be characterized by applying Theorem
3.16 and removing the graphs with 	Z
 throttling number at most t−1. This is done
by hand for t ≤ 3 as follows.

Observation 5.1. The graph G = K1 is the only graph with th�Z�(G) = 1.

Proposition 5.2. For a graph G, th�Z�(G) = 2 if and only if G = K2 or G = 2K1.

Proof. By Theorem 3.16, th�Z�(G) ≤ 2 if and only if G can be obtained from
K1�P2 = K2 or K2�P1 = K2 by deleting edges and contracting path edges. Thus,
th�Z�(G) ≤ 2 if and only if G ∈ {K1, K2, 2K1}. Since G = K1 is the only graph that
satisfies th�Z�(G) = 1, th�Z�(G) = 2 if and only if G ∈ {K2, 2K1}.
Proposition 5.3. For a graph G, th�Z�(G) = 3 if and only if G ∈ G where

G = {C4, P4, 2K2, K1∪̇P3, K2∪̇2K1, 4K1, K3, P3, K1∪̇K2, 3K1}.

Proof. By Theorem 3.16, th�Z�(G) ≤ 3 if and only if G can be obtained from
K3�P1 = K3, K2�P2 = C4, or K1�P3 = P3 by deleting edges and contracting
path edges. Let H be the set of all subgraphs of C4 and K3. Note that th�Z�(G) ≤ 3
if and only if G ∈ H and G = H \ {K1, K2, 2K1}.

Theorems 3.16 and 4.1 reinforce the fact that for any graph G, th�Z�(G) ≤ thZ(G).
Let G be a graph. Since thZ is bounded below by th�Z�, if there is a subset B ⊆ V (G)
with thZ(G;B) = th�Z�(G), then thZ(G) = th�Z�(G).

Corollary 5.4. If t ∈ {1, 2, 3} and G /∈ {K1∪̇P3, K2∪̇2K1, 4K1}, then thZ(G) = t if
and only if th�Z�(G) = t.

Proof. Let J = {K1∪̇P3, K2∪̇2K1, 4K1}. For each graph G with th�Z�(G) ≤ 3
and G /∈ J , it is possible to produce a standard zero forcing set B ⊆ V (G) with
thZ(G;B) = th�Z�(G). If G ∈ J , then th�Z�(G) = 3, but thZ(G) = 4 because forcing
by a hop is no longer allowed.

High 	Z
 throttling values are harder to characterize. Note that if G is a graph
on n vertices and th�Z�(G) = n, then thZ(G) = n. So thZ(G) = n is a necessary
condition for G to acheive th�Z�(G) = n. Let (Kn)e be the complete graph on n
vertices minus a single edge. Observe that G = Kn and G = (Kn)e are two graphs
with th�Z�(G) = n. For a given graph G, the following proposition gives an upper
bound for th�Z�(G) in terms of the independence number, α(G).
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Proposition 5.5. If G is a graph of order n, then

th�Z�(G) ≤ n− α(G) +
⌈
2
√
α(G)− 1

⌉
.

Proof. Suppose G is a graph with independent set A ⊆ V (G). Let B = V (G) \ A.
Note that G − B has no edges and by Theorem 3.5, th�Z�(G − B) ≤ th�Z�(C|A|) =⌈
2
√|A| − 1

⌉
. Choose C ⊆ A such that th�Z�(G − B,C) =

⌈
2
√|A| − 1

⌉
. Then

B ∪ C is a 	Z
 forcing set of G with pt�Z�(G;B ∪ C) ≤ pt�Z�(G − B,C). Thus,

th�Z�(G) ≤ n − |A| +
⌈
2
√|A| − 1

⌉
. If A satisfies |A| = α(G), the desired result is

obtained.

Since α(K1,n−1) = n− 1, Example 3.10 shows that the bound in Proposition 5.5
is tight.

Corollary 5.6. If G is a graph with th�Z�(G) = n, then α(G) ≤ 3.

Proof. Let G be a graph and define f(x) = x− �2√x− 1�. So Proposition 5.5 says
that th�Z�(G) ≤ n− f(α(G)). If x ≥ 4 is an integer, then f(x) ≥ 1. So if α(G) ≥ 4,
then th�Z�(G) ≤ n− f(α(G)) ≤ n− 1.

Note that the converse of Corollary 5.6 is false. For example, let G = P6. Then
α(G) = 3 and th�Z�(G) =

⌈
2
√
6− 1

⌉
= 4 < 6 = n.

6 Concluding Remarks

For a graph G and an integer k, define the Z Floor Throttling problem as the
decision problem of determining whether th�Z�(G) < k. The complexity of Z Floor
Throttling is an interesting question. Recall that for two graphs G1 and G2, the
graph G1∪̇G2 has vertex set and edge set equal to V (G1)∪̇V (G2) and E(G1)∪̇E(G2),
respectively. For any graph G, let X(G) be the set of subsets of V (G) that are
	Z
 forcing sets of G. A list of conditions is given in [3, Theorem 1] that if satisfied,
would guarantee that Z Floor Throttling is NP-Complete. One of these conditions
is that X(G1∪̇G2) = {S1∪̇S2 | S1 ∈ X(G1) and S2 ∈ X(G2)} for any two graphs G1

and G2. Due to hopping, this condition is not satisfied for 	Z
 forcing sets. For
example, let G1 and G2 each be the graph consisting of a single vertex labeled v1 and
v2 respectively and define S1 = ∅ and S2 = {v2}. Note that S1∪̇S2 is a 	Z
 forcing
set of G1∪̇G2 since v2 can force v1 by a hop. However, S1 is not a 	Z
 forcing set
of G1. So the conditions given in [3, Theorem 1] cannot be used to prove that Z
Floor Throttling is NP-Complete. It would be useful to have other tools to help
determine the complexity of the Z Floor Throttling problem.

Corollary 5.6 states that a low independence number is necessary in order to
achieve a maximum 	Z
 throttling number. Another possible direction for future
work is to completely characterize high 	Z
 throttling numbers. It would also be
interesting to determine the exact relationship between α and th�Z�. It is noted in
[2, Remark 2.47] that for any graph G, 	Z�
(G) ≤ 	Z
(G) ≤ 	Z�
(G) + 1. This
motivates a comparison of th�Z� and th�Z��. If th�Z� and th�Z�� can be arbitrarily far
apart, then studying 	Z�
 throttling may be of interest on its own.
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