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Abstract

The graph G is called a (3, 3)-Ramsey graph if in every coloring of the
edges of G in two colors there is a monochromatic triangle. The min-
imum number of vertices of the (3, 3)-Ramsey graphs without 4-cliques
is denoted by Fe(3, 3; 4). It is known that 20 ≤ Fe(3, 3; 4) ≤ 786. In
this paper we prove that if G is an n-vertex (3, 3)-Ramsey graph without
4-cliques, then α(G) ≤ n − 16, where α(G) denotes the independence
number of G. Using the newly obtained bound on α(G) and complex
computer calculations we obtain the new lower bound Fe(3, 3; 4) ≥ 21.

1 Introduction

Only simple graphs are considered. Let a1, . . . , as be positive integers. The symbol
G

e→ (a1, . . . , as) (G
v→ (a1, . . . , as)) means that for every coloring of the edges

(vertices) of the graph G in s colors there exist i ∈ {1, . . . , s} such that there is a
monochromatic ai-clique of color i. If G

e→ (3, 3) we say that G is a (3, 3)-Ramsey
graph. The clique number and the independence number of a graph G are denoted
by ω(G) and α(G), respectively. The classical Ramsey number R(a1, . . . , as) is the
smallest integer n such thatKn

e→ (a1, . . . , as). All properties of the Ramsey numbers
that we use in the paper can be found in [27].

Define:

He(a1, . . . , as; q) = {G : G
e→ (a1, . . . , as) and ω(G) < q},

He(a1, . . . , as; q;n) = {G : G ∈ He(a1, . . . , as; q) and |V(G)| = n}.
The edge Folkman numbers Fe(a1, . . . , as; q) are defined by Fe(a1, . . . , as; q) =

min{|V(G)| : G ∈ He(a1, . . . , as; q)}, i.e. Fe(a1, . . . , as; q) is the smallest positive
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integer n for which He(a1, . . . , as; q;n) 6= ∅. This notation is first defined in [19],
where some important properties of the Folkman numbers are proved.

Folkman [8] proved in 1970 that He(a1, a2; q) 6= ∅ ⇔ q ≥ max{a1, a2}+ 1. There-
fore, Fe(3, 3; q) exists if and only if q ≥ 4.

From R(3, 3) = 6 it follows that Fe(3, 3; q) = 6 if q ≥ 7. It is also known that

Fe(3, 3; q) =

{
8, if q = 6, [10]

15, if q = 5, [23] and [26].

The exact value of the number Fe(3, 3; 4) is not yet computed. For now it is
known that

20 ≤ Fe(3, 3; 4) ≤ 786, [4][16].

Table 1 shows the main stages in the history of the bounds of Fe(3, 3; 4).

year lower/upper who/what
bounds

1967 any? Erdős and Hajnal [7]
1970 exist Folkman [8]
1972 11 – Lin implicit in [17], implied by Fe(3, 3; 5) ≥ 10
1975 – 10× 1010? Erdős offers $100 for proof [6]
1983 13 – implied by a result of Nenov [24]
1984 14 – implied by a result of Nenov [25]
1986 – 8× 1011 Frankl and Rödl [9]
1988 – 3× 109 Spencer [30]
1999 16 – Piwakowski, Radziszowski and Urbański, implicit in [26]
2007 19 – Radziszowski and Xu [28]
2008 – 9697 Lu [18]
2008 – 941 Dudek and Rödl [5]
2012 – 100? Graham offers $100 for proof
2014 – 786 Lange, Radziszowski and Xu [16]
2017 20 – Bikov and Nenov [4]

Table 1: History of the Folkman number Fe(3, 3; 4) from [15]

More information about the numbers Fe(3, 3; q) can be found in [11], [15], [16]
and [29]. As seen in Table 1, the number Fe(3, 3; 4) is very hard to bound and it is
the most searched Folkman number. The reason for this is that we know very little
about the graphs in He(3, 3; 4).

In this work we give an upper bound on the independence number of the graphs
in He(3, 3; 4) by proving the following:

Theorem 1.1. Let G ∈ He(3, 3; 4;n). Then

α(G) ≤ n− 16.

With the help of computer calculations and Theorem 1.1 we improve the main
result Fe(3, 3; 4) ≥ 20 from [4] by proving:

Theorem 1.2. Fe(3, 3; 4) ≥ 21.
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2 Some necessary properties of the graphs in He(3, 3; q)

Many useful properties of the graphs in He(3, 3; q) follow from the fact that homo-
morphism of graphs preserves the Ramsey properties. In our situation, this means:

Proposition 2.1. Let G
φ→ G′ be a graph homomorphism and G

e→ (3, 3). Then
G′

e→ (3, 3).

Proof. Suppose the opposite is true and consider a 2-coloring of E(G′) without
monochromatic triangles. Define a 2-coloring of E(G) in the following way: the
edge [u, v] is colored in the same color as the edge [φ(u), φ(v)]. Clearly, this coloring
of E(G) does not contain monochromatic triangles.

In the general case, it is true that G
e→ (a1, . . . , as) ⇒ G′

e→ (a1, . . . , as), and
G

v→ (a1, . . . , as)⇒ G′
v→ (a1, . . . , as), which is proved in the same way.

Now consider the canonical homomorphism G
φ→ Kχ(G). If G

e→ (3, 3), then

Kχ(G)
e→ (3, 3), and therefore

Theorem 2.2. [17] min{χ(G) : G ∈ He(3, 3; q)} ≥ R(3, 3) = 6.

For q ≥ 5, the inequality in Theorem 2.2 is tight. It is not known whether this
inequality is tight in the case q = 4. Theorem 2.2 is a special case of a result of Lin
[17] that G

e→ (a1, . . . , as)⇒ χ(G) ≥ R(a1, . . . , as).

Let Kp + G denote the graph obtained by connecting every vertex of Kp by an
edge to every vertex of G. We will need the following:

Proposition 2.3. Let G be a graph such that G
e→ (3, 3), A be an independent set

of vertices of G, and H = G− A. Then K1 +H
e→ (3, 3).

Proof. Consider the mapping G
φ→ K1 +H:

φ(v) =

{
V(K1), if v ∈ A
v, if v ∈ V(H).

It is clear that φ is a homomorphism, and according to Proposition 2.1, K1 + H
e→

(3, 3).

The usefulness of Proposition 2.3 lies in the fact that the graph G can be obtained
by adding independent vertices to the smaller graph H, such that K1 +H

e→ (3, 3).
In the general case it is true that if G

e→ (a1, . . . , as), then K1 +H
e→ (a1, . . . , as).

Remark 2.4. Another proof of Proposition 2.3 is given in the proof of Theorem 3
from [28]. However, the proposition is not explicitly formulated.

A topic of significant interest is homomorphisms in Proposition 2.1 which do not
increase the clique number. They could be used to obtain non-trivial results. For
example, in [12] a 20-vertex graph in He(3, 3; 5) is constructed. Using a homomor-
phism, in the same work a 16-vertex graph in He(3, 3; 5) is obtained from this graph.
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Thus, in 1979 the bound Fe(3, 3; 5) ≤ 16 was proved, improving the previous result
Fe(3, 3; 5) ≤ 18 from 1973 [14].

The graph G is vertex-critical (edge-critical) in He(3, 3; 4) if G ∈ He(3, 3; 4) and
G − v 6∈ He(3, 3; 4), ∀v ∈ V(G) (G − e 6∈ He(3, 3; 4),∀e ∈ E(G)). Further, in
Algorithm 5.3 we will need the following:

Theorem 2.5. [2][3] min{δ(G) : G is a vertex-critical graph in He(3, 3; 4)} ≥ 8,
where δ(G) is the minimum degree of G.

Remark 2.6. In [2] and [3], Theorem 2.5 is formulated for edge-critical graphs without
isolated vertices. The proof is easily also true for vertex critical graphs.

It is not known whether the inequality in Theorem 2.5 is tight.

3 Auxiliary notation and propositions

Let G ∈ He(3, 3; 4), A be an independent set of vertices of G, and H1 = G − A.
By Proposition 2.3, K1 + H1

e→ (3, 3). If A1 is an independent set in H1 and
H2 = H1 − A1, then K2 + H2

e→ (3, 3). If A2 is an independent set in H2 and
H3 = H2 − A2, then K3 + H3

e→ (3, 3), etc. This way, we obtain a sequence G ⊇
H1 ⊇ H2 ⊇ H3 ⊇ . . . , in which ω(Hi) ≤ 3 and Ki + Hi

e→ (3, 3). Further, in the
proof of Theorem 1.2, we will use such a sequence of graphs. Because of this, the
following notation is convenient:

L(n; p) =
{
G : |V(G)| = n, ω(G) < 4 and Kp +G

e→ (3, 3)
}

,

L(n; p; s) = {G ∈ L(n; p) : α(G) = s}.
Obviously, L(n; 0) = He(3, 3; 4;n). The following is known.

Theorem 3.1. [26] L(n; 1) = ∅ for n ≤ 13, and |L(14; 1)| = 153.

In [4] we prove that |L(15; 1)| = 2081234 ([4], Remark 4.4 and Table 1). The
graphs in L(16; 1) are not known. In the proof of Theorem 1.2 we obtain 3 892 126 874
of the graphs in L(16; 1), but our computations suggest that the real number is
much higher. The graphs in L(15; 1) will be used in the proofs of Theorems 1.1 and
1.2. Some properties of the graphs in L(14; 1), L(15; 1), and some of the graphs in
L(16; 1), are given in Tables 2, 3, and 6. We can provide the graphs obtained in this
paper to researchers upon request.

Posa used the following implication to prove that He(3, 3; 5) 6= ∅ (unpublished):

Proposition 3.2. (Posa’s implication; see acknowledgments in [14])

G
v→ (3, 3)⇒ K1 +G

e→ (3, 3).

Also with the help of this implication, Irwing [14] obtained the bound Fe(3, 3; 5) ≤
18. According to Proposition 3.2, if G is an n-vertex graph, G

v→ (3, 3) and ω(G) = 3,
then G ∈ L(n, 1). In [26] the following is proved.
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|E(G)| # δ(G) # ∆(G) # α(G) #
42 1 4 91 7 3 4 111
43 2 5 58 8 90 5 39
44 7 6 4 10 60 6 2
45 20 7 1
46 37
47 45
48 28
49 11
50 2

Table 2: Some properties of the graphs in L(14; 1) obtained in [26]

|E(G)| # δ(G) # ∆(G) # α(G) #
42 1 0 153 7 65 3 5
43 4 1 1 629 8 675 118 4 1 300 452
44 44 2 10 039 9 1 159 910 5 747 383
45 334 3 34 921 10 165 612 6 32 618
46 2 109 4 649 579 11 80 529 7 766
47 9 863 5 1 038 937 8 10
48 35 812 6 339 395
49 101 468 7 6 581
50 223 881
51 378 614
52 478 582
53 436 693
54 273 824
55 110 592
56 26 099
57 3 150
58 160
59 4

Table 3: Some properties of the graphs in L(15; 1) obtained in [4]

Theorem 3.3. [26] If G ∈ L(14, 1), then G
v→ (3, 3).

This result was used in [28] to obtain the bound Fe(3, 3; 4) ≥ 19. There exist,
however, graphs G in L(15, 1) which do not have the property G

v→ (3, 3). There
are 20 such graphs and they are obtained in [4] (see Remark 4.4 and Table 2).
Furthermore, these graphs do not have the property G

v→ (2, 2, 3). This is one of
the reasons why the method in the proof of Fe(3, 3; 4) ≥ 19 in [28] is inapplicable for
proving Fe(3, 3; 4) ≥ n for n ≥ 20.

By Proposition 2.3, if G ∈ L(n, 0) and A is an independent set of vertices of
G, then G − A ∈ L(n − |A|, 1). In [4] we formulate without proof the following
generalization of this fact.

Proposition 3.4. [4] Let G ∈ L(n; p), A ⊆ V(G) be an independent set of vertices
of G and H = G− A. Then H ∈ L(n− |A|; p+ 1).
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Proof. Since G ∈ L(n; p), we have Kp + G
e→ (3, 3). According to Proposition 2.3,

K1 + ((Kp + G) − A)
e→ (3, 3). Since (Kp + G) − A = Kp + (G − A) = Kp + H

and K1 + (Kp + H) = Kp+1 + H, we obtain Kp+1 + H
e→ (3, 3). Thus, H ∈

L(n− |A|; p+ 1).

We denote by Lmax(n; p; s) the set of all maximal K4-free graphs in L(n; p; s), i.e.
the graphs G ∈ L(n; p; s) for which ω(G+ e) = 4 for every e ∈ E(G).

The graph G is called a (+K3)-graph if G + e contains a new 3-clique for every
e ∈ E(G). Clearly, G is a (+K3)-graph if and only if N(u) ∩ N(v) 6= ∅ for every
pair of non-adjacent vertices u and v of G, i.e. either G is a complete graph or the
diameter of G is equal to 2. The set of all (+K3)-graphs in L(n; p; s) is denoted by
L+K3(n; p; s). Obviously, Lmax(n; p; s) ⊆ L+K3(n; p; s).

For convenience, we will also use the following notation:

Lmax(n; p;≤ s) =
⋃
s′≤s Lmax(n; p; s′),

L+K3(n; p;≤ s) =
⋃
s′≤s L+K3(n; p; s′).

It is easy to see that if G is a maximal K4-free graph and A is an independent
set of vertices in G, then G − A is a (+K3)-graph. Because of this, regarding the
graphs in Lmax(n; p; s), from Proposition 3.4 the following proposition follows easily.

Proposition 3.5. [4] Let G ∈ Lmax(n; p; s). Let A ⊆ V(G) be an independent set
of vertices of G, |A| = s and H = G− A. Then H ∈ L+K3(n− s; p+ 1;≤ s).

Furthermore, the bound Fe(3, 3; 4) ≥ 21 will be proved with the help of Algo-
rithms 5.1 and 5.3, which are based on Proposition 3.5.

Definition 3.6. The graph G is called a Sperner graph if NG(u) ⊆ NG(v) for some
pair of vertices u, v ∈ V(G).

Let G ∈ L(n; p; s) and NG(u) ⊆ NG(v). Then Kp + (G − u) is a homomorphic

image of Kp+G and by Proposition 2.1, Kp+(G−u)
e→ (3, 3), that is, G−u ∈ L(n−

1; p; s′), where s′ = s− 1 or s′ = s. Therefore, every Sperner graph G ∈ L(n; p; s) is
obtained by adding one new vertex to some graph H ∈ L(n−1; p; s−1)∪L(n−1; p; s).
In the special case when G is a Sperner graph and G ∈ Lmax(n; p; s), from NG(u) ⊆
NG(v) it follows that NG(u) = NG(v) and G− u ∈ Lmax(n− 1; p; s− 1) ∪ Lmax(n−
1; p; s). Hence the following is true.

Proposition 3.7. Let G ∈ Lmax(n; p; s) be a Sperner graph. Then G is obtained by
duplicating a vertex in some graph H ∈ Lmax(n− 1; p; s− 1) ∪ Lmax(n− 1; p; s).

From Theorem 2.2 and Kp +G
e→ (3, 3), the following holds.

Proposition 3.8. Let G ∈ L(n; p). Then χ(G) ≥ 6− p.

We will use this fact in Algorithm 5.1.
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4 Proof of Theorem 1.1

Definition 4.1. For every graph H, denote byM(H) the set of all maximal K3-free
subsets of V(H). Let

M(H) = {M1, . . . ,Mk}.
We denote by B(H) the graph which is obtained by adding to H new independent
vertices u1, . . . , uk and new edges incident to u1, . . . , uk such that

NB(H)(ui) = Mi, i = 1, . . . , k.

Lemma 4.2. Let G be a graph with ω(G) = 3, A be an independent set of vertices
of G, and H = G− A. If G

e→ (3, 3), then B(H)
e→ (3, 3).

Proof. Let M(H) = {M1, . . . ,Mk} be the same as in Definition 4.1 and A =
{v1, . . . , vs}. Let vi ∈ A. Then NG(vi) ⊆ Mj for some j ∈ {1, . . . , k}. Let ji be

the smallest index j such that NG(vi) ⊆ Mj. We define a supergraph G̃ of G in the
following way: for each vi ∈ A we add to E(G) the new edges [vi, u], u ∈Mji \NG(vi).

Clearly, V(G̃) = V(G), A is an independent set of vertices of G̃, G̃− A = H and

NG̃(vi) ∈M(H), i = 1, . . . , s.

Since G is a subgraph of G̃, it follows that

G̃
e→ (3, 3). (4.1)

If {NG̃(v1), . . . , NG̃(vs)} is a subset ofM(H), then G̃ is a subgraph of B(H) and

from (4.1) it follows that B(H)
e→ (3, 3).

Let {NG̃(v1), . . . , NG̃(vs)} be a multiset and NG̃(vi) = NG̃(vj) for some i < j.

Let G̃′ = G̃ − vj. Obviously, G̃′ is a homomorphic image of G. Therefore, from

Proposition 2.1 and (4.1) it follows that G̃′
e→ (3, 3).

If in {N
G̃′(vi) | i = 1, . . . , s, i 6= j} there is also a duplication, then in the same

way we remove from G̃′ one of the duplicating vertices and we obtain a smaller graph
G̃′′ such that G̃′′

e→ (3, 3).

In the end, a graph
˜̃
G is reached such that H =

˜̃
G−A′, where A′ ⊆ A, {N ˜̃

G
(v) |

v ∈ A′} is a subset of M(H), and
˜̃
G

e→ (3, 3). Since
˜̃
G is a subgraph of B(H), it

follows that B(H)
e→ (3, 3).

Proof of Theorem 1.1. Suppose the opposite is true, that is, suppose α(G) ≥ n−15.
Let A = {v1, . . . , vn−15} be an independent set of vertices of G, and let H = G− A.
Then from Lemma 4.2 it follows that B(H)

e→ (3, 3).

According to Proposition 3.4 (p = 0), H ∈ L(15; 1). All 2 081 234 graphs in
L(15; 1) were obtained in [4] (see Remark 4.4); see also Table 3 in this paper. With
a computer we have checked that B(H) 6 e→ (3, 3) for all H ∈ L(15, 1). This contra-
diction proves the theorem.
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Corollary 4.3. [4] Fe(3, 3; 4) ≥ 20.

Proof. Suppose that G is a 19-vertex (3, 3)-Ramsey graph and ω(G) = 3. From
Theorem 1.1 it follows that α(G) ≤ 3. This contradicts the equality R(4, 4) = 18.

The graphs B(H), H ∈ L(15; 1), in the proof of Theorem 1.1, have between
50 and 210 vertices. We used different SAT solvers, such as MapleSAT [20] and
zchaff [31], to prove that these graphs are not (3, 3)-Ramsey graphs. The problem
of determining whether a graph G is a (3, 3)-Ramsey graph can be transformed into
a problem of satisfiability of a boolean formula φG in conjunctive normal form with
|E(G)| variables. Let e1, . . . , e|E(G)| be the edges of G and x1, . . . , x|E(G)| be the
corresponding boolean variables in φG. For every triangle in G formed by the edges
eiejek, we add two clauses to φG:

(xi ∨ xj ∨ xk) ∧ (xi ∨ xj ∨ xk).

It is easy to see that G
e→ (3, 3) if and only if φG is not satisfiable.

Even though the graphs B(H), H ∈ L(15; 1), have up to 210 vertices, SAT
solvers are able to test the satisfiability of the resulting boolean formulas in a short
amount of time. There exist smaller graphs G for which it is difficult to determine
whether G

e→ (3, 3). For example, Exoo conjectured that the 127-vertex graph G127,
used by Hill and Irwing [13] to prove the bound R(4, 4, 4) ≥ 128, has the property
G127

e→ (3, 3). This conjecture was studied in [28] and [15]. It is still unknown
whether G127

e→ (3, 3).

5 Proof of Theorem 1.2

According to Proposition 3.7, all Sperner graphs in Lmax(n; p; s) can be obtained
easily by duplicating a vertex in graphs in Lmax(n − 1; p; s − 1) ∪ Lmax(n − 1; p; s).
By Proposition 3.5, the non-Sperner graphs in Lmax(n; p; s) are obtained by adding
s independent vertices to some graphs in L+K3(n − s; p + 1;≤ s). This is realized
with the help of the following algorithm:

Algorithm 5.1. [4] Finding all non-Sperner graphs in Lmax(n; p; s) for fixed n, p,
and s.

1. The input of the algorithm is the set A = L+K3(n− s; p+ 1;≤ s). The output
will be the set B of all non-Sperner graphs in Lmax(n; p; s). Initially, set B = ∅.

2. For each graph H ∈ A:

2.1 Find the family M(H) = {M1, . . . ,Mt} of all maximal K3-free subsets of
V(H).

2.2 Find all s-element subsets N = {Mi1 ,Mi2 , . . . ,Mis} of M(H) that fulfill
the conditions:
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(a) Mij 6= NH(v) for every v ∈ V(H) and for every Mij ∈ N .

(b) K2 ⊆Mij ∩Mik for every Mij ,Mik ∈ N .

(c) α(H −
⋃
Mij
∈N ′ Mij) ≤ s− |N ′| for every N ′ ⊆ N .

2.3 For each of the s-element subsets N = {Mi1 ,Mi2 , . . . ,Mis} of M(H)
found in step 2.2, construct the graph G = G(N) by adding new indepen-
dent vertices v1, v2, . . . , vs to V(H) such that NG(vj) = Mij , j = 1, . . . , s.

If G is not a Sperner graph and ω(G + e) = 4,∀e ∈ E(G), then add G
to B.

3. Remove the isomorphic copies of graphs from B.

4. Remove from B all graphs with chromatic number less than 6− p.

5. Remove from B all graphs G for which Kp +G 6 e→ (3, 3).

Theorem 5.2. [4] After the execution of Algorithm 5.1, the obtained set B coincides
with the set of all non-Sperner graphs in Lmax(n; p; s).

The correctness of Algorithm 5.1 is guaranteed by the proof of Theorem 5.2 in
[4]. Here we will only note some details. The condition (a) has to be satisfied since
G = G(N) is not a Sperner graph. The condition (b) follows from the maximality of
G = G(N). Even if both conditions (a) and (b) are satisfied, additional checks in step
2.3 are still needed to make sure that only maximal non-Sperner graphs are added to
B. From condition (c) it follows that only graphs with independence number s are
added to B. If N ′ = ∅, then (c) clearly holds, since α(H) ≤ s. If |N ′| = 1, then for
each added vertex vj it is guarantied that vj does not form an independent set with
s vertices of H. If |N ′| = 2, then for every two added vertices vj, vk it is guarantied
that vj and vk do not form an independent set with (s− 1) vertices of H, etc. The
graphs in B must satisfy the condition in step 4 according to Proposition 3.8.

In ([4], Remark 2.10) we note that in the special case n = 19, p = 0, Algorithm 5.1
can be improved. All computations in [4] are done only with the help of Algorithm
5.1. Here we develop this idea for arbitrary n in the following way:

Algorithm 5.3. Optimization of Algorithm 5.1 for finding all non-Sperner graphs
G ∈ Lmax(n; 0; s) with δ(G) ≥ 8.

1. In step 1 we remove from the set A the graphs with minimum degree less than
8− s.

2. In step 2.2 we add the following conditions for the subset N :

(d) |Mij | ≥ 8 for every Mij ∈ N .

(e) If N ′ ⊆ N , then dH(v) ≥ 8− s+ |N ′| for every v 6∈
⋃
Mij
∈N ′ Mij .

According to Theorem 2.5, the set Lmax(20; 0; 4) contains only graphs with min-
imum degree greater than or equal to 8. Therefore, at the end of the proof of
Theorem 1.2 we can use Algorithm 5.3 to prove that Lmax(20; 0; 4) = ∅. In this way,
the computational time is reduced significantly.
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Proof of Theorem 1.2. Suppose the opposite is true and let G be a 20-vertex
maximal (3, 3)-Ramsey graph with ω(G) = 3. From Theorem 1.1 it follows that
α(G) ≤ 4. Now, from R(4, 4) = 18 it follows that α(G) = 4. Therefore, it is enough
to prove that Lmax(20; 0; 4) = ∅. First, we will successively obtain all graphs in the
sets L+K3(8; 3;≤ 4), L+K3(12; 2;≤ 4), and L+K3(16; 1;≤ 4), and then we will prove
that Lmax(20; 0; 4) = ∅.

Obtaining all graphs in L+K3(8; 3;≤ 4):

We use the geng tool included in the nauty package [22] to generate all non-
isomorphic graphs of order 8. Among them we find all 1178 graphs in L+K3(8; 3;≤ 4)
(see Table 4).

|E(G)| # δ(G) # ∆(G) # α(G) #
10 1 1 15 3 2 2 3
11 3 2 552 4 108 3 705
12 28 3 560 5 610 4 470
13 114 4 49 6 387
14 258 5 2 7 71
15 328
16 253
17 127
18 47
19 14
20 4
21 1

Table 4: Some properties of the graphs in L+K3(8; 3;≤ 4)

Obtaining all graphs in L+K3(12; 2;≤ 4):

From R(3, 4) = 9 it follows that L(12; 2;≤ 2) = ∅. All 1 449 166 12-vertex graphs
G with ω(G) < 4 and α(G) < 4 are known and available [21]. Among them there
are 321 graphs in Lmax(12; 2; 3). We use geng to generate all non-isomorphic graphs
of order 11. Among them we find all 372 graphs in Lmax(11; 2;≤ 4). According to
Proposition 3.7, all Sperner graphs in Lmax(12; 2; 4) are obtained by duplicating a
vertex in some of the graphs in Lmax(11; 2;≤ 4). This way, we find all 1341 Sperner
graphs in Lmax(12; 2; 4). We execute Algorithm 5.1 (n = 12, p = 2, s = 4) with input
set A = L+K3(8; 3;≤ 4) to output all 815 non-Sperner graphs in Lmax(12; 2; 4). Thus,
|Lmax(12; 2;≤ 4)| = 2477. By removing edges from the graphs in Lmax(12; 2;≤ 4)
we find all 539 410 034 graphs in L+K3(12; 2;≤ 4) (see Table 5).

Obtaining all graphs in L+K3(16; 1;≤ 4):

From R(3, 4) = 9 it follows that L(16; 1;≤ 2) = ∅. There are only two 16-
vertex graphs G such that ω(G) < 4 and α(G) < 4, [21]. We checked with a
computer that none of them belongs to L(16; 1), and therefore L(16; 1; 3) = ∅. Thus,
L(16; 1;≤ 4) = L(16; 1; 4) and Lmax(16; 1;≤ 4) = Lmax(16; 1; 4). All 5772 graphs in
Lmax(15; 1;≤ 4) were obtained in part 1 of the proof of the Main Theorem in [4].
According to Proposition 3.7, all Sperner graphs in Lmax(16; 1; 4) are obtained by
duplicating a vertex in some of the graphs in Lmax(15; 1;≤ 4). In this way, we find
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|E(G)| # δ(G) # ∆(G) # α(G) #
23 5 2 3271422 5 449820 3 1217871
24 231 3 200573349 6 90348516 4 538192163
25 10970 4 317244496 7 326214208
26 254789 5 18296860 8 113842493
27 2675686 6 23902 9 8451810
28 14355266 7 5 10 103082
29 44690777 11 105
30 88716906
31 119843548
32 115345475
33 81922759
34 44228481
35 18667991
36 6345554
37 1795212
38 437931
39 95241
40 18959
41 3517
42 617
43 101
44 16
45 2

Table 5: Some properties of the graphs in L+K3(12; 2;≤ 4)

all 21 749 Sperner graphs in Lmax(16; 1; 4). We execute Algorithm 5.1 (n = 16, p =
1, s = 4) with input set A = L+K3(12; 2;≤ 4) to output all 1 676 267 non-Sperner
graphs in Lmax(16; 1; 4). Thus, |Lmax(16; 1; 4)| = |Lmax(16; 1;≤ 4)| = 1 698 016. By
removing edges from the graphs in Lmax(16; 1;≤ 4) we find all 3 892 126 874 graphs
in L+K3(16; 1;≤ 4) (see Table 6).

Proving that Lmax(20; 0; 4) = ∅:
We execute Algorithm 5.3 (n = 20, p = 0, s = 4) with input set A = L+K3(16; 1;

≤ 4). After the completion of step 4, 19 803 568 graphs remain in the set B (see
Table 7). None of these graphs satisfies the condition in step 5, and hence after step
5, B = ∅. We obtained that there are no non-Sperner graphs in Lmax(20; 0; 4) with
minimum degree greater than or equal to 8. According to Corollary 4.3, all graphs
in Lmax(20; 0; 4) must be vertex critical. Therefore, there are no Sperner graphs in
Lmax(20; 0; 4), and by Theorem 2.5, no graphs with minimum degree less than 8. We
proved that Lmax(20; 0; 4) = ∅, which finishes the proof.

Some properties of the graphs in L+K3(8; 3;≤ 4), L+K3(12; 2;≤ 4), and
L+K3(16; 1; 4) are given in Tables 4, 5 and 6. Properties of the 20-vertex graphs
obtained after the completion of step 4 of Algorithm 5.3 (n = 20, p = 0, s = 4) are
given in Table 7.

All computations were performed on a personal computer. The most time con-
suming part of the proof was obtaining all graphs in L+K3(16; 1; 4) by removing edges
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|E(G)| # δ(G) # ∆(G) #
48 1 3 2782333 7 426
49 41 4 248294425 8 269602932
50 1263 5 1961917314 9 3080309372
51 24897 6 1627736506 10 535664232
52 340818 7 51394620 11 6544240
53 3215961 8 1676 12 5672
54 20943254
55 94567255
56 295234663
57 632937375
58 926347803
59 921306723
60 619034510
61 278204812
62 82280578
63 15662269
64 1876177
65 141052
66 7088
67 314
68 18
69 2

Table 6: Some properties of the graphs in L+K3(16; 1;≤ 4) = L+K3(16; 1; 4)

|E(G)| # δ(G) # ∆(G) #
86 317 8 19599716 9 35
87 8539 9 203852 10 6072772
88 94179 11 13316933
89 480821 12 411501
90 1574738 13 2327
91 3492540
92 5122647
93 4864736
94 2923601
95 1026658
96 194534
97 18960
98 1272
99 25
100 1

Table 7: Some properties of the 20-vertex graphs obtained after the completion of
step 4 of Algorithm 5.3 (n = 20, p = 0, s = 4)

from the graphs in Lmax(16; 1; 4), which took about 4 months. After that, executing
Algorithm 5.3 (n = 20, p = 0, s = 4) with input the graphs in L+K3(16; 1; 4), was
done in under 2 months.
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In order to check the correctness of our computer programs implementing
Algorithm 5.1, we reproduced the 153 graphs in L(14; 1), which were first obtained
in [26], in a different way. Among the graphs in L(14; 1) there are 8 maximal graphs,
all of which have independence number 4, i.e. |Lmax(14; 1)| = 8 and Lmax(14; 1) =
Lmax(14; 1; 4). Using nauty we obtained all 547 524 graphs in L+K3(10; 2;≤ 4). By
executing Algorithm 5.1 (n = 14, p = 1, s = 4) with input A = L+K3(10; 2;≤ 4)
we found all 8 graphs in Lmax(14; 1; 4). By removing edges from the graphs in
Lmax(14; 1; 4) we obtained the 153 graphs in L(14; 1).

6 Concluding remarks

In this section we consider the possibilities for improving the inequality

Fe(3, 3; 4) ≥ 21.

With the help of a computer in [26] the following surprising fact is proved:

Theorem 6.1. [26] min{α(G) : G ∈ He(3, 3; 5; 15)} = 4.

From Table 3 we see that in He(3, 3; 5) there are at least five 16-vertex graphs
with independence number 3 (one of these graphs is given in Figure 1). The 18-
vertex graph from [14] which proves Fe(3, 3; 5) ≤ 18 also has independence number 3.
Therefore, we have

Theorem 6.2. min{α(G) : G ∈ He(3, 3; 5)} = 3.

Figure 1: 16-vertex graph in He(3, 3; 5) with independence number 3

We believe the following conjecture is true:

Conjecture 6.3. min{α(G) : G ∈ He(3, 3; 4)} ≥ 5.

If G ∈ He(3, 3; 4;n), n ≥ 25, according to the equality R(4, 5) = 25 we have
α(G) ≥ 5. All 24-vertex graphs with independence number 4 and clique number 3
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are obtained in [1]. With the help of a computer we checked that none of these graphs
belongs to He(3, 3; 4). In this way, we proved that if G ∈ He(3, 3; 4;n), n ≥ 24, then
α(G) ≥ 5. To prove the conjecture it remains to consider the cases n = 21, 22,
and 23.

By similar reasoning as in the proof of Theorem 1.1, but with more calculations,
potentially it could be proved that

α(G) ≤ n− 17.

From this inequality and Conjecture 6.3 it would follow that Fe(3, 3; 4) ≥ 22.
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