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Abstract

Let G be a graph and let S be a subset of V (G). Then G is called
S-leaf-connected if G has a spanning tree T such that S is the set of end-
vertices of T . In 1986, Gurgel and Wakabayashi obtained a closure result
for S-leaf-connected. This yields a result on a degree sum condition as a
corollary. In 2008, Egawa et al. gave a degree sum condition for a graph
with high connectivity to be S-leaf-connected. In this paper, we obtain
the bipartite analogues of their results. The degree sum conditions of our
results are sharp.

1 Introduction

In this paper, we consider finite simple graphs, which have neither loops nor multiple
edges. Let G be a graph. We write |G| for the order of G, that is, |G| = |V (G)|.
For a vertex x ∈ V (G), we denote the set of vertices adjacent to x in G by NG(x)
and the degree of x in G by dG(x); thus dG(x) = |NG(x)|. For S ⊆ V (G), let
NG(S) =

⋃
x∈S NG(x). For S ⊆ V (G), let G − S denote the subgraph induced by

V (G) \ S in G.
Ore (1963) obtained a degree sum condition for a graph to be Hamilton-connected.

A graph is Hamilton-connected if every two vertices are connected by a Hamilton
path, i.e., a spanning path.
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Theorem 1.1 (Ore [6]). Let G be a graph. If dG(x) + dG(y) ≥ |G|+ 1 for any two
non-adjacent vertices x, y ∈ V (G), then G is Hamilton-connected.

Bondy and Chvátal (1976) defined the k-closure of a graph G as the graph ob-
tained from G by recursively joining pairs of non-adjacent vertices with degree sum
at least k, until there exists no such a pair. Moreover, they showed that the k-closure
of a graph G is well-defined, and obtained the following result.

Theorem 1.2 (Bondy and Chvátal [1]). A graph G is Hamilton-connected if and
only if the (|G|+ 1)-closure of G is Hamilton-connected.

Theorem 1.2 implies Theorem 1.1 as a corollary, since the complete graph is
Hamilton-connected. Like this, the closure results play an important role in results
on degree sum condition. The reader can refer to [1, 2] for details.

In 1986, Gurgel and Wakabayashi investigated S-leaf connectedness as a general-
ization of Hamilton-connectedness. (In fact, they investigated k-leaf connectedness.)
A leaf is a vertex of a tree with degree one. For a tree T , let L(T ) be the set of leaves
of T . For a graph G and a subset S of V (G), G is called S-leaf-connected if G has
a spanning tree T with L(T ) = S. A graph G is S-leaf-connected for any S ⊆ V (G)
with |S| = 2 if and only if G is Hamilton-connected. Hence, we can see that the
concept of S-leaf connectedness has a relation to that of Hamilton-connectedness. In
this point of view, Gurgel and Wakabayashi generalized Theorem 1.2 as follows.

Theorem 1.3 (Gurgel and Wakabayashi [4]). Let G be a graph, and let S be a subset
of V (G) such that 2 ≤ |S| ≤ |G| − 1. Then G is S-leaf-connected if and only if the
(|G|+ |S| − 1)-closure of G is S-leaf-connected.

Theorem 1.3 yields the following corollary on degree sum condition, since the
complete graph is S-leaf-connected for any S ⊆ V (G) with 2 ≤ |S| ≤ |G| − 1.

Corollary 1.4. Let G be a graph, and let S be a subset of V (G) such that 2 ≤
|S| ≤ |G| − 1. If dG(x) + dG(y) ≥ |G| + |S| − 1 for any two non-adjacent vertices
x, y ∈ V (G), then G is S-leaf-connected.

In 2008, Egawa, Matsuda, Yamashita and Yoshimoto weakened the degree sum
condition in Corollary 1.4 by adding a necessary condition.

Theorem 1.5 (Egawa et al. [3]). Let G be a graph, and let S be a subset of V (G)
such that 2 ≤ |S| ≤ |G| − 1 and |NG(S) \ S| ≥ 2. Suppose that G− S ′ is connected
for any S ′ ⊆ S. If dG(x) + dG(y) ≥ |G| + 1 for any two non-adjacent vertices
x, y ∈ V (G) \ S, then G is S-leaf-connected.

Note that the condition

G− S ′ is connected for any S ′ ⊆ S (∗)
is a necessary condition for a graph G to be S-leaf-connected. We will mention it in
Section 3. Corollary 1.4 is a corollary of Theorem 1.5, since the degree sum condition
in Corollary 1.4 implies the conditions in Theorem 1.5, except for the case G = Kk+1

and |S| = k. (Note that, in the exceptional case, G is S-leaf-connected.)
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2 Main theorems

The purpose of this paper is to obtain the bipartite analogies of Theorems 1.3 and
1.5. We denote by G[A,B] a bipartite graph G with partite sets A and B. For a
bipartite graph G[A,B], we define

σ1,1(G) = min{dG(a) + dG(b) : a ∈ A, b ∈ B, ab �∈ E(G)}
if G[A,B] is not complete; otherwise σ1,1(G) = ∞.

It is easy to obtain a σ1,1(G) condition for a bipartite graph to be Hamilton-
connected. (The reader can refer to [5].)

Theorem 2.1. Let G[A,B] be a bipartite graph with 1 ≤ |A| ≤ |B| ≤ |A| + 1. If
|A| = |B|, then let u ∈ A and v ∈ B. If |B| = |A| + 1, then let u, v ∈ B. If
σ1,1(G) ≥ |A|+ 2, then G has a Hamilton path connecting u and v.

We define the k-closure of a bipartite graph G to be the graph obtained from
G by recursively joining pairs of non-adjacent vertices contained in different partite
sets with degree sum at least k, until no such pair exists. In this paper, we obtain
generalizations of Theorem 2.1, which are also the bipartite analogies of Theorems
1.3 and 1.5. We first prove the following bipartite analogy of Theorem 1.3.

Theorem 2.2. Let G[A,B] be a bipartite graph, and let S be a subset of V (G) such
that |S| ≥ 2. Then G is S-leaf-connected if and only if the (|A| + |S|)-closure of G
is S-leaf-connected.

Recall that Theorem 1.3 implies Corollary 1.4. In the same way, we can obtain
a result on a degree condition as a corollary of Theorem 2.2. But, this is not obvi-
ous because there exists a complete bipartite graph which is not S-leaf connected.
Therefore, we need the following proposition. We will also use this proposition in
the proof of our theorem.

Proposition 2.3. Let G[A,B] be a complete bipartite graph and let S be a subset of
V (G) with |S| ≥ 2. Suppose that G[A,B] and S satisfy 1 ≤ |A \ S| ≤ |B| − 1 and
1 ≤ |B \ S| ≤ |A| − 1. Then G is S-leaf-connected.

Proof. By the symmetry of A and B, we may assume that |A \ S| ≤ |B \ S|. First,
suppose that |A \ S| = |B \ S|. Then there exists a Hamilton path of G− S because
|A \ S| ≥ 1. Note that S ∩ A �= ∅ and S ∩ B �= ∅, because |A \ S| ≤ |B| − 1 and
|B \ S| ≤ |A| − 1. Hence we can see that G is S-leaf-connected. Next, suppose that
|A \ S| < |B \ S|. Since |A \ S| ≥ 1, there exists a spanning tree T of G − S such
that |L(T )| = |B \ S| − |A \ S|+ 1 and L(T ) ⊆ B \ S. Since |B \ S| ≤ |A| − 1, we
obtain |B \ S| − |A \ S| + 1 ≤ |S ∩ A|. Therefore there exists a matching between
L(T ) and S ∩ A covering all vertices of L(T ). Hence we can obtain a spanning tree
T ∗ such that L(T ∗) = S, and so G is S-leaf-connected.

Note that the condition

1 ≤ |A \ S| ≤ |B| − 1 and 1 ≤ |B \ S| ≤ |A| − 1 (�)
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is a necessary condition for a bipartite graph G[A,B] to be S-leaf-connected unless
G is a star. We will mention it in Section 3.

By Proposition 2.3, Theorem 2.2 implies the following corollary.

Corollary 2.4. Let G[A,B] be a bipartite graph with 1 ≤ |A| ≤ |B|, and let S be a
subset of V (G) with |S| ≥ 2. Suppose that G[A,B] and S satisfy the condition (�).
If σ1,1(G) ≥ |A|+ |S|, then G is S-leaf-connected.

Unfortunately, the lower bound of this degree sum condition is not best possible
in the case “|B \S| ≤ |A|−2 and |S∩A| = 1” and the case “|S∩A| ≥ 2”. We cannot
improve the lower bound of the degree conditions of these cases. In Section 5, we
will mention it. Hence, we prove the following theorem, in which the σ1,1 conditions
are best possible.

Theorem 2.5. Let G[A,B] be a bipartite graph with 1 ≤ |A| ≤ |B|, and let S be a
subset of V (G) with |S| ≥ 2, Suppose that G[A,B] and S satisfy the condition (�).

(i) If |S ∩A| = 0, then we let σ1,1(G) ≥ |A|+ |S|.
(ii) If |S ∩A| = 1 and |B \ S| = |A| − 1, then we let σ1,1(G) ≥ |A|+ |S|.
(iii) If |S ∩A| = 1 and |B \ S| ≤ |A| − 2, then we let σ1,1(G) ≥ |A|+ |S| − 1.

(iv) If |S ∩A| ≥ 2, then we let σ1,1(G) ≥ |A|+ |S| − 1.

Then G is S-leaf-connected.

Note that this theorem corresponds to Corollary 1.4. Furthermore, we obtain the
following bipartite analogy of Theorem 1.5.

Theorem 2.6. Let G[A,B] be a bipartite graph with 1 ≤ |A| ≤ |B|, and let S be a
subset of V (G) with |S| ≥ 2. Suppose that G[A,B] and S satisfy the conditions (∗)
and (�). If

σ1,1(G) > |A|+ |S| − 2(|S ∩A|+ 1)/3,

then G is S-leaf-connected.

Note that the degree sum condition in Theorem 2.6 shows that we can weaken
the degree condition in the case |S ∩ A| ≥ 3 or “|S ∩ A| = 1 and |B \ S| = |A| − 1”
by adding the necessary condition (∗).

In Section 3, we will discuss the conditions of Theorem 2.5. In Section 4, we will
prepare notation and lemmas which are needed in our proofs. In Section 5, we will
give a proof of Theorem 2.2. In Section 6, we will give a proof of Theorem 2.5.
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3 The conditions of Theorems 2.5 and 2.6

In this section, we discuss the conditions of Theorems 2.5 and 2.6:

(1) The necessary conditions (∗) and (�).

(2) The degree sum conditions of Theorems 2.5 and 2.6.

(3) Comparison of the degree sum conditions of Theorems 1.5 and 2.6.

(1) The necessary conditions (∗) and (�).

For a bipartite graph G[A,B] and S ⊆ V (G), if G is S-leaf connected, then G
and S satisfy (∗). Also they satisfy (�) unless G is a star. Let T be a spanning
tree of a bipartite graph G[A,B] and let S be the set of leaves of T . We can
see that G − S ′ is connected for any S ′ ⊆ S because T − S ′ is connected. Since
T ′ = T − (S ∩ B) is a spanning tree in G − (S ∩ B) such that L(T ′) ⊆ A, we can
obtain |B \ S| = |V (T ′) ∩B| ≤ |V (T ′) ∩A| − 1 = |A| − 1. By the same way, we can
also obtain |A \ S| ≤ |B| − 1. If A \ S = ∅ or B \ S = ∅, then all the vertices in A or
B are leaves. This is possible only if G is a star. Hence |A \ S| ≥ 1 and |B \ S| ≥ 1
hold.

Though the necessity of (�) has an exception, it does not affect the subsequent
discussion, including the proof of Theorem 2.2.

Remark 1. The condition (∗) is equivalent to the condition “G − S is connected
and NG(u) ∩ (V (G) \ S) �= ∅ for any u ∈ S”. In [3], this expression was used.

(2) The degree sum conditions (i)–(iv) of Theorems 2.5 and 2.6.

(i) Let k, l and m be integers such that 1 ≤ m ≤ l ≤ k +m− 2. For i = 1, 2, let
Gi[Ai, Bi] be a complete bipartite graph such that |A1| = 1, |B1| = k, |A2| = l
and |B2| = m. Let G[A,B] be a bipartite graph obtained fromG1∪G2 by adding
all edges in {uv : u ∈ A2, v ∈ B1}, where G1 ∪G2 is a union of G1 and G2 (see
the left side of Figure 1, where “+” means the join of two graphs). We assume
that A = A1 ∪ A2 and B = B1 ∪ B2, similarly hereinafter. Let S = B1. Then
S∩A = ∅, |A| = l+1 ≤ k+m = |B|, 1 ≤ |A\S| = 1+ l ≤ k+m−1 = |B|−1,
1 ≤ |B \S| = m ≤ l = |A| − 1 and σ1,1(G) = k+ l = |A|+ |S| − 1. Since G−S
is not connected, G is not S-leaf-connected. Hence the degree sum condition
(i) of Theorem 2.5 is best possible.

Figure 1: The degree sum conditions (i) and (ii) of Theorem 2.5 are best possible.
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(ii) Let k and l be integers such that k ≥ 2 and l ≥ 1. For 1 ≤ i ≤ 3, let Gi[Ai, Bi]
be a complete bipartite graph such that |A1| = |A2| = |B1| = |B2| = l, |A3| = 1
and |B3| = k−1. Let G[A,B] be a bipartite graph obtained fromG1∪G2∪G3 by
adding all edges in {uv : u ∈ A1∪A2, v ∈ B3}∪{uv : u ∈ A3, v ∈ B1∪B2} (see
the right side of Figure 1). Let S = A3 ∪B3. Then |S ∩A| = 1, |A| = 2l+ 1 ≤
2l+k−1 = |B|, 1 ≤ |A\S| = 2l ≤ 2l+k−2 = |B|−1, 1 ≤ |B\S| = 2l = |A|−1
and σ1,1(G) = (l+k−1)+(l+1) = |A|+ |S|−1. Since G−S is not connected,
G is not S-leaf-connected. Hence, the degree sum condition (ii) of Theorem 2.5
is best possible.

(iii) Let l, m and n be integers such that 1 ≤ m ≤ l ≤ k + m − 2. For i = 1, 2,
let Gi[Ai, Bi] be a complete bipartite graph such that |A1| = 1, |B1| = k − 1,
|A2| = l and |B2| = m. Let G[A,B] be a bipartite graph obtained from G1∪G2

by adding all edges in {uv : u ∈ A2, v ∈ B1} (see the left side of Figure
2). Let S = A1 ∪ B1. Then |S| = k, |A| = l + 1 ≤ k + m − 1 = |B|,
1 ≤ |A \ S| = l ≤ k + m − 2 = |B| − 1, 1 ≤ |B \ S| = m ≤ l = |A| − 1 and
σ1,1(G) = k + l − 1 = |A|+ |S| − 2. Since G− (S ∩ B1) is not connected, G is
not S-leaf-connected. Hence the degree sum condition (iii) of Theorem 2.5 is
best possible.

Figure 2: The degree sum conditions (iii) and (iv) of Theorem 2.5 are best possible.

(iv) Let m and n be integers such that m ≥ 0 and n ≥ 1. For i = 1, 2, let Gi[Ai, Bi]
be a complete bipartite graph such that |A1| = 1, |B1| = m+ n, |A2| = n and
|B2| = 1. Let G[A,B] be a bipartite graph obtained from G1 ∪ G2 by adding
all edges in {uv : u ∈ A2, v ∈ B1} (see the right side of Figure 2). Let S be a
subset of V (G) such that A2 ∪ B2 ⊆ S, S ∩ A1 = ∅ and |S ∩ B1| = m. Then
|A| = n+1 ≤ m+n+1 = |B|, |A\S| = 1 ≤ |B|−1, 1 ≤ |B \S| = n = |A|−1
and σ1,1(G) = 2n+m = |A|+ |S| − 2. Since G− (S ∩A2) is not connected, G
is not S-leaf-connected. Hence the degree sum condition (iv) of Theorem 2.5 is
best possible.

(v) Let l and m be positive integers. For 0 ≤ i ≤ 3, let Gi[Ai, Bi] be a complete
bipartite graph such that |A0| = 3l − 1, |B0| = m, |B1| = l − 1, |B2| =
|B3| = l and Ai = {ai} for 1 ≤ i ≤ 3. Let G[A,B] be a bipartite graph
obtained from

⋃3
i=0Gi by adding two vertices b1, b2 and by adding all edges in

{a1b1, a1b2, a2b2, a3b2} and
{
uv : u ∈ A0, v ∈ {b1, b2} ∪B1 ∪B2 ∪ B3

} ∪ {
uv : u ∈ {a1, a2, a3}, v ∈ B0

}
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(see Figure 3). Let S = A0 ∪ B0. Then, |A| = 3l + 2 ≤ 3l + 1 + m = |B|,
|A \ S| = 3 < |B| − 1, |B \ S| = 3l + 1 = |A| − 1, G− S ′ is connected for any
S ′ ⊆ S, and

σ1,1(G) = l +m+ 1 + 3l

= 4l +m+ 1

= |A|+ |S ∩A|/3 + |S ∩ B| − 2/3

= |A|+ |S| − 2(|S ∩ A|+ 1)/3.

Suppose that there exists a spanning tree T of G such that L(T ) = S. Note
that |NG(b) ∩ (V (G) \ S)| = 1 for any b ∈ {b1} ∪ B1 ∪ B2 ∪ B3. This implies
that T ′ = T − S is a spanning tree in G− S such that {b1} ∪ B1 ∪ B2 ∪ B3 ⊆
L(T ′). Hence, since NG(b) ∩ S = A0 for any b ∈ {b1} ∪ B1 ∪ B2 ∪ B3, we have
|A0| ≥ |{b1}∪B1 ∪B2 ∪B3|. This is a contradiction, because |A0| = 3l− 1 and
|{b1} ∪ B1 ∪ B2 ∪ B3| = 3l. Hence G is not S-leaf connected, and the degree
sum condition of Theorem 2.6 is best possible.

Figure 3: The degree sum condition of Theorem 2.6 is best possible.

(3) Comparison of the degree sum conditions of Theorems 1.5 and 2.6.

Note that the hypothesis in Theorem 1.5 only concerns the degrees of non-
adjacent vertices not in S. Therefore, one might expect that the current hypothesis
in Theorem 2.6 can be replaced by “dG(x) + dG(y) > |A|+ |S| − 2(|S ∩A|+1)/3 for
any pair of non-adjacent vertices x ∈ A \ S and y ∈ B \ S”. However, the following
example tells us that it is not possible. Let l and m be positive integers. For i = 1, 2,
let Gi[Ai, Bi] be a complete bipartite graph such that |A1| = m + l, |B1| = m + 2l,
|A2| = l + 1 and |B2| = 1. Let G[A,B] be a bipartite graph obtained from G1 ∪G2

by adding all edges in {vu : u ∈ A1, v ∈ B2} (see Figure 4). Let S be a subset of
V (G) such that A2 ⊆ S, B2 ∩ S = ∅, |A1 ∩ S| = l and |B1 ∩ S| = l. Note that
|A \S| = m ≤ m+2l = |B| − 1 and |B \S| = m+ l+1 ≤ m+2l = |A| − 1. Suppose
that there exists a spanning tree T of G such that L(T ) = S. Then T ′ = T − (S \A2)
is a spanning tree of G− (S \ A2) such that |L(T ′) ∩ B1| ≤ |A1 ∩ S| = l. But, since
|V (T ′)∩A1| = m and |V (T ′)∩B1| = m+ l, we obtain |L(T ′)∩B1| ≥ l+1, a contra-
diction. Hence G is not S-leaf connected. However, G and S satisfy the conditions
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“G−S ′ is connected for any S ′ ⊆ S” and “dG(x)+dG(y) > |A|+ |S|−2(|S∩A|+1)/3
for any two non-adjacent vertices x ∈ A \ S and y ∈ B \ S”.

Figure 4: The degree sum condition of Theorem 2.6 cannot be changed into the
degree sum condition on V (G) \ S.

4 Notation and lemmas

In this section, we prepare notation and lemmas which are needed in the proof of
our theorems.

Let T be a tree. We denote by BR(T ) the set of vertices of T whose degrees
are greater than or equal to three. For u, v ∈ V (T ), there exists the unique path
connecting u and v in T , and it is denoted by PT [u, v]. Let T be a rooted tree
with root r and v ∈ V (T ) \ {r}. Note that |NT (v) ∩ V (PT [v, r])| = 1. The unique
vertex is called the parent of v, denoted by v−(T ). For a subset U of V (T ) \ {r}, let
U−(T ) = {u−(T ) : u ∈ U}.
Lemma 4.1. Let G[A,B] be a bipartite graph and let T be a subtree of G with
V (T ) ∩A �= ∅. Then |V (T ) ∩ A| ≥ |V (T ) ∩ B| − |L(T ) ∩ B|+ 1.

Proof. Since V (T ) ∩ A �= ∅, there exists a vertex r ∈ V (T ) ∩ A. We regard T as a
rooted tree with root r. Then each u ∈ A ∩ (

V (T ) \ {r}) has the parent. Hence,
we can define a function f :

(
V (T ) \ {r}) ∩ A → (

V (T ) \ L(T )
) ∩ B such that

f(u) = u−(T ). Then, we can easily see that f is a surjection onto
(
V (T ) \L(T ))∩B.

Therefore |(V (T ) \ {r}) ∩A| ≥ |(V (T ) \ L(T )) ∩B|, that is, |V (T ) ∩ A| ≥ |V (T ) ∩
B| − |L(T ) ∩B|+ 1.

Lemma 4.2. Let G[X, Y ] be a bipartite graph, and let T be a subtree of G with root
u ∈ X. Let v ∈ Y \ V (T ). Suppose that u, v and T satisfy the following properties:

(i) (NG(u) ∩ V (T ))−(T ) ∩ (NG(v) ∩ V (T )) = ∅, and
(ii) (NG(u) ∩ V (T ))−(T ) ∩ (BR(T ) \ {u}) = ∅.

Then |NG(u) ∩ V (T )|+ |NG(v) ∩ V (T )| ≤ |V (T ) ∩X|+ dT (u)− 1.
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Proof. By the properties (i) and (ii), we obtain

|NG(u) ∩ V (T )|+ |NG(v) ∩ V (T )|
= |(NG(u) ∩ V (T ))−(T )|+ |NG(v) ∩ V (T )|+ dT (u)− 1

= |(NG(u) ∩ V (T ))−(T ) ∪ (NG(v) ∩ V (T ))|+ dT (u)− 1

≤ |V (T ) ∩X|+ dT (u)− 1.

Lemma 4.3. Let G[A,B] be a bipartite graph with 1 ≤ |A| ≤ |B|, and let S be a
subset of V (G) such that |S| ≥ 2. Suppose that G[A,B] and S satisfy the condition
(�), and one of the conditions (iii) and (iv) in Theorem 2.5. Then G satisfies the
condition (∗).
Proof. Suppose that there exists S ′ ⊆ S such that G− S ′ is not connected. Let G1

and G2 be components of G− S ′.

Case 1. |V (Gi)| ≥ 2 for each i = 1, 2.

In this case, there exist ui ∈ V (Gi) ∩ A and vi ∈ V (Gi) ∩ B for each i = 1, 2.
Then we have

2σ1,1(G) ≤ dG(u1) + dG(v1) + dG(u2) + dG(v2)

≤ |G1|+ |G2|+ 2|S ′|
≤ |G|+ |S|
= |A|+ (|S ∩B|+ |B \ S|) + |S|
= |A|+ 2|S|+ |B \ S| − |S ∩ A|.

Since either |S∩A| = 1 and |B\S| ≤ |A|−2 or |S∩A| ≥ 2, we obtain |B\S|−|S∩A| ≤
|A| − 3. Hence 2|A|+ 2|S| − 2 ≤ 2σ1,1(G) ≤ 2|A|+ 2|S| − 3, a contradiction.

Case 2. |V (Gj)| = 1 for some j = 1, 2.

By the symmetry, we may assume that j = 1. Suppose first that V (G1)∩A �= ∅,
say {u1} = V (G1) ∩A. Since |B \ S| ≥ 1, we may assume that there exists a vertex
v2 ∈ V (G2) ∩B. Then

σ1,1(G) ≤ dG(u1) + dG(v2)

≤ |S ′ ∩B|+ (|V (G2) ∩A|+ |S ′ ∩ A|)
= |V (G2) ∩A|+ |S ′|
≤ |A| − 1 + |S ′ \ A|
≤ |A|+ |S| − |S ∩ A| − 1,

which contradicts the σ1,1(G) condition, since |S ∩ A| ≥ 1.
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Suppose next that V (G1)∩B �= ∅, say {v1} = V (G1)∩B. Since |A\S| ≥ 1, we may
assume that there exists a vertex u2 ∈ V (G2)∩A. Therefore, since |B \S| ≤ |A|−1,
it follows that

σ1,1(G) ≤ dG(u2) + dG(v1)

≤ |S ′ ∩ A|+ (|V (G2) ∩ B|+ |S ′ ∩B|)
≤ |S ′ ∩ A|+ (

(|B| − |{v1}| − |S ′ ∩B|) + |S ′ ∩ B|)

≤ |B \ S|+ |S| − 1

≤ |A|+ |S| − 2,

a contradiction.

Lemma 4.4. Let G[A,B] be a bipartite graph, and let S be a subset of V (G) such that
|S| ≥ 2. Suppose that G is not S-leaf-connected, and G+w1w2 is S-leaf-connected for
some w1 ∈ A and w2 ∈ B. Let T be a spanning tree in G+w1w2 such that L(T ) = S,
and let T1 and T2 be trees in G obtained from T by deleting w1w2. Let w1 and w2

be roots of T1 and T2, respectively. Moreover, suppose that for i = 1, 2, the tuple
(wi, w3−i, Ti) satisfies the property (ii) in Lemma 4.2 as (u, v, T ) = (wi, w3−i, Ti).
Then the following statements hold.

(i) If G and S satisfy the condition (∗), then dT1(w1) ≤ 1 or dT2(w2) ≤ 1 holds.

(ii) dG(w1) + dG(w2) ≤ |A|+ |S| − 1. Especially, the following statements hold.

(a) If “dT1(w1) = 0 or dT2(w2) = 0” and “G[A,B] and S satisfy the condition
(∗)”, then dG(w1) + dG(w2) ≤ |A|+ |S ∩ B| − 1.

(b) If dT1(w1) = 1 and dT2(w2) ≥ 1, then dG(w1) + dG(w2) ≤ |A| + |S ∩ B| −
|(S ∩B) ∩ V (T1)|.

(c) If dT1(w1) ≥ 2 and dT2(w2) = 1, then dG(w1) + dG(w2) ≤ |A| + |S ∩ B| +
|(S ∩A) ∩ V (T1)| − 1.

(iii) Suppose that equality holds in the above inequality in the case dT1(w1) = dT2(w2)
= 1. And suppose that NG(w1)∩ (V (T2)\S) = ∅ and NG(w2)∩ (V (T1)\S) = ∅.
Then NG(w1) = (V (T1) ∪ (V (T2) ∩ S)) ∩ B and NG(w2) = (V (T2) ∪ (V (T1) ∩
S)) ∩A.

Proof. Note that |B \ S| ≤ |A| − 1 because G+ w1w2 is S-leaf-connected.
(i) Suppose that G and S satisfy the condition (∗), and dTi

(wi) ≥ 2 holds for
i = 1, 2. Then G − S is connected, and hence there exists a spanning tree T ′

obtained from T1 and T2 by adding an edge whose endvertices are not contained in
S. Note that L(T ′) = S. Since G is not S-leaf-connected, this is a contradiction.
Hence, the statement (i) holds.

(ii) Since G is not S-leaf-connected, the tuple (wi, w3−i, Ti) satisfies the property
(i) in Lemma 4.2 as (u, v, T ) = (wi, w3−i, Ti) for i = 1, 2. Hence, by Lemma 4.2, we
obtain

|NG(w1) ∩ V (T1)|+ |NG(w2) ∩ V (T1)| ≤ |V (T1) ∩A|+ dT1(w1)− 1 (1)
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and

|NG(w1) ∩ V (T2)|+ |NG(w2) ∩ V (T2)| ≤ |V (T2) ∩ B|+ dT2(w2)− 1. (2)

Since G is not S-leaf-connected, if dT1(w1) ≥ 2 then NG(w2) ∩ V (T1) ⊆ (V (T1) ∩
S) ∩ A, and so

|NG(w1) ∩ V (T1)|+ |NG(w2) ∩ V (T1)| ≤ |V (T1) ∩B|+ |(V (T1) ∩ S) ∩A|, (3)

and if dT2(w2) ≥ 2 then

|NG(w1) ∩ V (T2)|+ |NG(w2) ∩ V (T2)| ≤ |V (T2) ∩A|+ |(V (T2) ∩ S) ∩B|. (4)

Case 1. dT2(w2) = 0.

In this case, note that w2 ∈ S ∩B. Obviously, we may assume that dT1(w1) ≥ 1.
If dT1(w1) = 1, then by (1) and (2), we obtain

dG(w1) + dG(w2) ≤ |V (T1) ∩A| ≤ |A|+ |S ∩B| − 1.

Hence we may assume that dT1(w1) ≥ 2. Since G is not S-leaf-connected, we have
NG(w2) ∩ V (T1) ⊆ L(T1) ∩ A. This implies that G[A,B] and S do not satisfy the
condition (∗). Then, by Lemma 4.1, we obtain

dG(w1) + dG(w2) ≤ |V (T1) ∩ B|+ |L(T1) ∩ A|
≤ |V (T1) ∩ A|+ |L(T1) ∩ B|+ |L(T1) ∩ A| − 1

= |A|+ |S| − 2.

Hence, the statement (ii) holds in this case.

Case 2. dT1(w1) ≤ 1 and dT2(w2) = 1.

By Lemma 4.1, |(V (T2) \ S) ∩ B| ≤ |V (T2) ∩ A|. Therefore, by (1) and (2), we
obtain

dG(w1) + dG(w2) ≤ |V (T1) ∩ A|+ |V (T2) ∩B|+ dT1(w1)− 1

= |V (T1) ∩A|+ |(V (T2)\S) ∩B|+|(V (T2) ∩ S) ∩ B|+dT1(w1)−1

≤ |V (T1) ∩ A|+ |V (T2) ∩A|+ |(S ∩B) ∩ V (T2)|+ dT1(w1)− 1

= |A|+ |S ∩ B| − |(S ∩B) ∩ V (T1)|+ dT1(w1)− 1.

Hence, the statement (ii) holds in this case.

Case 3. dT1(w1) ≤ 1 and dT2(w2) ≥ 2.

By (1) and (4),

dG(w1) + dG(w2) ≤ (|V (T1) ∩ A|+ dT1(w1)− 1) + (|V (T2) ∩ A|+ |(V (T2) ∩ S) ∩ B|)
= |A|+ |S ∩B| − |(S ∩ B) ∩ V (T1)|+ dT1(w1)− 1.
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Hence, the statement (ii) holds in this case.

Case 4. dT1(w1) ≥ 2 and dT2(w2) = 1.

Since |B \ S| ≤ |A| − 1, it follows from (2) and (3) that

dG(w1) + dG(w2) ≤ (|V (T1) ∩ B|+ |(V (T1) ∩ S) ∩A|) + |V (T2) ∩ B|
= |B|+ |(V (T1) ∩ S) ∩ A|
≤ (|A| − 1 + |S ∩B|) + |(V (T1) ∩ S) ∩A|
= |A|+ |S ∩B|+ |(S ∩A) ∩ V (T1)| − 1.

Hence, the statement (ii) holds in this case.

Case 5. dT1(w1) ≥ 2 and dT2(w2) ≥ 2.

By Lemma 4.1, we have |(V (T1) \ S) ∩ B| ≤ |V (T1) ∩ A| − 1. Therefore, by (3)
and (4), we obtain

dG(w1) + dG(w2) ≤ (|V (T1) ∩ B|+ |(V (T1) ∩ S) ∩A|) + (|V (T2) ∩ A|
+ |(V (T2) ∩ S) ∩ B|)

= |(V (T1) \ S) ∩ B|+ |V (T2) ∩A|+ |(V (T1) ∩ S) ∩ A|+ |S ∩B|
≤ (|V (T1) ∩ A| − 1) + |V (T2) ∩ A|+ |(V (T1) ∩ S) ∩A|+ |S ∩B|
= |A|+ |(V (T1) ∩ S) ∩A|+ |S ∩B| − 1

≤ |A|+ |S| − 1.

Hence, the statement (ii) holds in this case.

(iii) We can obtain the statement (iii) by the proof of Case 2 in the statements
(ii).

5 Proof of Theorem 2.2

In this section, we give a proof of Theorem 2.2. In order to prove Theorem 2.2, we
have only to show the following proposition.

Proposition 5.1. Let G[A,B] be a bipartite graph, and let S be a subset of V (G)
such that |S| ≥ 2. Suppose that there exist non-adjacent vertices w1 and w2 of G
such that dG(w1) + dG(w2) ≥ |A|+ |S| and G+w1w2 is S-leaf-connected. Then G is
S-leaf-connected.

Proof of Proposition 5.1. Suppose that G and S satisfy the assumption of Propo-
sition 5.1. Moreover, suppose that G is not S-leaf-connected. Then there exists a
spanning tree T in G + w1w2 such that L(T ) = S. By deleting the edge w1w2 from
T , we obtain two trees T1 and T2 with w1 ∈ V (T1) and w2 ∈ V (T2). Choose such
two vertices w1 and w2 and a spanning tree T so that

dT1(w1) + dT2(w2) is as large as possible.
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We may assume that T1 and T2 are rooted trees with roots w1 and w2, respectively.
By the choice of w1, w2 and T , we have (NG(wi) ∩ V (Ti))

−(Ti) ∩ (BR(Ti)\{wi}) = ∅
for i = 1, 2. These imply that G, S, T , T1, T2, w1 and w2 satisfy the assumption
of Lemma 4.4. Hence, dG(w1) + dG(w2) ≤ |A| + |S| − 1 by Lemma 4.4 (ii). Since
dG(w1) + dG(w2) ≥ |A|+ |S|, this is a contradiction.

By Theorem 2.5, we can see that the lower bound of the degree sum condition in
Corollary 2.4 is not best possible in the cases (a) |S ∩ A| = 1 and |B \ S| ≤ |A| − 2
and (b) |S ∩ A| ≥ 2. Therefore, one might expect that we can improve the lower
bound of the degree sum condition of Proposition 5.1 in these cases. However, we
cannot improve it into |A|+ |S| − 1 by the existence of the following examples.

Figure 5: The cases (a) and (b).

(a) |S ∩ A| = 1 and |B \ S| ≤ |A| − 2 (see the left side of Figure 5).

Let a2, b1 and b2 be positive integers such that 2 ≤ a2 ≤ b2. For i = 1, 2, let
Gi[Ai, Bi] be a complete bipartite graph such that |A1| = 1, |B1| = b1, |A2| = a2
and |B2| = b2. Let v1 ∈ B1 and S = A1 ∪ (B1 \ {v1}) ∪ B2. Let G be a graph
obtained from G1 ∪G2 by adding two vertices w1 and w2 and all edges in {w1y : y ∈
B1∪B2}∪{w2x : x ∈ A1∪A2}, and let A = A1∪A2∪{w1} and B = B1∪B2∪{w2}.
Then |B\S| = 2 ≤ a2 = |A|−2, |S∩A| = 1 and dG(w1)+dG(w2) = (b1+b2)+a2+1 =
(a2 + 2) + (b1 + b2)− 1 = |A|+ |S| − 1. Since b2 ≥ a2, G+w1w2 is S-leaf connected.
But, since G− S is not connected, G is not S-leaf connected.

(b) |S ∩A| ≥ 2 (see the right side of Figure 5).

Let a1, a2, b1, b2 be positive integers such that b2 ≥ a2 and 2 ≤ a1 = b1 ≤
a1 + a2 − 1. For i = 1, 2, let Gi[Ai, Bi] be a complete bipartite graph such that
|A1| = a1, |B1| = b1, |A2| = a2 and |B2| = b2. Let S = A1 ∪ B2. Let G be
a graph obtained from G1 ∪ G2 by adding two vertices w1 and w2 and all edges
in {w1y : y ∈ B1 ∪ B2} ∪ {w2x : x ∈ A1 ∪ A2}. Let A = A1 ∪ A2 ∪ {w1} and
B = B1∪B2∪{w2}. Then |B \S| = b1+1 ≤ a1+a2 = |A|−1, |S∩A| = a1 ≥ 2 and
dG(w1)+dG(w2) = (b1+b2)+(a1+a2) = (a1+a2+1)+(a1+b2)−1 = |A|+|S|−1. Since
b2 ≥ a2 and a1 = b1, G + w1w2 is S-leaf connected, but G is not S-leaf connected.
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6 Proof of Theorems 2.5 and 2.6

Let G[A,B] be a bipartite graph and let S be a subset of V (G) with |S| ≥ 2.
Suppose that G[A,B] and S satisfy the assumption of Theorem 2.5 or Theorem 2.6.
Moreover, suppose that G is not S-leaf-connected. If G and S satisfy the assumption
of Theorem 2.5, then we may assume that G satisfies the condition (iii) or (iv) in
Theorem 2.5 by Corollary 2.4. Note that σ1,1(G) > |A|+ |S| − 2(|S ∩A|+ 1)/3 also
holds under the condition (iii) or (iv) in Theorem 2.5. Hence, we have

σ1,1(G) > |A|+ |S| − 2(|S ∩ A|+ 1)/3

= |A|+ |S ∩A|/3 + |S ∩B| − 2/3. (5)

Note that the condition (∗) also holds under the condition (iii) or (iv) in Theorem
2.5 by Lemma 4.3. Since |A| ≤ |B| and |B \S| ≤ |A|−1, we can see that S ∩B �= ∅.
Case 1. There exists a spanning tree Ta such that BR(Ta)∩A �= ∅, L(Ta)∩B = S∩B
and L(Ta) ∩ A = (S ∩ A) ∪ {a1}, where a1 ∈ A \ S.

In this case, note that

dTa(a1) = 1 and |L(Ta) ∩A| = |S ∩ A|+ 1.

Let u0 ∈ BR(Ta) ∩ A, and let v1, v2, v3 ∈ NTa(u0). For 1 ≤ i ≤ 3, let Ui be a
component of Ta − {u0} such that vi ∈ V (Ui). We may assume that a1 ∈ V (U1).
Choose such a tree Ta, v1, v2 and v3 so that

dU1(v1) + dU2(v2) + dU3(v3) is as large as possible.

We may assume that Ui is a rooted tree with root vi for 1 ≤ i ≤ 3.
Recall that S ∩ B �= ∅. By the symmetry of U2 and U3, we may assume that

(S ∩ B) ∩ V (U2) �= S ∩ B. Let T ∗
a be a graph obtained from Ta − V (U2). Then

note that |(S ∩B) ∩ V (T ∗
a )| ≥ 1. We may assume that T ∗

a is a rooted tree with root
a1. Since G is not S-leaf-connected, the tuple (a1, v2, T

∗
a ) satisfies the property (ii)

in Lemma 4.2. By the choice of Ta, the tuple (v2, a1, U2) satisfies the property (ii)
in Lemma 4.2. Thus G, S, T ∗

a , U2, a1 and v2 satisfy the assumption of Lemma 4.4.
Hence, since |(S ∩ B) ∩ V (T ∗

a )| ≥ 1, it follows from Lemma 4.4 (ii)-(a), (ii)-(b) that

σ1,1(G) ≤ dG(a1) + dG(v2) ≤ |A|+ |S ∩B| − 1,

which contradicts (5).

Case 2. There exists a spanning tree Tb such that BR(Tb)∩B �= ∅, L(Tb)∩A = S∩A
and L(Tb) ∩ B = (S ∩B) ∪ {b1}, where b1 ∈ B \ S.

Then note that

dTb
(b1) = 1 and |L(Tb) ∩ B| = |S ∩ B|+ 1.

Let v0 ∈ BR(Tb) ∩ B, and let u1, u2, u3 ∈ NTb
(v0). For 1 ≤ i ≤ 3, let Qi be a

component of Tb − {v0} such that ui ∈ V (Qi). We may assume that b1 ∈ V (Q1).
Choose such a tree Tb, u1, u2 and u3 so that
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dQ1(u1) + dQ2(u2) + dQ3(u3) is as large as possible.

We may assume that Qi is a rooted tree with root ui for 1 ≤ i ≤ 3 (see the left side
of Figure 6).

Figure 6: The configuration of Q1, Q2 and Q3.

Let T ∗
b be a graph obtained from Tb − V (Q2). We may assume that T ∗

b is a
rooted tree with root b1. Since G is not S-leaf-connected, the tuple (b1, u2, T

∗
b )

satisfies the properties (i) and (ii) in Lemma 4.2. Hence we obtain b1u2 �∈ E(G) and
|NG(u2)∩V (T ∗

b )|+ |NG(b1)∩V (T ∗
b )| ≤ |V (T ∗

b )∩B| because dT ∗
b
(b1) = 1. By Lemma

4.1, we have |V (T ∗
b ) ∩A| ≥ |V (T ∗

b ) ∩ B| − |L(T ∗
b ) ∩B|+ 1. Therefore

|NG(u2) ∩ V (T ∗
b )|+ |NG(b1) ∩ V (T ∗

b )| ≤ |V (T ∗
b ) ∩ A|+ |L(T ∗

b ) ∩ B| − 1. (6)

Claim 6.1. |S ∩ A| ≥ 2 and |(S ∩ A) ∩ L(Q1)| ≤ (|S ∩ A| − 2)/3.

Proof. Suppose that |(L(Q2)∩ S)∩A| ≤ |S ∩A|/3. Since G is not S-leaf-connected
and by the choice of Tb, the tuple (u2, b1, Q2) satisfies the properties (i) and (ii) in
Lemma 4.2. Hence

|NG(u2) ∩ V (Q2)|+ |NG(b1) ∩ V (Q2)| ≤ |V (Q2) ∩A|+ dQ2(u2)− 1

≤ |V (Q2) ∩A|+ |L(Q2) ∩ S| − 1. (7)

Therefore, it follows from the inequalities (6) and (7) that

σ1,1(G) ≤ dG(u2) + dG(b1)

≤ (|V (T ∗
b ) ∩A|+ |L(T ∗

b ) ∩ B| − 1) + |V (Q2) ∩ A|+ |L(Q2) ∩ S| − 1

= |A|+ |(L(Q2) ∩ S) ∩ A|+ |L(Tb) ∩ B| − 2

≤ |A|+ |S ∩ A|/3 + |S ∩ B| − 1,

which contradicts (5). Hence |(S ∩A)∩L(Q2)| > |S ∩A|/3. By the same argument,
we obtain |(S ∩ A) ∩ L(Q3)| > |S ∩ A|/3. Thus, we deduce |S ∩ A| ≥ 2 and
|(S ∩ A) ∩ L(Q1)| ≤ (|S ∩ A| − 2)/3.

We shaw that NG(b1)∩ (V (Q2) \S) = ∅. Assume not. Then dQ2(u2) = 1 because
G is not S-leaf connected. Note that G, S, Q2, T

∗
b , u2 and b1 satisfy the assumption

of Lemma 4.4. Hence, by Lemma 4.4 (ii)-(b),

σ1,1(G) ≤ dG(u2) + dG(b1)

≤ |A|+ |S ∩B| − |(S ∩B) ∩ L(Q2)|.
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By Claim 6.1, we obtain |S ∩A| ≥ 2, and hence the above inequality contradicts (5).
We now show that NG(b1) ∩ (L(Q2) ∩ S) �= ∅. Assume not. Then it follows from

Lemma 4.1 that

|NG(b1)∩V (Q2)|+ |NG(u2)∩V (Q2)| ≤ |V (Q2)∩B| ≤ |V (Q2)∩A|+ |L(Q2)∩B|−1.

Therefore, it follows from this inequality and the inequality (6) that

σ1,1(G) ≤ dG(b1) + dG(u2) ≤ |A|+ |S ∩B| − 1,

which contradicts (5). Therefore there exists x2 ∈ NG(b1) ∩ (L(Q2) ∩ S). Let v2 =

x
−(Q2)
2 (see the right side of Figure 6). Note that dQ2(v2) = 2 since G is S-leaf-

connected. Let R1 be the tree obtained from Q1 by adding the vertex x2 and the
edge b1x2, and let R2 = Tb − V (R1). Then note that dR2(v2) = 1. We may assume
that R1 and R2 are rooted trees with roots u1 and v2, respectively.

By the construction of R1 and Claim 6.1, we have

|(S ∩A) ∩ L(R1)| = |(S ∩ A) ∩ L(Q1)|+ |{x2}| ≤ (|S ∩A|+ 1)/3. (8)

Claim 6.2. The tuples (v2, u1, R2) satisfies the property (ii) in Lemma 4.2.

Proof. Suppose that there exists uR ∈ (NG(v2) ∩ V (R2))
−(R2) ∩ BR(R2). Let R∗

2

be the tree obtained from R2 by adding the edge v2uR and by deleting the edge
uRu

−(R2)
R . Let R12 be the tree obtained from R1 and R∗

2 by adding the edge v0u1.
Then R12 is a spanning tree such that L(R12) = S. This contradicts that G is not
S-leaf-connected. Hence (NG(v2)∩V (R2))

−(R2) ∩BR(R2) = ∅, and so the conclusion
holds.

By the choice of Tb and Claim 6.2, the tuples (u1, v2, R1) and (v2, u1, R2) satisfy
the property (ii) in Lemma 4.2. Hence, we can see that G, S, R1, R2, u1 and v2
satisfy the assumption of Lemma 4.4. Note that dR1(u1) ≥ 1 and dR2(v2) = 1.

First, suppose that dR1(u1) = 1 and dR2(v2) = 1. By Lemma 4.4 (ii)-(b),

σ1,1(G) ≤ dG(u1) + dG(v2) ≤ |A|+ |S ∩ B| − |(S ∩ B) ∩ V (R1)|.
By Claim 6.1, this inequality contradicts (5).

Next, suppose that dR1(u1) ≥ 2 and dR2(v2) = 1. By the inequality (8) and
Lemma 4.4 (ii)-(c), we obtain

σ1,1(G) ≤ dG(u1) + dG(v2)

≤ |A|+ |S ∩B|+ |(S ∩A) ∩ L(R1)| − 1

≤ |A|+ |S ∩B|+ (|S ∩A| − 2)/3,

which contradicts (5).

Case 3. Otherwise (neither Case 1 nor Case 2 holds).

By Proposition 2.3, we may assume that G is an edge-maximal counterexample,
that is, G + uv is S-leaf-connected for any non-adjacent vertices u ∈ A and v ∈ B.
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Let w1 and w2 be non-adjacent vertices such that w1 ∈ A and w2 ∈ B, and let T be
a spanning tree in G + w1w2 such that L(T ) = S. By deleting the edge w1w2 from
T , we obtain two trees T1 and T2 with w1 ∈ V (T1) and w2 ∈ V (T2). Choose such
two vertices w1 and w2 and a spanning tree T so that

dT1(w1) + dT2(w2) is as large as possible.

We may assume that T1 and T2 are rooted trees with roots w1 and w2, respectively.
By the choice of w1, w2 and T , we have (NG(wi) ∩ V (Ti))

−(Ti) ∩ (BR(Ti)\{wi}) = ∅
for i = 1, 2. These imply that G, S, T , T1, T2, w1 and w2 satisfy the assumption
of Lemma 4.4. Since G and S satisfy the condition (∗), it follows from Lemma 4.4
(i), (ii)-(a) and (5) that either “dT1(w1) = 1 and dT2(w2) ≥ 2”, “dT1(w1) ≥ 2 and
dT2(w2) = 1” or “dT1(w1) = 1 and dT2(w2) = 1” holds.

Claim 6.3. dT1(w1) = 1 and dT2(w2) = 1

Proof. Suppose that dT1(w1) = 1 and dT2(w2) ≥ 2. Since G satisfys the condition
(∗), G−S is connected. Hence there exist vertices z1 ∈ V (T1)\S and z2 ∈ V (T2)\S
such that z1z2 ∈ E(G). Note that z1 �= w1 since G is not S-leaf-connected. Let
Ta be the tree obtained from T1 and T2 by adding the edge z1z2. Then note that
BR(Ta) ∩A ∩ {z1, z2} �= ∅ and L(Ta) = S ∪ {w1}. Hence Ta satisfies the assumption
of Case 1, a contradiction. By the same way, we can obtain a contradiction in the
case dT1(w1) ≥ 2 and dT2(w2) = 1.

Since G does not satisfy either the assumption of Case 1 or that of Case 2, we
can obtain the following claim.

Claim 6.4. NG(w1) ∩ (V (T2) \ S) = ∅ and NG(w2) ∩ (V (T1) \ S) = ∅.
By (5), Lemma 4.4 (ii)-(b) and Claim 6.3,

|A|+ |S ∩B|+ |S ∩A|/3− 2/3 < σ1,1(G)

≤ dG(w1) + dG(w2)

≤ |A|+ |S ∩B| − |(S ∩ B) ∩ V (T1)|.

This implies that (V (T1)∩S)∩B = ∅ and |S∩A| ≤ 1. Since V (T1)∩S �= ∅, we have
|S ∩ A| ≥ |(V (T1) ∩ S) ∩ A| = |V (T1) ∩ S| ≥ 1. Hence, equalities hold in the above
inequalities, and we obtain that V (T1) ∩ S ⊆ A, V (T2) ∩ S ⊆ B and |S ∩ A| = 1.
Moreover, by Lemma 4.4 (iii) and Claim 6.4, NG(w1) = (V (T1) ∪ (V (T2) ∩ S)) ∩ B
and NG(w2) = (V (T2) ∪ (V (T1) ∩ S)) ∩A.

Since G−S is connected, there exist z1 ∈ V (T1) \S and z2 ∈ V (T2) \S such that
z1z2 ∈ E(G). For i = 1, 2, let z+i be a vertex of V (Ti) such that (z+i )

−(Ti) = zi.
If z1 ∈ A and z2 ∈ B (see the left side of Figure 7), then T ′ = T1 ∪ T2 + z1z2 +

w1z
+
1 + w2z

+
2 − z1z

+
1 − z2z

+
2 is a spanning tree of G which satisfies L(T ′) = S, a

contradiction. Hence z1 ∈ B and z2 ∈ A (see the right side of Figure 7).
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Figure 7: There exist z1 ∈ V (T1) \ S and z2 ∈ V (T2) \ S such that z1z2 ∈ E(G).

Let x ∈ (V (T1)∩S)∩A and y ∈ (V (T2)∩S)∩B. Let T3 be a tree obtained from
T2 − {y} by adding the vertex x and the edge xw2, and let T4 be a tree obtained
from T1 − {x} by adding the vertex y and the edge yw1. Then T3 and T4 are
trees such that (L(T3) ∪ L(T4)) \ {y−(T2), x−(T1)} = S, V (T3) ∪ V (T4) = V (G) and
V (T3) ∩ V (T4) = ∅. Since G is not S-leaf-connected, we have dT3(y

−(T2)) = 1 and
dT4(x

−(T1)) = 1. Hence, we can see that the tuple (T3, T4, y
−(T2), x−(T1)) plays the

same role as the tuple (T1, T2, w1, w2). Since z1 ∈ V (T4)∩B and z2 ∈ V (T3)∩A, we
can obtain a contradiction by the same argument in the case z1 ∈ A and z2 ∈ B.

This completes the proof of Theorems 2.5 and 2.6.
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