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Abstract
Let ¢ > 3 be a fixed prime power and n > 1 be an integer. Let K C IF,
denote a fixed subset with 0 € K. Let A C (F,)" be an arbitrary subset
such that {a—b: a,b € A,a# b} N K" = (. We prove the exponential
upper bound |A| < (¢ — |K| + 1)". We use the linear algebra bound
method in our proof.

1 Introduction

Let p denote a prime with p = 1 (mod 4). The Paley graph of order p is a graph
G(p) on p vertices (here we associate each vertex with an element of F,), where (3, j)
is an edge if i — j is a quadratic residue modulo p. Let w(p) denote the clique number
of the Paley graph of order p. It is a challenging open problem to determine w(p).

Until now the best known upper bound is w(p) < /p — 1 for infinitely many
primes p (see [2] Theorem 2.1).

It is well-known that the Paley graph is a self-complementary graph; hence
a(G(p)) = w(p). Here we denote by a(G) the independence number of the graph G.

We can consider the following reformulation of this problem: Let Q(2) denote
the set of quadratic residues in F,. How large can a set A C IF,, be, given that

{a—b: a,beAa#b} CF,\Q(2)7

We investigate here the following generalization of this problem to elementary p-
groups. Let p > 3 be a prime, k > 2 be a fixed integer and let Q(k) denote the set of
kth power residues modulo p (i.e. Q(k) = {b € F, : there exists z € F, with 2% = b
(mod p)}. Clearly 0 € Q(k). Let n > 1 be a fixed integer. How large can a set
A C (F,)™ be given that

fa—b: abeda#b}C(F,)"\ (QK)"

Matolcsi and Ruzsa investigated the following version of this question in [3]:
Let G denote a finite abelian group and let B C G be a fixed standard set (i.e.
B = —B and 0 € B). Consider the number

A(B) :=max{|A|: ACG,(A—A)NnB={0}}.
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How large can A(B) be for a fixed symmetric set?

We state here our main results.

Theorem 1.1 Let ¢ > 3 be a fized prime power and let n > 1 be a fixed integer. Let
K CTF, be a fivred subset with 0 € K. Define t := |K|. Suppose that A C (F,)" is a
subset such that

Al > (g —t+1)".

Then there exist a;,ay € A, a; # ay, such that a; —as € K™.

Remark. We think the bound (¢ — ¢ 4+ 1) is not optimal in general. The only
obvious case, when our bound is sharp, is the following: Let K :=IF,. Thent = g and
clearly if A C (IF,)" is an arbitrary subset with |A| > 1, then there exist a;,a; € A,
a; # ap such that a; —ay, € K™ = (F,)™.

On the other hand let n = 1, ¢ be a prime and consider the subset K := {0, 1}.
Then it is easy to verify that if A C F, is an arbitrary subset with |A| > [Z], then
there exist a1, as € A, a; # ag, such that a; —ay € K ={0,1}.

Our proof technique is the usual linear algebra bound method (see [1] Chapter
2). Finally we point out an important special case of Theorem 1.1.

Corollary 1.2 Let ¢ > 3 be a prime, k > 2 be a fized integer and let Q(k) C F,
denote the set of kth power residues modulo q. Let n > 1 be a fixed integer. Define
d = gcd(k,q — 1). Suppose that A C (F,)" is a subset such that

Al > (W +1), (1)

Then there exist aj,as € A, a; # ay, such that a; — ay € (Q(k))™.

2 Proof

We can prove our main result using the linear algebra bound method and the Deter-
minant Criterion (see [1] Proposition 2.7). We recall here for the reader’s convenience
the Determinant Criterion.

Proposition 2.1 (Determinant Criterion) Let F denote an arbitrary field. Let f; :
Q2 = T be functions and v; € Q0 elements for each 1 <i,5 < m such that the m x m
matriz B = (fi(v;))i%=, is non-singular. Then fi,..., f, are linearly independent
functions of the space F.

Proof. We use an indirect argument. Suppose that B = (fi(v;)){-; is a non-
singular matrix, but there exists a nontrivial linear combination » ", \; f; between
the functions f;. If we substitute v; for each j, then we obtain a nontrivial linear
combination between the rows of B (with the same coefficients \;). This contradicts
the non-singularity of B. O
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Proof of Theorem 1.1:
Indirectly, suppose that there exists a subset A C (IF,)™ such that

|Al > (¢ —t+1)"

and

{a—b: abeAa#b}C (F,)"\ K" (2)
Define N :=F,\ K. Then |N|=g¢q—t.
Consider the polynomial
Q(z1,...,x,) = H H(xl —a) €F[zy,... 2,

1<i<n aeN

Then clearly
deg(Q) = n|N| = n(q —1).

Q - Z CaT?,

a€eN™ c,#0

If we expand

as a linear combination of monomials z® (here x® denotes the monomial z{" ... x%"
where o = (aq,...,0a,) € N* ), then it follows from the definition of @) that 0 <
a; < |N| = q—t for each i.

On the other hand Q(0) = [T, ., [[oen(—a) # 0, because 0 ¢ N. But it follows
from the inclusion (2) that Q(a; — as) = 0 for each a;,as € A, a; # ag: namely if
a;,ay € A, a; # ag, then it follows from the inclusion (2) that a; —ay € (F,)™ \ K"
and consequently there exists an index 1 < i < n such that (a; — as); ¢ K. Hence
(a; —as); € N and the definition of @) implies that Q(a; —az) = 0.

Consider the polynomials

Pa(x) == Q(a—x) € F,[x]

for each a € A. Then it follows from Proposition 2.1 that {P, : a € A} are lin-
carly independent polynomials. Namely, the matrix B := (Pa(b))abea is a diagonal
matrix, where each diagonal entry is nonzero.

On the other hand, if we expand P, as a linear combination of monomials, then all
monomials appearing in this linear combination are contained in the set of monomials

{zf" .. a0 0 < a; <|N| for each i}.

Consequently
Al < (IN[+1)" = (g —t+1)",

a contradiction. O
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