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Abstract

Let Ak,t be the 0, 1-matrix of size
(
k
t

)
×
(
k
t

)
, whose rows and columns are

labeled by all t-uniform subsets of {1, 2, . . . , k}, such that there is a one
in the entry on row x and column y if and only if the two subsets x, y
intersect. We give constructions of large isolation sets in Ak,t, where our
constructions are the best possible for large enough k. We first prove
that the largest identity submatrix in Ak,t is of size k− 2t+ 2, for k ≥ 2t.
Then we provide constructions of isolation sets in Ak,t, for any t ≥ 2:

• If k = 2t + r and 0 ≤ r ≤ 2t− 3, there exists an isolation set of size
2r + 3 = 2k − 4t + 3.

• If k ≥ 4t− 3, there exists an isolation set of size k.

The construction is maximal for k ≥ 4t − 3, since the Boolean rank of
Ak,t is k in this case. We prove that the construction is maximal also for
k = 2t, 2t+1. Finally, we consider the problem of the maximal triangular
isolation submatrix of Ak,t that has ones in every entry on or below the
main diagonal, and zeros elsewhere. We give an optimal construction of
such a submatrix of size (

(
2t
t

)
− 1) × (

(
2t
t

)
− 1), for any t ≥ 1 and large

enough k. This construction is tight, as there is a matching upper bound
which can be derived from a theorem of Frankl about skew matrices.

1 Introduction

Intersecting families of subsets have been studied extensively over the years (see, for
example, [2, 3, 4, 9]). Some of these results can be inferred as statements about
families of maximal submatrices of the 0, 1-matrix Ak,t of size

(
k
t

)
×
(
k
t

)
, whose rows

and columns are labeled by all t-uniform subsets of [k]
def
= {1, 2, . . . , k}, such that

there is a one in the entry on row x and column y if and only if the two subsets x, y
intersect.
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For example, Pyber’s work in [9] about maximal cross-intersecting families of
t-uniform subsets implies that if k ≥ 2t then the largest all-ones square submatrix of

Ak,t is of size
(
k−1
t−1

)2
. Using a theorem of Bollobás [2], it is possible to show that the

largest submatrix representing a crown graph in Ak,t is of size
(
2t
t

)
×
(
2t
t

)
, where a

crown graph is a complete bipartite graph from which the edges of a perfect matching
have been removed.

Here we suggest to continue and explore various families of maximal submatrices
of Ak,t. In particular, we would like to find small submatrices of Ak,t whose Boolean
rank is large. The Boolean rank of a 0, 1-matrix B of size n × m is equal to the
smallest integer r, such that B can be factorized as a product of two 0, 1-matrices,
X · Y = B, where X is a matrix of size n × r and Y is a matrix of size r ×m, and
all additions and multiplications are Boolean (that is, 1 + 1 = 1, 1 + 0 = 0 + 1 = 1,
1 · 1 = 1, 1 · 0 = 0 · 1 = 0). The Boolean rank is also equal to the minimal number
of monochromatic combinatorial rectangles required to cover all of the ones of B,
and it is equal to the minimal number of bicliques needed to cover the edges of the
bipartite graph whose adjacency matrix is B (see [5]). Lastly, the Boolean rank is
also tightly related to the notion of nondeterministic communication complexity [6].

The Boolean rank of Ak,t was shown to be k for any 1 ≤ t ≤ k/2 (see [8]).
Furthermore, it was proved in [8] that there exists a family of submatrices of Ak,t,
each of size (m · s) × (m · s), where m =

(
2t−2
t−1

)
and s = k − 2t + 2, whose Boolean

rank is also k, for a large range of values of k, t. These submatrices are rather large,
and a question that arises is if there are smaller submatrices of Ak,t whose Boolean
rank is k, or as close as possible to k. We answer this question and prove that for
large enough k, there are, in fact, submatrices of size k × k of Ak,t, whose Boolean
rank is k.

Natural candidates for small matrices with a large Boolean rank are isolation sets
(or fooling sets as they are called in communication complexity). An isolation set
for a Boolean matrix B is a subset of entries F in B that are all ones of B, such
that no two ones in F are in the same row or column of B, and no two ones in F
are contained in an all-one submatrix of size 2 × 2 of B. Throughout the paper we
represent an isolation set of a given matrix B as a submatrix F of B, where the ones
of the isolation set are on the main diagonal of F , and F is called an isolation matrix.
The Boolean rank of an isolation matrix of size f×f is equal to f , and therefore, the
size of the maximal isolation set in a given matrix is a lower bound on the Boolean
rank of that matrix (see for example [1, 6]). Hence, finding large isolation sets in
Ak,t answers partially the question of finding small submatrices of Ak,t with a large
Boolean rank.

If k < 2t, then Ak,t is just the all-ones matrix, since every two subsets of size t
intersect, and thus, the largest isolation set is of size 1. Therefore, the question of
finding large isolation sets in Ak,t is interesting only for k ≥ 2t. The simplest form
of an isolation matrix is the identity matrix. Hence, we first consider the problem of
determining the size of the largest identity submatrix in Ak,t, and prove in Section 2
the following theorem:
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Theorem 1.1 Let k ≥ 2t. The largest identity submatrix in Ak,t is of size s × s,
where s = k − 2t + 2.

Recall that the complement of Ak,t is the adjacency matrix of the Kneser graph
KGk,t, in which the vertices are all t-uniform subsets of [k], and there is an edge
between two subsets x, y if and only if x ∩ y = ∅. Furthermore, the complement
of the identity matrix is the adjacency matrix of the crown graph of the same size.
Thus, from Theorem 1.1, we immediately get that the largest submatrix representing
a crown graph in KGk,t is of size s = k − 2t + 2. Note that k − 2t + 2 is also the
chromatic number of KGk,t (see [7]).

Another simple isolation matrix is the triangular matrix with ones in every entry
on and below the main diagonal, and zeros elsewhere. In Section 3 we give an optimal
construction of such a triangular matrix in Ak,t, and prove the next theorem:

Theorem 1.2 For any t ≥ 1 and large enough k, the maximal triangular submatrix
of Ak,t is of size m×m, where m =

(
2t
t

)
− 1.

The construction presented in Theorem 1.2 uses ideas similar to those of Tuza [10],
and is shown to be optimal using a result of Frankl [4] that proved a skew version of
a theorem of Bollobás [2].

As can be seen, the size of the maximal triangular submatrix of Ak,t given in
Theorem 1.2, does not depend on k (as long as k is large enough). Thus, for large
enough k, the maximal identity submatrix Is promised by Theorem 1.1, is a larger
isolation submatrix in Ak,t. But is Is the largest isolation matrix in Ak,t? If t = 1
then Ak,t = Ik = Is, and in this case, this is, of course, the maximal isolation set.

As we prove in Section 4, for 2 ≤ t ≤ k/2, there are larger isolation sets, and the
submatrix Is is not the largest isolation matrix for these values of t and k. In fact,
when k is large enough, there exists an isolation set of size k in Ak,t:

Theorem 1.3 For any t ≥ 2, the matrix Ak,t has an isolation set of the following
size:

• If k = 2t + r and 0 ≤ r ≤ 2t− 3, there exists an isolation set of size 2r + 3 =
2k − 4t + 3.

• If k ≥ 4t− 3 there exists an isolation set of size k.

Notice that for any fixed given t, the size of the isolation set stated in Theorem 1.3,
starts at 3 when k = 2t, and then grows by an additive term of two when k is increased
by one, until the point that k = 4t − 3. Then, we get an isolation set of maximal
size k.

It is also not hard to verify that our construction is maximal for k = 2t (see
also [1] which discuss the case of k = 2t). We conclude by proving in Section 5 that
our construction is maximal also for k = 2t + 1:
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Theorem 1.4 If k = 2t + 1 and t ≥ 2, then the size of any isolation set in Ak,t is
at most 5.

It remains an open problem to prove whether the construction proved in Theo-
rem 1.3 is maximal also for 2t + 2 ≤ k ≤ 4t− 4.

2 The maximal identity submatrix in Ak,t

In all that follows we denote the identity matrix of size n× n by In, and refer to the
subsets representing a row or column of Ak,t as row or column indices. Therefore,

each row or column index is a subset of
(
[k]
t

)
. We now prove Theorem 1.1, and show

that the maximal identity submatrix of Ak,t is of size s× s, where s = k − 2t + 2.

First notice that there exists such a large identity submatrix in Ak,t. Just take
s row indices of the form {1, 2, . . . , t − 1} ∪ {i} and column indices of the form
{t, t+1, . . . , 2t−2}∪{i}, for i = 2t−1, 2t, . . . , k. This defines an identity submatrix
of Ak,t of size s× s.

We next show that this is the largest identity submatrix possible in Ak,t. Clearly
this is true for a submatrix on the main diagonal of Ak,t. Assume, by contradiction,
that there exists an identity submatrix Is+1 on the main diagonal of Ak,t, and let
x1, . . . , xs+1 be the row and column indices of Is+1, where we have that xi ∩ xj = ∅
if and only if i 6= j. But then we get an independent set of size s + 1 in Ak,t that
includes x1, . . . , xs+1. Thus, the complement of Ak,t, that is, the Kneser graph KGk,t,
has a clique of size s + 1. This is in contradiction to the fact that the chromatic
number of KGk,t is s (see [7]). In general though, the identity submatrix does not
have to be on the main diagonal of Ak,t, and thus, a different proof is needed.

Proof of Theorem 1.1: Let In be a submatrix of Ak,t, where n ≥ 2, and x1, . . . , xn

and y1, . . . , yn are the row and column indices of In, respectively.

Let m = min1≤i≤n |xi ∩ yi| ≥ 1, and assume without loss of generality that the
minimum is attained for i = 1. Note that by the structure of In, the subsets x1 \ y1,
y1 \ x1, x1 ∩ y1, x2 ∩ y2, . . . , xn ∩ yn are all pairwise disjoint. Thus the sum of their
sizes is at most k, and using the definition of m we obtain the following:

k ≥ |x1 \ y1|+ |y1 \ x1|+
n∑

i=1

|xi ∩ yi| ≥ 2(t−m) + nm ≥ 2t+ (n− 2)m ≥ 2t+ n− 2.

Hence n ≤ k − 2t + 2 as claimed. �

The following bound on the largest crown graph that is a submatrix of KGk,t is
an immediate consequence of Theorem 1.1.

Corollary 2.1 The largest submatrix representing a crown graph in KGk,t, is of size
s× s, where s = k − 2t + 2.
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3 Maximal triangular matrices in Ak,t

As stated in the introduction, a theorem of Bollobás [2] allows one to show that the
largest submatrix representing a crown graph in Ak,t, is of size

(
2t
t

)
×
(
2t
t

)
, and this

result is tight. Specifically, Bollobás proved that if (Ai, Bi) are m pairs of sets, such
that |Ai| = a, |Bi| = b for 1 ≤ i ≤ m, and Ai ∩ Bj = ∅ if and only if i = j, then
m ≤

(
a+b
a

)
.

This theorem of Bollobás has several generalizations; among them is a result of
Frankl [4] that considers the skew version of the problem, and shows that the same
bound holds even under the following relaxed assumptions: Let (Ai, Bi) be pairs of
sets such that |Ai| = a, |Bi| = b for 1 ≤ i ≤ m, Ai ∩ Bi = ∅ for every 1 ≤ i ≤ m,
and Ai ∩ Bj 6= ∅ if i > j. Then m ≤

(
a+b
a

)
. Note that for this formulation of the

problem, all entries below the main diagonal are ones, but above the main diagonal
there can be either zeros or ones.

In this section we prove Theorem 1.2, which addresses the following special case.
What is the maximal number m of pairs of subsets (Ai, Bi) such that |Ai| = |Bi| = t
for every 1 ≤ i ≤ m, with Ai ∩Bj 6= ∅ if and only if i ≥ j ?

Such a set of m pairs of subsets defines a triangular submatrix of Ak,t of size
m×m, with ones on and below the main diagonal, and zeros elsewhere. Denote such
a matrix by Dm, and notice that Dm is an isolation matrix. We first show how the
result of Frankl [4], stated above, can be used to give a simple upper bound on the
size of any triangular submatrix Dm of Ak,t.

Claim 3.1 Let Dm be a triangular submatrix of Ak,t. Then m ≤
(
2t
t

)
− 1.

Proof: To verify this, simply add to any maximal triangular submatrix an additional
first row and last column that are all zero (for large enough k, it is always possible
to define one more row index and column index that do not intersect with any of the
given row and column indices of the submatrix). Thus, we get a matrix in which the
main diagonal is all-zero, and below the main diagonal all elements are one. By the
result of Frankl, the size of such a matrix is at most

(
2t
t

)
×
(
2t
t

)
. The claim follows.

�

We now proceed to prove Theorem 1.2, and show a construction of a triangular
submatrix Dm of Ak,t, which matches the above upper bound. The construction we
describe is recursive, using an idea similar to that of Tuza in [10].

Proof of Theorem 1.2: Let f(a, b) be the maximal m such there exists a triangular
matrix of size m ×m, defined by row indices that are subsets of size a and column
indices that are subsets of size b. As we show below in Lemma 3.2, we have f(a, b) ≥
g(a, b), where g(a, b) is the following recursive function:

g(a, b) =


a, if b = 1
b, if a = 1
g(a, b− 1) + g(a− 1, b) + 1, otherwise.
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It is easy to verify that the solution of this recursion is g(a, b) =
(
a+b
a

)
− 1.

Since f(t, t) is the size of the maximal triangular submatrix Dm of Ak,t (for large
enough k), we have f(t, t) ≥ g(t, t) =

(
2t
t

)
− 1. By Claim 3.1, it also holds that

f(t, t) ≤
(
2t
t

)
− 1. The theorem follows. �

Lemma 3.2 Let a, b ≥ 1 and let f(a, b) be as defined in the proof of Theorem 1.2.
Then:

f(a, b) =

{
a, if b = 1
b, if a = 1

and otherwise,
f(a, b) ≥ f(a, b− 1) + f(a− 1, b) + 1.

Proof: The proof is by induction on a and b. The base of the induction is a = 1
or b = 1. Asumme first that b = 1. To see that f(a, 1) ≥ a, take as row indices the
subsets {1, a+ 1, . . . , 2a− 1}, {1, 2, a+ 1, . . . , 2a− 2}, . . . {1, 2, . . . , a}, and as column
indices the subsets {1}, {2}, . . . , {a}.

For the lower bound on f(a, 1), assume by contradiction that f(a, 1) ≥ a+1, and
let the first a + 1 column indices be {1}, {2}, . . . , {a + 1}. Since the last row of the
matrix is all-ones, then the index of the last row intersects with all column indices.
Thus, it contains the subset {1, 2, . . . , a + 1}, in contradiction to the fact that the
size of the row indices is a. Hence, f(a, 1) = a as claimed. Similar arguments hold
for f(1, b), while exchanging the row and column indices.

Assume now that a, b > 1, and using the induction hypothesis, let D′a,b−1 be a
triangular submatrix of size f(a, b−1), with row indices of size a and column indices
of size b − 1, and let D′′a−1,b be a triangular submatrix of size f(a − 1, b), with row
indices of size a− 1 and column indices of size b.

Assume that each row index of D′a,b−1 is disjoint from all column indices of D′′a−1,b
(this is always possible for a large enough range of elements for the indices), and let x
be a new element that does not appear in any of the row or column indices of D′a,b−1
or of D′′a−1,b. Add x to each column index of D′a,b−1 and to each row index of D′′a−1,b.
Therefore, the row and column indices of these two matrices are now subsets of size
a and b, respectively, and each column index of D′a,b−1 intersects all row indices of
D′′a−1,b (as they all contain x).

Now add to D′a,b−1 one more row and column, as a last row and column, defined
by the row index {x} ∪ S, and the column index {x} ∪ T , where S is a subset of
size a− 1 and T is a subset of size b− 1, and S and T are disjoint from all row and
column indices of D′a,b−1. Denote the resulting matrix by D̃′a,b−1.

Consider the following triangular matrix Da,b defined by all row and column
indices of D̃′a,b−1 and D′′a−1,b (after adding x and the additional row and column as
described above):

Da,b =

(
D̃′a,b−1 O

J D′′a−1,b

)
,
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where J is the all-ones matrix and O is the all-zeros matrix. The size of Da,b is
f(a, b− 1) + f(a− 1, b) + 1, and as stated, the row and column indices are subsets of
size a and b, respectively. Hence, f(a, b) ≥ f(a, b− 1) + f(a− 1, b) + 1 as claimed. �

4 Constructions of large isolation sets for k ≥ 2t

In this section we prove Theorem 1.3, and give constructions of families of large
isolation sets in Ak,t, where for a large enough k, the constructions are the best
possible, as we get an isolation set of size k.

The proof of the theorem contains several parts, according to the range of values
of k compared to t. We first provide a basic construction of isolation sets of size
k − t + 1 for k ≥ 3t− 2, and then use this construction to build large isolation sets
for 2t ≤ k ≤ 3t−3 (Lemma 4.3), for 3t−2 ≤ k ≤ 4t−3 (Lemma 4.4), and finally for
k ≥ 4t− 3 (Lemma 4.5). Theorem 1.3 follows immediately from these three results.

Throughout this section, denote by In the identity matrix of size n × n, by O
the all-zero matrix and by J the all-one matrix. If we want to specify the number
of rows in O, we will simply write On,m for the all-zero matrix of size n × m, and
similarly for J .

4.1 A construction of isolation sets of size k − t + 1 for k ≥ 3t− 2

We now prove that if k ≥ 3t − 2 then there exists an isolation set of size k − t + 1
in Ak,t. We first need to show that there exists an isolation matrix, not necessarily
in Ak,t, of a certain structure, such that each row and column of this matrix has the
same number of ones.

Claim 4.1 For any q ≥ p− 1, there exists an isolation matrix Fp,q of size (p + q)×
(p + q), such that there are p ones and q zeros in each column of Fp,q.

Proof: Take the circulant matrix Fp,q, whose first column is (

p︷ ︸︸ ︷
1, 1, · · · , 1,

q︷ ︸︸ ︷
0, 0, · · · , 0).

It is not hard to verify that Fp,q is an isolation matrix when q ≥ p − 1. Also, each
column of Fp,q is a cyclic permutation of the first column, and thus, each column
contains p ones and q zeros. See Figure 1 for an example. �

Lemma 4.2 If k ≥ 3t − 2 and t ≥ 2, there exists an isolation set of size k − t + 1
in Ak,t.

Proof: Let Fp,q be the isolation matrix described in Claim 4.1, with p = t and
q = k−2t+1 ≥ 3t−2−2t+1 = t−1 = p−1. Let X and Y be the following matrices
achieved by concatenating Iq+p and Jq+p,p−1, and Fp,q and Op−1,q+p, as follows:

X = [Iq+pJq+p,p−1], Y =

[
Fp,q

Op−1,q+p

]
.
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F5,4 =



1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 1 1 1
1 1 1 0 0 0 0 1 1
1 1 1 1 0 0 0 0 1
1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1


Figure 1: An isolation matrix F5,4 of size (p + q)× (p + q) = 9× 9,
with p = 5 ones and q = 4 zeros in each column. The isolation set
contains the ones in bold on the diagonal of F5,4.

Observe that X · Y = Fp,q. Furthermore, since each row of X and each column of Y
are vectors of length q + 2p− 1 = k with exactly p = t ones, then we can view them
as the characteristic vectors of subsets in

(
[k]
t

)
. Thus, X · Y = Fp,q is an isolation

submatrix of Ak,t of size (q + p)× (q + p) = (k − t + 1)× (k − t + 1) as required. �

4.2 A construction of large isolation sets for 2t ≤ k ≤ 3t− 3

Lemma 4.3 Let t ≥ 2 and k = 2t+r, where 0 ≤ r ≤ t−3. There exists an isolation
matrix in Ak,t of size (2r + 3)× (2r + 3).

Proof: Let t′ = r + 2 and k′ = 2t′ + r. Thus, k′ = 2t′ + r = 3t′ − 2, and therefore,
by Lemma 4.2, there exists an isolation matrix F ′ of size (k′ − t′ + 1)× (k′ − t′ + 1)
in Ak′,t′ , where the row and column indices of F ′ are subsets of size t′ of [k′].

Since k− k′ = 2t + r− 2t′ − r = 2(t− r− 2), there are still 2(t− r− 2) elements
from [k] that were not used to construct the row and column indices of F ′. Add to
each row index of F ′ half of these elements, and to each column index the other half.

Now the row and column indices are subsets of [k] of size t′ + t − r − 2 = t,
and the resulting matrix is an isolation matrix of size (2r + 3)× (2r + 3) in Ak,t, as
2r + 3 = k′ − t′ + 1. �

4.3 A construction of large isolation sets for 3t− 2 ≤ k ≤ 4t− 3

Lemma 4.4 Let t ≥ 2 and k = 2t + r, where t − 2 ≤ r ≤ 2t − 3. There exists an
isolation matrix in Ak,t of size (2r + 3)× (2r + 3).

Proof: If k = 3t − 2 then by Lemma 4.2, there exists an isolation matrix of size
(2r+3)× (2r+3) as required, since k− t+1 = 2t−1 = 2r+3. Otherwise, k > 3t−2
and r > t− 2 and define k′ = 3t− 2. Also let F ′ be the isolation submatrix of Ak′,t

of size (k′ − t + 1) × (k′ − t + 1) = (2t − 1) × (2t − 1), as promised by Lemma 4.2.
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Finally, let F ′′ be another isolation matrix of size (2r − 2t + 4)× (2r − 2t + 4) that
has the following structure:

F ′′ =

(
U L1

L2 U

)
where U is an upper triangular matrix with ones on and above the main diagonal
and zeros elsewhere, L1 is a lower triangular matrix with ones on and below the main
diagonal and zeros elsewhere, and L2 is a strictly lower triangular matrix with ones
below the main diagonal and zeros elsewhere, and such that U,L1, L2 are all of size
(r − t + 2)× (r − t + 2).

We next show how to construct an isolation matrix F of size (2r + 3) × (2r +
3), which has the matrices F ′ and F ′′ on its main diagonal, and such that F is a
submatrix of Ak,t. See Figure 2 for the exact structure of F . Since the sum of
dimensions of F ′ and F ′′ is (2t − 1) + (2r − 2t + 4) = 2r + 3, it follows that F is a
matrix of size (2r + 3)× (2r + 3) as claimed.

Figure 2: The structure of the matrix F presented in the proof of
Lemma 4.4. The dimensions of the submatrices of F are specified
alongside the figure.

In what follows we show that there is a way to assign row and column indices
that are all subsets of

(
[k]
t

)
, such that we get the above structure of F ′, F ′′ and F .

Then we can conclude that F is an isolation submatrix of Ak,t, since this structure
of F ′, F ′′ and F , guaranties that any two ones on the diagonal of F are not in an
all-ones submatrix of size 2× 2.

The row and column indices of F ′: Denote the row and column indices of
F ′ by R1, . . . , R2t−1 and C1, . . . , C2t−1, respectively. According to the construction
described in Lemma 4.2, both the row and column indices of F ′ are subsets of size t
of [k′] defined as follows:

• For i = 1, . . . , 2t− 1: Ri = {i} ∪ S ′, where S ′ = {2t, 2t + 1, . . . , 3t− 2}.
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• For i = 0, . . . , 2t− 2:
Ci+1 = {i mod(2t−1)+1, (i+1) mod(2t−1)+1, . . . , (i+t−1) mod(2t−1)+1}.

Note that the largest element in a column index of F ′ is 2t − 1. Furthermore, it
appears in exactly the last t column indices of F ′.

The row and column indices of F ′′: Let r′ = r − t + 2 and denote the row
and column indices of F ′′ by R2t, . . . , R2t+2r′−1 and C2t, . . . , C2t+2r′−1, where:

• For i = 0, . . . ., 2r′−1: C2t+i = {k−2r′+1+i}∪S ′′, where S ′′ = {1, 2, . . . , t−1}.

• For i = 0, . . . , r′ − 1:

R2t+i = {k − 2r′ + 1 + i, k − 2r′ + 2 + i, . . . , k − 2r′ + r′ + 1 + i} ∪ T,

where T = ∅ if r = 2t− 3, and otherwise, T = {2t, 2t + 1 . . . , 4t− r− 4} ⊂ S ′.
Note that the indices are well defined because k− 2r′+ 1 = 4t− r− 3, and the
maximal element in T is 4t− r− 4. Furthermore, each index is a subset of size
r′ + 1 + |T | = r − t + 3 + (2t− r − 3) = t as required.

• R2t+r′ = (R2t+r′−1 \ {k − r′}) ∪ {2t− 1}.

• For i = 1, . . . , r′ − 1: R2t+r′+i = (R2t+r′+i−1 \ {k − r′ + i}) ∪ {k − 2r′ + i}.

It is not hard to verify that F ′′ has the structure described above, and that all row
and column indices are subsets of

(
[k]
t

)
. Therefore, F ′′ is an isolation submatrix of

Ak,t of size (2r′)× (2r′) as required.

Now if we consider the matrix defined by all the row and column indices R1, . . . ,
R2t+2r′−1 and C1, . . . , C2t+2r′−1, then we get the matrix F as above. To verify that F
has the structure claimed, note that the first r′ = r − t + 2 row indices of F ′′, that
is, R2t, . . . , R2t+r′−1, do not intersect with any of the column indices of F ′, since the
largest element in a column index of F ′ is 2t− 1, and the smallest element in these
row indices is x = min{2t, k − 2r′ + 1} = 2t, as r ≤ 2t − 3, and so k − 2r′ + 1 =
k − 2(r − t + 2) + 1 = 4t− r − 3 ≥ 2t.

As to the row indices R2t+r′ , . . . , R2t+2r′−1, they intersect the last t column indices
of F ′, whereas, the column indices C2t+r′ , . . . , C2t+2r′−1 intersect with row indices
R1, . . . , Rt−1 of F ′. See also Figure 3 for an example. �

4.4 A construction of maximal isolation sets for k ≥ 4t− 3

Lemma 4.5 Let t ≥ 2 and k ≥ 4t − 3. There exists an isolation matrix in Ak,t of
size k × k.

Proof: Let k′ = 4t−3 and let F be an isolation matrix of size k′×k′, with row and
column indices that are subsets of size t of [k′] as defined in the proof of Lemma 4.4.
Now add k − k′ rows and k − k′ columns to F with the following indices:
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F =

4 5 6 7 1 2 3 3 3 3 3
3 4 5 6 7 1 2 2 2 2 2
2 3 4 5 6 7 1 1 1 1 1
1 2 3 4 5 6 7 9 10 11 12

10, 9, 8, 1 1 0 0 0 1 1 1 1 1 1 1

10, 9, 8, 2 1 1 0 0 0 1 1 1 1 1 1

10, 9, 8, 3 1 1 1 0 0 0 1 1 1 1 1

10, 9, 8, 4 1 1 1 1 0 0 0 1 1 0 0

10, 9, 8, 5 0 1 1 1 1 0 0 1 1 0 0

10, 9, 8, 6 0 0 1 1 1 1 0 1 1 0 0

10, 9, 8, 7 0 0 0 1 1 1 1 1 1 0 0

11, 10, 8, 9 0 0 0 0 0 0 0 1 1 1 0

12, 11, 8, 10 0 0 0 0 0 0 0 0 1 1 1

7, 12, 8, 11 0 0 0 1 1 1 1 0 0 1 1

9, 7, 8, 12 0 0 0 1 1 1 1 1 0 0 1

Figure 3: An isolation matrix of size (2r + 3)× (2r + 3) = 11× 11
in Ak,t, where k = 12, t = 4 and r = k − 2t = 4.

• For i = 1, . . . , k − k′, add the row indices {k′ + i, 2t− 1, 2t, 2t + 1, . . . , 3t− 3}.

• For i = 1, . . . , k − k′, add the column indices {k′ + i, 1, 2, . . . , t− 1}.

The resulting matrix is an isolation matrix of size k×k. See Figure 4 for an example.
�

F =

3 4 5 1 2 2 2 2 2 2 2
2 3 4 5 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11

7, 6, 1 1 0 0 1 1 1 1 1 1 1 1

7, 6, 2 1 1 0 0 1 1 1 1 1 1 1

7, 6, 3 1 1 1 0 0 1 1 0 0 0 0

7, 6, 4 0 1 1 1 0 1 1 0 0 0 0

7, 6, 5 0 0 1 1 1 1 1 0 0 0 0

8, 7, 6 0 0 0 0 0 1 1 1 0 0 0

9, 8, 7 0 0 0 0 0 0 1 1 1 0 0

5, 9, 8 0 0 1 1 1 0 0 1 1 0 0

6, 5, 9 0 0 1 1 1 1 0 0 1 0 0

6, 5, 10 0 0 1 1 1 1 0 0 0 1 0

6, 5, 11 0 0 1 1 1 1 0 0 0 0 1

Figure 4: A maximal isolation matrix of size k×k = 11×11 in Ak,t,
where k = 11, t = 3.
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5 Bounds on the maximal size of isolation sets

As we saw, the constructions stated in Theorem 1.3 and proved in Section 4, are
maximal for any t ≥ 2 and k ≥ 4t − 3, since we get an isolation set of size k in
this case. It is also easy to verify that our construction is maximal for k = 2t (see
also [1]).

In this section we prove Theorem 1.4, which provides an upper bound on the size
of isolation sets in Ak,t for k = 2t+1. This upper bound implies that our construction
is also maximal for k = 2t + 1. We first prove the following claims.

Claim 5.1 Let k = 2t + 1 and let F be an isolation matrix in Ak,t. Then F cannot
contain a submatrix of size 2× 2 that is the all-zero matrix.

Proof: Assume, by contradiction, that F has a submatrix of size 2× 2 that is the
all-zero matrix, and assume that this submatrix is defined by row indices x, y and
column indices z, w. Assume, without loss of generality, that x = {1, 2, . . . , t}. Since
x∩ z = x∩w = ∅ and z 6= w, we must have that z ∪w = {t+ 1, . . . , 2t+ 1}. But we
have also that y ∩ z = y ∩ w = ∅, and therefore, y = {1, 2, . . . , t}. Thus, y = x and
this is a contradiction. �

Claim 5.2 Let k = 2t + 1 and let F be an isolation matrix in Ak,t. Then every row
and column of F has at most three zeros.

Proof: Assume, by contradiction, that F has a row with four zeros, and assume,
without loss of generality, that it is the first row and that the zeros are in positions
2, 3, 4, 5 of this row. Consider the following submatrix W of F defined by the first
five rows of F and columns 2, 3, 4, 5 of F :

W =


0 0 0 0
1

1
1

1


Let W ′ be the submatrix containing the last four rows of the submatrix W . Note
that W ′ is an isolation matrix of size 4×4. If W ′ contains two zeros in one of its rows,
then with the zeros in the first row of W , we get that F contains a submatrix of size
2 × 2 that is the all-zero matrix, in contradiction to Claim 5.1. Thus, W ′ contains
at most one zero in each one of its rows. But since W ′ is an isolation matrix of size
4× 4, it must contain at least

(
4
2

)
= 6 zeros, and again we have a contradiction. �

Claim 5.3 Let G = (V1, V2, E) be a 3-regular bipartite graph, where |V1| = |V2| = 6.
Then G contains a 4-cycle.



M. PARNAS AND A. SHRAIBMAN/AUSTRALAS. J. COMBIN. 77 (2) (2020), 285–300 297

Proof: Let V1 = {x1, . . . , x6}, V2 = {y1, . . . , y6}, and assume, without loss of
generality, that (x1, y1), (x1, y2), (x1, y3) ∈ E and (y1, x2), (y1, x3) ∈ E. If one of y2
or y3 is a neighbor of one of x2 or x3, then we are done since we have a 4-cycle (for
example, if (x2, y2) ∈ E, then (x1, y1, x2, y2, x1) is a 4-cycle).

Thus, consider now the case that y2 and y3 are not neighbors of x2 and x3.
Therefore, each of x2 and x3 has two neighbors from y4, y5, y6, and so they have a
common neighbor, say y4. Since they are both also neighbors of y1, we get a 4-cycle
(x2, y1, x3, y4, x2). �

Using the above claims we can now prove Theorem 1.4.

Proof of Theorem 1.4: Let k = 2t + 1, t ≥ 2, and assume, by contradiction,
that there is an isolation submatrix F of size 6× 6 in Ak,t. Denote the rows of F by
X1, . . . , X6 and the columns of F by Y1, . . . , Y6. Since F is an isolation matrix, then
Xi ◦ Yi = ei for every 1 ≤ i ≤ 6, where ei is the ith standard basis vector, and ◦ is
the Hadamard (entry-wise) product.

First notice that F cannot have a column Yi with five ones, since then Xi must
have four zeros (as Xi ◦ Yi = ei), and this is impossible by Claim 5.2. Therefore,
every column of F has at most four ones. A similar argument holds for the rows of
F . Furthermore, if there exists a row/column with two ones then it has four zeros
and again we get a contradiction. Thus, every row and column of F has at least
three ones and at most four ones, and at least two zeros and at most three zeros.
We have the following two cases:

Case 1: Every row and column in F has three ones. Let G be the bipartite
3-regular graph whose adjacency matrix is the complement of F (that is, each zero
in F is an edge of the graph). Then by Claim 5.3, the graph G has a 4-cycle. Thus,
F has a submatrix of size 2 × 2 that is all zeros, and we get a contradiction by
Claim 5.1.

Case 2 : There exists at least one column in F with four ones. Assume, without
loss of generality, that it is Y1 and that Y1 = (1, 1, 1, 1, 0, 0). But, X1 ◦Y1 = e1 and by
Claim 5.2 every row of F contains at most three zeros. Thus, X1 = (1, 0, 0, 0, 1, 1).

Now consider the structure of the submatrix W of F defined by rows X2, X3, X4

and columns Y2, Y3, Y4 of F . Notice that W is an isolation matrix of size 3× 3. First
we claim that there cannot be two zeros in any of the rows of W (otherwise, we will
get a submatrix of size 2×2 of zeros with the zeros in X1). Hence, each row of W has
at most one zero. Also there cannot be two zeros in any of the columns of W , since
then we will get a 2 × 2 all ones submatrix on the diagonal of W , in contradiction
to W being an isolation matrix. Thus, each one of the rows and columns of W must
contain at most one zero. But since W is an isolation matrix of size 3× 3 it should
have at least

(
3
2

)
= 3 zeros, and so each one of the rows and columns of W must

contain exactly one zero and two ones. Therefore, without loss of generality, F has
the following structure:



M. PARNAS AND A. SHRAIBMAN/AUSTRALAS. J. COMBIN. 77 (2) (2020), 285–300 298

F =


1 0 0 0 1 1
1 1 0 1
1 1 1 0
1 0 1 1
0 1
0 1


Similar considerations as those above, show that there cannot be two zeros in

positions 2, 3, 4 of X5 or of X6 (otherwise, there will be a submatrix of size 2× 2 of
zeros with the first row of F ), and there cannot be three ones in positions 2, 3, 4 of
X5 (otherwise, we get that Y5 = (1, 0, 0, 0, 1, 1) and therefore Y6 = (1, 1, 1, 1, 0, 1), or
otherwise we get a submatrix of size 2 × 2 of zeros. But then Y6 contains five ones
and again we get a contradiction). A similar argument holds for X6. Thus, X5 and
X6 each must contain one zero and two ones in positions 2, 3, 4. Hence, without loss
of generality, F is of the following form (where columns Y5 and Y6 were determined
according to X5, X6, so that X5◦Y5 = e5, X6◦Y6 = e6, and we do not get a submatrix
of size 2× 2 that is all-zeros):

F =


1 0 0 0 1 1
1 1 0 1 0 0
1 1 1 0 0 1
1 0 1 1 1 0
0 1 1 0 1
0 1 0 1 1


Now denote the row and column indices of F by x1, . . . , x6 and y1, . . . , y6, respec-

tively, where each index is a subset of size t of [k] = [2t + 1], and assume, without
loss of generality, that x1 = {1, . . . , t}. From the structure of F we can deduce the
following about its row and column indices:

• Since x1 ∩ y2 = x1 ∩ y3 = x1 ∩ y4 = ∅, then y2, y3, y4 ⊂ {t + 1, . . . , 2t + 1},
|yi∩yj| = t−1 for 2 ≤ i 6= j ≤ 4, and |y2∩y3∩y4| = t−2. Let S = y2∩y3∩y4
and assume, without loss of generality, that S = {t + 1, t + 2, . . . , 2t− 2}, and
y2 = S ∪ {2t− 1, 2t}, y3 = S ∪ {2t− 1, 2t+ 1}, y4 = S ∪ {2t, 2t+ 1}. Note that
if t = 2, then S = ∅.

• Since x2 ∩ y3 = ∅, x2 ∩ y2 6= ∅, y2 ∩ y3 = S ∪ {2t− 1} and y2 = S ∪ {2t− 1, 2t}
then 2t ∈ x2. In a similar way, 2t−1 ∈ x3, 2t+1 ∈ x4, 2t−1 ∈ x5 and 2t ∈ x6.

• Furthermore, since x5 ∩ y1 = x6 ∩ y1 = ∅, then there exists a subset T of
size |T | = t − 1 such that T ⊆ x5 ∩ x6. Since x5 ∩ y4 = x6 ∩ y3 = ∅ then
T ∩ y4 = T ∩ y3 = ∅. Thus, T ⊆ {1, 2, . . . , t}.

Finally, since F is an isolation matrix, then either x5 ∩ y6 = ∅ or x6 ∩ y5 = ∅.
Assume first that y6 ∩ x5 = ∅. From the above discussion, in this case F has the
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following structure, where the row and column indices of F are denoted above and
to the left of the matrix:

y1 y2 = y3 = y4 = y5 y6
S, 2t− 1, 2t S, 2t− 1, 2t + 1 S, 2t, 2t + 1

x1 = 1, . . . , t 1 0 0 0 1 1
2t ∈ x2 1 1 0 1 0 0

2t− 1 ∈ x3 1 1 1 0 0 1
2t + 1 ∈ x4 1 0 1 1 1 0

x5 = T, 2t− 1 0 1 1 0 1 0
x6 = T, 2t 0 1 0 1 1

But then Q ∩ y6 = ∅, where Q = {2t, 2t + 1, 2t− 1} ∪ T , and this is a contradiction,
since then y6 ⊆ [k] \Q and |[k] \Q| = t− 1.

In a similar way, if x6 ∩ y5 = ∅, and since also x3 ∩ y5 = ∅, then ({2t − 1, 2t} ∪
T ) ∩ y5 = ∅. On the other hand, x5 ∩ y5 6= ∅ and x5 = T ∪ {2t − 1} and again we
have a contradiction. �
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