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Abstract

Let n, k be positive integers. The (k + 1)-star avoidance game on Kn

is played as follows. Two players take it in turn to claim a (previously
unclaimed) edge of the complete graph on n vertices. The first player to
claim all edges of a subgraph isomorphic to a (k + 1)-star loses. Equiv-
alently, each player must keep all degrees in the subgraph formed by
his/her edges at most k. If all edges have been chosen and neither player
has lost, the game is declared a draw. We prove that, for each fixed value
of k, the game is a win for the second player for all n sufficiently large.

1 Introduction

Many natural combinatorial games occur as follows. We have a finite set (called the
board), some subsets of which are designated as lines. Two players take it in turn to
claim a (previously unclaimed) element of the board. The first player to complete
a line loses (and the other player is declared the winner). If all elements have been
chosen and neither player has lost, the game is declared a draw. Due to the winning
criterion, games of the described kind are called misère games. Games with the usual
winning criterion of making the desired object are called ‘achievement games’—see
Beck [1] for a discussion of both kinds of game and Slany [4] for background on misère
games. For a related more general overview of results and methods in combinatorial
game theory, see Beck [2].

A subfamily of misère games of particular interest is the class of sim-like games.
These games have board the edge set of the complete graph Kn. The lines are subsets
which form a subgraph isomorphic to a graph from some fixed family F . The first
example of such a game we are aware of is the game of Sim, which is played on K6

and has F = {K3} (see Simmons [3]). For a survey of sim-like games from a more
computational perspective, see Slany [4].

It is an easy consequence of Ramsey’s theorem that any sim-like game is not a
draw for all sufficiently large boards. Indeed, take G ∈ F and consider n ≥ R(k, k),
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where k is the order of G. Then if all edges of Kn have been chosen, at least one
player has claimed all edges of a k-clique and hence of a subgraph isomorphic to G.

In this paper we will consider the sim-like game given by F = {Sk+1}, where
k is a fixed positive integer (and Sk+1 denotes the graph K1,k+1), also called the
(k + 1)-star avoidance game. This is one of the simplest and most natural misère
games on a graph. Our main result is the following:

Theorem 2.1. The second player wins the (k + 1)-star avoidance game on Kn

whenever n ≥ 200k.

In Section 2, we give a proof of Theorem 2.1. In Section 3, we conclude the
paper with some remarks and a discussion of related open problems. Throughout
the paper, all graphs in consideration are simple (i.e. do not contain multiple edges
or self-loops) and we assume standard notation from graph theory. In particular,
recall that in a graph G, d(G), Δ(G) and δ(G) denote the average, maximum, and
minimum degrees of a vertex respectively. Furthermore, given a vertex v of G, we
use dG(v) to denote its degree in G. We also abbreviate the first and second player to
PI and PII respectively. A round comprises a move of PI followed by a move of PII.

2 Proof of Theorem 2.1

The aim of this section is to provide a proof of the following theorem:

Theorem 2.1. The second player wins the (k + 1)-star avoidance game on Kn

whenever n ≥ 200k.

We first give a brief overview of our approach. In the context of the (k + 1)-star
avoidance game we define a valid subgraph to be a subgraph of Kn of maximum
degree at most k. We note that a straightforward way for PII to win would be to
build a valid subgraph of size ex(n, Sk+1) =

⌊
nk
2

⌋
. However, in the case when nk

is even, this approach would require careful adjustments to the opponent’s actions
in the final stage of the game, and it turns out that in fact slightly less is needed.
Instead, we contend that PII can build a subgraph of size

⌊
nk−1

2

⌋
with the property

that, in the case when nk is even, there exists an unclaimed edge that extends it to
a valid subgraph. We then use the fact that PI’s last move is uniquely determined
to argue that PII can force a win.

In order to prove the main claim, we define an auxiliary game, called the pair
clipping game, which is strictly speaking not a positional game. However, the strategy
required for PII to win can be viewed as very similar to a fast winning strategy in the
Maker-Breaker perfect matching game. The difference is in the winning criterion,
which is slightly modified according to the needs of our problem. Furthermore, we
require this game to be played on a general graph instead of Kn. We make use of
a winning strategy in the pair clipping game by building layers of almost perfect
matchings until we reach PII’s goal.

Finally, the main part of the proof deals with finding a strategy for the pair
clipping game, which is provided by Theorem 2.2. By the way the game is defined,
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one can think of the graph as representing obstacles for PII, i.e. previously claimed
edges in the context of the star avoidance game. PII essentially employs a greedy
strategy which entails inductively controlling both the average and the maximum
degree of the graph.

We start by defining the auxiliary game. Let G be a graph and let n = |G|. The
pair clipping game on G, PCG(G), is defined as follows. It is played by two players
and consists of rounds of the following form:

PI adds at most one edge which is not already present in G and then PII
removes two non-adjacent vertices from G.

PII wins the game if, after �n−1
2
� rounds, G becomes empty. Note that the meaning

of ‘G’ herein is twofold—PCG(G) denotes an instance of the pair clipping game
played with G as the starting graph, whereas in the description of the rules of the
game, ‘G’ refers to the current state of the graph. To avoid confusion, we will denote
by Gj the state of the graph G after j moves have been made. Thus, G0 is the initial
graph and |G2j | = |G2j+1| = |G0| − 2j holds for all j ≥ 0. Likewise, we will denote
by {uj, vj} the pair of vertices chosen in the j-th turn (or an arbitrary element of
V (Gj−1)

(2) if PI does nothing in the j-th turn).

We define the notion of a nice pair of vertices, which is central to the greedy
strategy. Let G be a graph and let u, v ∈ V (G) be distinct. We say that the pair
{u, v} is nice if uv �∈ E(G) and dG(u)+dG(v) ≥ 2d(G), i.e. uv is not an edge and the
average of the degrees of u and v is at least the average degree of the whole graph.
The following lemma guarantees the existence of such a pair in graphs with not too
large maximum degree:

Lemma 2.1. Let G be a graph with |G| ≥ 2 and Δ(G) ≤ 1
2
|G| − 1. Then G has a

nice pair.

Proof. If |G| = 2, then we are done since G is empty, so suppose |G| ≥ 3. Let
H = G be the complement of G and let n = |G| = |H|. Then note that δ(H) =
n − 1 − Δ(G) ≥ 1

2
n, so by Dirac’s theorem, H has a Hamiltonian cycle v1v2 . . . vn.

Averaging over this cycle, we obtain

1

n

n∑
j=1

dH(vj) + dH(vj+1)

2
=

1

n

n∑
j=1

dH(vj) = d(H).

Hence, there exists j ∈ [n] such that
dH (vj)+dH (vj+1)

2
≤ d(H). But note that vjvj+1 �∈

E(G) and

dG(vj)+dG(vj+1) = (n−1−dH(vj))+(n−1−dH(vj+1)) ≥ 2(n−1)−2d(H) = 2d(G),

so {vj , vj+1} is a nice pair in G. �

We now introduce a certain notion of sparseness of graphs which will be used
in Theorem 2.2. Let f, g : N → R≥0 be functions. Given a graph G, we say G is
g-sparse if d(G) ≤ g(|G|). If G additionally satisfies Δ(G) ≤ f(|G|), we say G is
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(f, g)-sparse. The following lemma is mostly technical and describes the effect of
removing a nice pair on the sparseness of a graph:

Lemma 2.2. Let α > 0 and let g : N → R≥0 be given by g(n) = αn + 1. Let G be
a g-sparse graph with |G| ≥ 4 and suppose that G′ is obtained from G by adding at
most one edge. Let G′′ = G′ − u− v, where uv �∈ E(G′). If dG′(u) + dG′(v) ≥ 2d(G),
then G′′ is g-sparse. In particular, if {u, v} is nice in G′, then G′′ is g-sparse.

Proof. Observe that

d(G′′) =
2e(G′′)
|G′′| =

2e(G′)− 2(dG′(u) + dG′(v))

|G′| − 2
≤ |G| · d(G) + 2− 2 · 2d(G)

|G| − 2

=
(|G| − 4)d(G) + 2

|G| − 2
≤ (|G| − 4)(α|G|+ 1) + 2

|G| − 2
=

α|G|(|G| − 4)

|G| − 2
+ 1

< α(|G| − 2) + 1 = α|G′′|+ 1,

so G′′ is g-sparse. If {u, v} is nice in G′, the hypotheses of the lemma hold since
d(G′) ≥ d(G). �

The next lemma is straightforward and serves mainly for the purposes of the base
cases in the proof of Theorem 2.2:

Lemma 2.3. Let G be a graph. Then PII wins PCG(G) if either

(i) |G| ≥ 3 and G is (1, 1)-sparse or

(ii) |G| ≥ 5 and G is 1-sparse.

Proof. To prove part (i), we use induction on the order of G. If |G| ∈ {3, 4}, then
Δ(G) ≤ 1, so it is easy to see that PII wins. If |G| ≥ 5, then PII removes u1 and any
non-adjacent vertex—this can be done since dG1(u1) ≤ 2 ≤ |G1| − 2. In this way, G2

is (1, 1)-sparse, so we are done by the induction hypothesis.

For part (ii), we also use induction on |G|. Note that we may assume that Δ(G) ≥
2 since otherwise G is (1, 1)-sparse and we are done by part (i). If |G| ∈ {5, 6}, then
it is easy to check that PII can ensure that G2 is (1, 1)-sparse, so part (i) again
applies. If |G| ≥ 7, then PII removes a vertex of degree at least 2 in G1 and any

non-adjacent vertex – this can be done since Δ(G1) ≤ e(G1) ≤ |G1|
2

+1 ≤ |G1|−2. In

this way, we have e(G2) ≤ e(G1)− 2 ≤ |G1|
2

− 1 = |G2|
2
, so G2 is 1-sparse, as desired.

�
Theorem 2.2. Let f, g : N → R≥0 be given by f(n) = n−1

2
, g(n) = n

100
+ 1. Then

PII wins PCG(G) for any (f, g)-sparse graph G.

Proof. We proceed by induction on the order of G. Suppose that G is a graph with
n = |G| and Δ(G) ≤ f(n), d(G) ≤ g(n). If n ∈ {1, 2}, then G is empty, so PII
immediately wins. If n ∈ {3, 4}, then G is (1, 1)-sparse, so we are done by part (i) of
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Lemma 2.3. Hence, we may assume that n ≥ 5. Consider first the case when n < 10.
Then we have

|G| · d(G) ≤ ng(n) ≤ n
( n

100
+ 1

)
= n+

n2

100
< n + 1.

Since |G| · d(G) = 2e(G) is an integer, we in fact have |G| · d(G) ≤ n, whence
d(G) ≤ 1. Therefore, we are done by part (ii) of Lemma 2.3. From now on, we
assume that n ≥ 10. We consider two cases:

Case 1. Δ(G) ≤ f(n− 2)− 1

We have Δ(G1) ≤ Δ(G0) + 1 ≤ f(n − 2) < 1
2
n − 1. By Lemma 2.1, G1 has

a nice pair {u2, v2}, so PII removes {u2, v2}. By Lemma 2.2, G2 is g-sparse, and
hence (f, g)-sparse because Δ(G2) ≤ Δ(G1). Thus, we are done by the induction
hypothesis.

Case 2. f(n− 2)− 1 < Δ(G) ≤ f(n)

In the j-th round, PII acts as follows:

• Remove a vertex of maximum degree in G2j−1 and any non-adjacent vertex.

We first make the following easy observations:

Claim A. For all j ≥ 0 such that PII can make a move in each of the first j + 1
rounds, the following hold:

(i) Δ(G2j) ≤ Δ(G2j+1) ≤ Δ(G2j) + 1;

(ii) e(G2j+2) ≤ e(G2j+1)−Δ(G2j+1) ≤ e(G2j)−Δ(G2j) + 1;

(iii) Δ(G2j+2) ≤ Δ(G2j).

Proof. We note that (i) and (ii) are clear. To see that (iii) holds, note that this
is clear if Δ(G2j+1) = Δ(G2j) because Δ(G2j+2) ≤ Δ(G2j+1). On the other hand,
if Δ(G2j+1) = Δ(G2j) + 1, then any vertex of maximum degree in G2j+1 must be
incident to the edge u2j+1v2j+1, so the claim follows. �

Let r(n) =
⌊
n−1
4

⌋
. For all 1 ≤ j ≤ r(n), note that we have

|G2j−1|−2 = n−2j ≥ n−2r(n) ≥ f(n)+1 ≥ Δ(G0)+1 ≥ Δ(G2j−2)+1 ≥ Δ(G2j−1),

so PII can make a move in the j-th round. Therefore, by the induction hypothesis, it
suffices to show that there exists j ∈ [r(n)] such that G2j is (f, g)-sparse. So suppose
for contradiction that this is not the case.

Claim B. For all 1 ≤ j ≤ r(n), the following hold:

(i) Δ(G2j) > f(n− 2j),

(ii) d(G2j) ≤ g(n− 2j), i.e. G2j is g-sparse.
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Proof. We proceed by induction on j. Note that (i) follows from (ii) combined with
the assumption that G2j is not (f, g)-sparse, so it suffices to prove (ii). Letting s =
dG2j−1

(u2j) + dG2j−1
(v2j), we know that s ≥ Δ(G2j−1) ≥ Δ(G2j−2). By Lemma 2.2,

it suffices to show that s ≥ 2d(G2j−2). To this end, we note that if j = 1, then

s ≥ Δ(G0) ≥ f(n− 2)− 1

2

(†)
≥ 2g(n) ≥ 2d(G0),

as desired. Note that the inequality (†) is equivalent to n ≥ 25
3
, which indeed holds

by assumption. Similarly, if j > 1, then we have

s ≥ Δ(G2j−2)
(i)

≥ f(n− 2j + 2) +
1

2

(∗)
≥ 2g(n− 2j + 2)

(ii)

≥ 2d(G2j−2),

as desired. Note that we used the induction hypothesis in the inequalities (i) and
(ii). Moreover, the inequality (∗) is equivalent to n − 2j + 2 ≥ 25

6
, which holds as

n− 2j + 2 ≥ n− 2 · n−1
4

+ 2 = n+5
2

≥ 15
2
. �

Using part (ii) of Claim A and part (i) of Claim B, we obtain

e(G0) ≥ e(G0)− e(G2r(n)) + Δ(G2r(n)) = Δ(G2r(n)) +

r(n)∑
j=1

(e(G2j−2)− e(G2j))

≥ Δ(G2r(n)) +

r(n)∑
j=1

(Δ(G2j−2)− 1)

≥ f(n− 2r(n)) + f(n− 2)− 1 +

r(n)∑
j=2

(
f(n− 2j + 2)− 1

2

)

≥
r(n)+1∑
j=1

(n
2
− j

)
− 1 =

(r(n) + 1)(n− r(n)− 2)

2
− 1

≥
n
4

(
n− n−1

4
− 2

)
2

− 1 =
n(3n− 7)

32
− 1.

On the other hand, the assumption on the g-sparseness of G0 implies that

e(G0) =
|G0| · d(G0)

2
≤ ng(n)

2
=

n
(

n
100

+ 1
)

2
.

Since n(3n−7)
32

− 1 >
n( n

100
+1)

2
, we obtain the desired contradiction. �

The following notation will be found useful in the proof of Theorem 2.1, and in
fact applies to any sim-like game. For j ∈ {1, 2}, let Hj,t be the graph (V (Kn), Ej,t),
where Ej,t is the set of edges taken by the j-th player up to his/her t-th turn. We also
let Γt be the graph (V (Kn), E1,t ∪E2,t). We will usually abuse notation by omitting
t when the turn is understood.
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Using this notation, we have that Δ(Hj) ≤ k for j ∈ {1, 2} and hence Δ(Γ) ≤ 2k
holds before any player loses. In particular, the game cannot be a draw for n ≥ 2k+2.

Proof of Theorem 2.1. Let n, k be positive integers such that n ≥ 200k and consider
the (k + 1)-star avoidance game on Kn. Suppose for contradiction that PII doesn’t
win the game. The following claim is key to the proof:

Claim. PII can ensure that eventually one or two vertices in H2 have degree k − 1
while the rest have degree k, and additionally the vertices of degree k − 1 span no
edges in Γ.

We first show that the Claim implies the desired result. Note that PI certainly
loses on his/her

(�nk
2
�+ 1

)
-st move. Let Φ denote the strategy provided by the

Claim. If nk is odd, PII follows Φ and hence wins. So suppose nk is even. Then PII
follows Φ for the first nk

2
− 2 rounds. After PI’s

(
nk
2
− 1

)
-st move, let e1, e2 denote

PII’s next move according to Φ and the pair of vertices that would have degree
k − 1 in H2 if PII claimed e1, respectively. Note that PI’s next move is fixed at this
moment, so if it is among {e1, e2}, PII simply wins by claiming it. Otherwise, PII
claims e1 and e2 in that order and hence wins.

Proof of Claim. PII’s strategy is divided into k stages. For all j, at the beginning of
the j-th stage, at most 2 vertices inH2 will have degree j and the rest will have degree
j−1. We will show by induction on j that PII will be able to maintain this property.
So fix some j ∈ [k] and throughout the j-th stage, let S = {v ∈ V (H2) | dH2(v) =
j − 1}. PII follows the winning strategy for PCG(G), where G = Γ[S]. By Theorem
2.2, PII is able to do so because |G| ≥ n−2 ≥ 200k−2 and Δ(G) ≤ k+j−1 ≤ 2k−1
hold at the beginning. Consequently, the conclusion is immediate in the case when
j = k. Otherwise, if j < k, then as long as S is non-empty, PII chooses a vertex in
S and a vertex of degree j in H2. PII can do so since Δ(Γ) ≤ 2k and there are at
least n− 2 ≥ 200k − 2 vertices of degree j in H2. This results in at most 2 vertices
of H2 having degree j + 1 and the rest having degree j, as desired. �

3 Concluding remarks and open problems

As a consequence of the main result, there exists a function h : N → N with the
property that h(k) is the least positive integer n0 such that the (k+1)-star avoidance
game on Kn is a PII win for all n ≥ n0. Hence, Theorem 2.1 can be rephrased as
the assertion that h(k) ≤ 200k holds for all positive integers k. It is clear that this
bound is not optimal, in particular it is possible to verify with the aid of a computer
that h(1) = 3 and h(2) = 5. We are also aware that certain modifications of the
presented approach may lead to replacing 200 by a smaller constant. As has already
been remarked in Section 2, the game is not a draw for n ≥ 2k + 2. Hence, we find
it natural to ask the following question:

Question 3.1. Is it true that h(k) ≤ 2k + 2 for all positive integers k?

We have little intuition as to the correct answer to this question. In particular,
we doubt that our approach can be modified so as to settle this problem. The reason
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for this is that Question 1 having an affirmative answer would probably have to do
with the game having a lot of symmetries rather than it being very sparse, in the
sense that ex(n, Sk+1) is much smaller than

(
n
2

)
as n grows large. It would also be

interesting to find a complete characterisation of the outcomes of the game:

Question 3.2. For each pair of positive integers (k, n), is the (k+1)-star avoidance
game on Kn a PI win, a PII win or a draw?

A related problem is to explore sim-like games with other graphs in place of Sk+1.
A good starting point would be to pursue similar results for certain classes of sparse
graphs, for example trees, in particular paths. Finally, no example of a sim-like game
that is a PI win is known. The following question of Johnson, Leader and Walters
(see [5]) remains open:

Question 3.3. Does there exist a sim-like game that is a PI win?
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