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Abstract

A Gallai coloring is a coloring of the edges of a complete graph without
rainbow triangles, and a Gallai k-coloring is a Gallai coloring that uses at
most k colors. Given an integer k£ > 1 and graphs Hy, ..., Hy, the Gallai-
Ramsey number GR(Hj, ..., Hy) is the least integer n such that every
Gallai k-coloring of the complete graph K, contains a monochromatic
copy of H; in color i for some i € {1,...,k}. When H = H; = --- = Hj,
we simply write GRy(H). We continue to study Gallai-Ramsey numbers
of even cycles and paths. Foralln > 3and k > 1, let G; = P»;,3 be a path
on 2i + 3 vertices for all i € {0,1,...,n — 2} and G,,_1 € {Cop, Popi1}-
Let i; € {0,1,...,n—1} for all j € {1,...,k} with 43 > ip > -+ > .
Song recently conjectured that GR(G;,,...,G;,) = |Gy | + Z§:2 i;. This
conjecture has been verified to be true for n € {3,4} and all £ > 1. In this
paper, we prove that the aforementioned conjecture holds for n € {5,6}
and all & > 1. Our result implies that for all £ > 1, GRi(Cy,) =
GRr(Py,) = (n—1)k+n+1forn € {56} and GR,(Py,11) = (n—1)k+
n+2forl <n<6.
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1 Introduction

In this paper we consider graphs that are finite, simple and undirected. Given a
graph G and a set A C V(G), we use |G| to denote the number of vertices of G,
and G[A] to denote the subgraph of G obtained from G by deleting all vertices in
V(G)\A. A graph H is an induced subgraph of G if H = G[A] for some A C V(G).
We use P,, C, and K, to denote the path, cycle and complete graph on n vertices,
respectively. For any positive integer k, we write [k] for the set {1,... k}.

Given an integer £ > 1 and graphs Hy,..., Hy, the classical Ramsey number
R(Hy, ..., Hy) is the least integer n such that every k-coloring of the edges of K,
contains a monochromatic copy of H; in color ¢ for some i € [k]. Ramsey numbers
are notoriously difficult to compute in general. In this paper, we study Ramsey
numbers of graphs in Gallai colorings, where a Gallai coloring is a coloring of the
edges of a complete graph without rainbow triangles (that is, a triangle with all its
edges colored differently). Gallai colorings naturally arise in several areas including:
information theory [17]; the study of partially ordered sets, as in Gallai’s original
paper [12] (his result was restated in [15] in the terminology of graphs); and the study
of perfect graphs [5]. There are now a variety of papers which consider Ramsey-type
problems in Gallai colorings (see, e.g., [2, 3, 4, 6, 10, 13, 14, 16, 21, 24]). These works
mainly focus on finding various monochromatic subgraphs in such colorings. More
information on this topic can be found in [9, 11].

A Gallai k-coloring is a Gallai coloring that uses at most k colors. Given an integer
k > 1and graphs Hy, ..., Hy, the Gallai-Ramsey number GR(H, ..., Hy,) is the least
integer n such that every Gallai k-coloring of K, contains a monochromatic copy of
H; in color i for some i € [k]. When H = H; = -+ = Hy, we simply write GR(H)
and Ry(H). Clearly, GRy(H) < Ri(H) for all k > 1 and GR(H,, Hy) = R(H,, H>).
In 2010, Gyarfas, Sarkozy, Seb6 and Selkow [14] proved the general behavior of
GRy(H).

Theorem 1.1 ([14]) Let H be a fized graph with no isolated vertices and let k > 1
be an integer. Then GRy(H) is exponential in k if H is not bipartite, linear in k if
H s bipartite but not a star, and constant (does not depend on k) when H is a star.

It turns out that for some graphs H (e.g., when H = C3), GRy(H) behaves nicely,
while the order of magnitude of Ry (H) seems hopelessly difficult to determine. It is
worth noting that finding exact values of GRy(H) is far from trivial, even when |H |
is small. We will utilize the following important structural result of Gallai [12] on
Gallai colorings of complete graphs.

Theorem 1.2 ([12]) For any Gallai coloring ¢ of a complete graph G with |G| > 2,
V(G) can be partitioned into nonempty sets Vi,...,V, with p > 2 so that at most

two colors are used on the edges in E(G)\(E(G[V1])U---U E(G[V,])) and only one
color is used on the edges between any fizved pair (V;,V;) under c.

The partition given in Theorem 1.2 is a Gallai-partition of the complete graph
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G under c. Given a Gallai-partition Vi, ..., V, of the complete graph G under c, let
v; € V; for all 7 € [p| and let R := G[{v1,...,v,}]. Then R is the reduced graph of
G corresponding to the given Gallai-partition under c¢. Clearly, R is isomorphic to
K,. By Theorem 1.2, all edges in R are colored by at most two colors under c. One
can see that any monochromatic H in R under ¢ will result in a monochromatic H
in G under c. It is not surprising that Gallai-Ramsey numbers GRy(H) are closely
related to the classical Ramsey numbers Ry(H ). Recently, Fox, Grinshpun and Pach
posed the following conjecture on GRy(H) when H is a complete graph.

Conjecture 1.3 ([9]) For all integers k > 1 and t > 3,

GRy(K,) = (Ry(K;) — 1)F2 +1 ) sz z:s even
(t — 1)(Ro(K,) — 1)E=D2 11 if k is odd.

The first case of Conjecture 1.3 follows from a result of Chung and Graham [6]
from 1983. A simpler proof of this case can be found in [14]. The case when ¢ = 4
was recently settled in [18]. Conjecture 1.3 remains open for all ¢ > 5. The next open
case, when t = 5, involves Ry(K5). Angeltveit and McKay [1] recently proved that
Ry(K5) < 48. 1t is widely believed that Ro(K5) = 43 (see [1]). It is worth noting
that Schiermeyer [20] recently observed that if Ry(Kj5) = 43, then Conjecture 1.3
fails for K5 when k = 3. More recently, Gallai-Ramsey numbers of odd cycles on at
most 15 vertices have been completely settled by Fujita and Magnant [10] for Cs,
Bruce and Song [4] for C7, Bosse and Song [2]| for Cy and C;, and Bosse, Song and
Zhang [3] for C3 and Cy5. Very recently, the exact values of GRy(Co,41) for n > 8
has been solved by Zhang, Song and Chen [23]. We summarize these results below.

Theorem 1.4 ([2, 3, 4, 23]) Foralln >3 and k > 1, GRy(Coyiq) =n - 2F + 1.

In this paper, we continue to study Gallai-Ramsey numbers of even cycles and
paths. For all n > 3 and k& > 1, let G,_1 € {Cop, Poni1}, G; := Popg for all
ie€{0,1,...,n—2}, and i; € {0,1,...,n — 1} for all j € [k]. We want to determine
the exact values of GR(G,,,...,G;,). By reordering colors if necessary, we assume
that iy > - -+ > ;. Song and Zhang [22] recently proved that

Proposition 1.5 ([22]) For alln >3 and k > 1,

k
GR(G,....,Gi) > |Gy |+ iy,
j=2

In the same paper, Song [22] further made the following conjecture.

Conjecture 1.6 ([22]) Foralln >3 and k > 1,

k
GR(Gy,.....Gy) =Gy, | + Y .
j=2
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To completely solve Conjecture 1.6, one only needs to consider the case G,,_; =

Cap.

Proposition 1.7 ([22]) Foralln > 3 and k > 1, if Conjecture 1.6 holds for G,,_1 =
Csy, then it also holds for G,y = Popiq.

Let M,, denote a matching of size n on 2n vertices. As observed in [22], the truth
of Conjecture 1.6 implies that GRy(Ca,) = GR(Pay,) = GRi(M,) = (n—1)k+n+1
foralln >3 and k > 1, and GRy(Pant1) = (n—1)k+n+2foralln > 1and k > 1.
It is worth noting that Dzido, Nowik and Szuca [7] proved that R3(Cy,) > 4n for all
n > 3. The truth of Conjecture 1.6 implies that GR3(Cy,) = 4n — 2 < R3(Cy,) for
all n > 3. Conjecture 1.6 has recently been verified to be true for n € {3,4} and all
k>1.

Theorem 1.8 ([22]) For n € {3,4} and all k > 1, let G; = Pyi3 for all i €
{0,1,...,n =2}, Gy = Cyyy, and i; € {0,1,...,n — 1} for all j € [k] with iy >
<o >4, Then

k
GR(Gy,,...,Gy) =G|+ > iy,
j=2
In this paper, we continue to establish more evidence for Conjecture 1.6. We
prove that Conjecture 1.6 holds for n € {5,6} and all k£ > 1.

Theorem 1.9 Forn € {5,6} and all k > 1, let G; = Py;y3 for all i € {0,1,...,
n—2}, Goog = Cyy, and i; € {0,1,...,n — 1} for all j € [k] with iy > -+ > iy.
Then

k
GR(Gyy.....Gy) =Gy | + ) .
j=2

We prove Theorem 1.9 in Section 2. Applying Theorem 1.9 and Proposition 1.7,
we obtain the following.

Corollary 1.10 Let G; = Py;y3 for alli € {0,1,2,3,4,5}. For every integer k > 1,
leti; € {0,1,2,3,4,5} for all j € [k] with iy > --- > ix. Then

k
GR(Gy,,...,Gy) =G|+ > iy,
j=2

Corollary 1.11 For all k > 1,
(a) GRi(Papi1) = (n— D)k +n+2 for alln € [6].
(b) GR(Cs,) = GR(Py,) = (n— 1)k +n+1 forn € {5,6}.

Finally, we shall make use of the following results on 2-colored Ramsey numbers
of cycles and paths in the proof of Theorem 1.9.
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Theorem 1.12 ([19]) For alln > 3, Ry(Cy,) = 3n — 1.

Theorem 1.13 ([8]) For all integers n,m satisfying 2n > m > 3, R(P,,,Cs,) =
2n + 7] — 1.

2 Proof of Theorem 1.9

We are ready to prove Theorem 1.9. Let n € {5,6}. By Proposition 1.5, it suffices
to show that GR(G,,...,Gy,) < |Gy |+ 35, ;.

By Theorem 1.8 and Proposition 1.7, we may assume that iy = n—1. Then |G;,| =
2n. By Theorem 1.12 and Theorem 1.13, we have GR(G;,,Gy,) = R(Gy,,Gy,) =
2n + is. So we may assume k > 3. Let N := |G, | + Z?:z i;. Then N > 2n. Let G
be a complete graph on N vertices and let ¢ : E(G) — [k] be any Gallai coloring of
G using at least three colors. We next show that GG contains a monochromatic copy
of Gy, in color j for some j € [k]. Suppose G contains no monochromatic copy of G,
in color j for any j € [k] under ¢. Such a Gallai k-coloring ¢ is called a bad coloring.
Among all complete graphs on N vertices with a bad coloring, we choose G with N
minimum, taken over alln —1 >4, > --- >4, > 0.

By Theorem 1.2, we may consider a Gallai-partition of G with parts Ay,..., A,
where p > 2. We may assume that |A;| > --- > |A4,] > 1. Let R be the reduced
graph of G with vertices ay, ..., a,, where a; € A; for all i € [p]. By Theorem 1.2,
assume that the edges of R are colored either red or blue. Since ¢ uses at least three
colors, we see that R # G and so |A;| > 2. By abusing the notation, we use i, to
denote i; when the color j is blue. Similarly, we use i, (respectively, i,) to denote i;
when the color j is red (respectively, green). Let

Ay = {a; € {as,...,a,} | a;a; is colored blue in R},
A, = {a; € {as,...,a,} | aja; is colored red in R}.

Then [Ay[+[A,| =p—1. Let B :=U,,c4, Ai and R := UajeAr A;. Then |A|+ |R|+
|B| = N and max{|B|, |R|} # 0 because p > 2. Thus G contains a blue P; between
B and A, or a red P; between R and A;, and so max{i,i.} > 1. We next prove
several claims.

Claim 1. Let r € [k] and let sq,. .., s, be nonnegative integers with s;+---+s, > 1.
If i, > s1,...,4;, > s, for colors ji,...,J, € [k], then for any S C V(G) with
|S| > |G| = (s1+ -+ s,), G[S] must contain a monochromatic copy of Gi;q in color
jg for some j, € {j1,...,j.}, where i =ij, — s,.

Proof. Let i}, :=ij, —s1,...,7}, =1, — sy, and i} := i; for all j € [K]\{j1,...,j-}.
Let ;== max{d} | j € [k]}. Then ij <i;. Let N* := |G| + [(325-,4;) — 4;]. Then
N* >3 and N* < N —(s; +---+s,) < N because s; + -+ + s, > 1. Since
|S| > N —(s1+---+s,) > N* and G[S] does not have a monochromatic copy of G,
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in color j for all j € [k]\{Jj1, ..., 7} under ¢, by minimality of N, G[S] must contain
a monochromatic copy of Gi’]’f in color j, for some j, € {j1,...,jr}- -
Jq

Claim 2. |A;| < n—1, and so G does not contain a monochromatic copy of a graph
on |A;| + 1 < n vertices in color m, where m € [k] is a color that is neither red nor
blue.

Proof. Suppose |A;| > n. We first claim that i, > |B| and i, > |R|. Suppose
iy, < |B] —1ori, <|R|—1. Then we obtain a blue G;, using the edges between
B and Aj, or a red G;, using the edges between R and A;, a contradiction. Thus
iy > |B| and i, > |R|, as claimed. Let i} := 4, — |B| and i} := 4, — |R|. Since
|A;] = N — |B| — |R|, by Claim 1 applied to i, > |B|, i, > |R| and A;, G[A;] must
have a blue Gz‘g or a red Gy, say the latter. Then 4, > ¢;. Thus |R| > 0 and G is
a red path on 2:) + 3 vertices. Note that

k
A1l =[Gyl + )i — Bl ~ |R|
j=2

L [1Gu i [BI = R i >
~ Gy, | +i, — |Bl = |R| if i < i,

> )G+ i — |R| if i, >y
2,4+ 2+4i, — |B| = |R| > if + (2i, +3) — |R| i i, < i,
Then
|AL| = |Giz| > |G| = |Giz| = |R]
_ )3 +2i) = (3+2i) — |R| = [R] if i, <n—2
|l @2+2i,) - (3+2i")—|R|=|R| -1 ifi,=n—1

But then G[A;UR] contains a red G;, using the edges of the G;» and the edges between
A\V(G;:) and R, a contradiction. This proves that |[A;| < n — 1. Next, let m € [k]
be any color that is neither red nor blue. Suppose GG contains a monochromatic copy
of a graph, say J, on |A;| + 1 vertices in color m. Then V(J) C A, for some ¢ € [p].
But then |Ay| > |A1] + 1, contrary to |A;] > | Ay -

For two disjoint sets U, W C V(G), we say U is blue-complete (respectively, red-
complete) to W if all the edges between U and W are colored blue (respectively, red)
under ¢. For convenience, we say u is blue-complete (respectively, red-complete) to
W when U = {u}.

Claim 3. min{|B|,|R|} > 1, p > 3, and B is neither red- nor blue-complete to R
under c.

Proof. Suppose B =0 or R = (). By symmetry, we may assume that R = (). Then
B # () and so i, > 1. By Claim 2, |A;] < n—1 < 5 because n € {5,6}. Then
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|A1| < ip+4. If 4, < |A;| —1, then i, < n—2 by Claim 2. But then we obtain a blue
G, using the edges between B and A;. Thus ¢, > |A;|. Let i; =i, — |A;|. By Claim
1 applied to i, > |A;| and B, G[B] must have a blue G;:. Since |B| > n+1+1;, we
see that G contains a blue G;,, a contradiction. Hence R # (), and similarly B # 0,
and so p > 3 for any Gallai-partition of G. It follows that B is neither red- nor
blue-complete to R, otherwise {B U Ay, R} or {B, RU A;} yields a Gallai-partition
of G with only two parts. -

Claim 4. Let m € [k] be a color that is neither red nor blue. Then i,, <n —4. In
particular, if 7,, > 1, then G contains a monochromatic copy of P; .1 in color m
under c.

Proof. Note that i,, < n — 4 is is trivially true when i,, = 0 because n € {5,6}
and n —4 > 1. Suppose i,, > 1. By Claim 2, |A;] < n — 1 and G contains no
monochromatic copy of P4,|41 in color m under c. Let i} := i, — 1. By Claim 1
applied to 7,, > 1 and V(G), G must have a monochromatic copy of G- in color
m under ¢. Since n € {5,6}, |[A;] < n —1 and G contains no monochromatic copy
of P4 41 in color m, we see that 47 < mn —5. Thus i, < n —4 and G contains a
monochromatic copy of Py;, 41 in color m under c if 7,, > 1. -

By Claim 3 and the fact that |A;] > 2, G has a red P; and a blue P;. Thus
min{iy, i, } > 1. By Claim 4, max{i,, i, } =iy =n — 1. Then |G| = |G}, | +Z§:2 i; >
2n 4+ 1. For the remainder of the proof of Theorem 1.9, we choose p > 3 to be as
large as possible.

Claim 5. min{|B|, |R|} <n —1if |[A;| > n— 3.

Proof. Suppose |A;| > n—3 but min{|B|, |R|} > n. By symmetry, we may assume
that |B| > |R| > n. Let B := {x1,22,...,25} and R = {y1,vy2,...,yr}. Let
H := (B, R) be the complete bipartite graph obtained from G[B U R] by deleting all
the edges with both ends in B or in R. Then H has no blue P; with both ends in B
and no red P; with both ends in R, else we obtain a blue (5, or a red (5, because
|A;] > n — 3. We next show that H has no red Kj 3.

Suppose H has a red K33. We may assume that H[{z1, 22, 23,1, Y2, y3}] is a red
K33 under c. Since H has no red P; with both ends in R, {y4,...,yr} must be
blue-complete to {xi,z9,23}. Thus H[{x1,x2,x3,ys,ys5}] has a blue P5 with both
ends in {xy, 29,23} and H[{x1,z2,x3,y1,92,y3}] has a red Ps; with both ends in
{v1,v2,y3}. If |A1| > n — 2 or min{ip, i} < n — 2, then we obtain a blue G;, or a
red G;,, a contradiction. It follows that |A;] = n — 3 and ¢, = i, = n — 1. Then
|G =G4 |+ 35,05 > 2n+(n—1) = 3n—1. Thus [BUR| = |G| —|As| > 2n+2. If
|R| > 6, then {y4, ys, ys} must be red-complete to {z4, x5, 26}, else H has a blue P;
with both ends in B. But then we obtain a red Cy, in G. Thus |R| =5, n =5, and
so |B| > 7. Let Ay = {ay,a}}. For each j € {4,5,6,7} and every W C {xy, x9, 3}
with |[W]| = 2, no z; is red-complete to W under ¢, else, say, x4 is red-complete
to {z1,x2}, then we obtain a red Cyg with vertices ayi, y1, %1, T4, T, Y2, T3, Y3, af, Ys
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in order, a contradiction. We may assume that zsxzq, 529 are colored blue. But
then we obtain a blue Cyy with vertices aq, x4, 1, Y4, 3, Y5, T2, 5, a}, ¢ in order, a
contradiction. This proves that H has no red Kj 3.

Let X = {z1,29,...,25} and Y = {y1,v2,...,y5}. Let H, and H, be the
spanning subgraphs of H[X U Y] induced by all the blue edges and red edges of
H[X UY] under ¢, respectively. By the Pigeonhole Principle, there exist at least
three vertices, say x, %9, s, in X such that either dg,(z;) > 3 for all i € [3] or
dy,(z;) > 3 for all © € [3]. Suppose dg,(z;) > 3 for all i € [3]. We may assume
that x; is red-complete to {y1,ys,y3}. Since |Y| = 5 and H has no red P; with
both ends in R, we see that Ny, (z1) = Npy,(x2) = Ng,(23) = {y1,v2,y3}. But
then H[{x1,x2,23,y1,y2,y3}] is a red K3, contrary to H has no red K33. Thus
dp,(x;) > 3 for all i € [3]. Since |Y| = 5, we see that any two of x1, 29, 23 have a
common neighbor in Hy,. Furthermore, two of x1, xs, x3, say x1, x2, have at least two
common neighbors in Hy. It can be easily checked that H has a blue P5; with ends in
{1, 9, 23}, and there exist three vertices, say y1, ¥, y3, in Y such that y;x; is blue for
alli € [3] and {xy4, ..., x|p} is red-complete to {y1, y2, ys}. Then H has a blue Ps with
both ends in {z1, 22, z3} and a red P5 with both ends in {yy, y2,y3}. If |A;] > n—2or
min{i, i, } < n—2, then we obtain a blue G;, or ared G;,, a contradiction. It follows
that [A;] =n—3and iy =4, =n—1. Thus |[BUR| > 14+n+i,+i, — |A1] = 2n+2.
Then |B| > n+ 1 and so H[{z4, x5, 6, Y1, Y2, Y3 }] is a red K33, contrary to the fact
that A has no red K3 . -

Claim 6. |A;| > 3.

Proof. Suppose |A;| = 2. Then G has no monochromatic copy of P3 in color j for
any j € {3,...,k} under c. By Claim 4, i3 = --- =4y =0and so N = 1+n+1i,+i,.
We may assume that |A;| = -+ = |4 = 2 and |A¢q| = -+ = |A4,| = 1 for some
integer t satisfying p > t > 1. Let A; = {a;,b;} for all ¢ € [t]. By reordering if
necessary, each of Ay,..., A; can be chosen as the largest part in the Gallai-partition

Ay A, A, of G For all i € [t], let

A} = {a; € V(R) | aja; is colored blue in R},
Al :={a; € V(R) | aja; is colored red in R}.

Let B' := UajeA;; Aj and R := Aj. Then |BY| + |R'| = 2n — 2+ min{i, i, } =

n—1+1,+1,.. Let

a; EA,Z;

Ep = {Ojlbz | 1€ [t] and |RZ‘ < ‘BZ|},
Er = {a;b; | i € [t] and |B'| < |R|},
Eg :={ab; | i € [t] and |B"| = |R|}.
Let ¢* be obtained from c¢ by recoloring all the edges in Eg blue, all the edges

in Er red, and all the edges in Fg either red or blue. Then all the edges of G are
colored red or blue under ¢*. Note that |G| = n+ 1+ 14, + 1, = R(G,,,G,,.). By
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Theorem 1.12 and Theorem 1.13, we see that G must contain a blue G;, or ared G;,
under ¢*. By symmetry, we may assume that G has a blue H := G, under c¢*. Then
H contains no edges of Fr but must contain at least one edge of Ep U Eq, else we
obtain a blue H in G under c¢. We choose H so that |[E(H) N (EpU Eg)| is minimal.
We may further assume that a;b; € E(H) N (Ep U Eg), so that |B'| > |RY|. Since
|B| + |R'| = 2n — 2 + min{éy,4,} > 2n — 2 + 1, we see that |B'| > n > 5 and
|IR' <n-—1+ L%j < 7. So iy, > 2. By Claim 5, |[R'| < 4 when n = 5. Let
W =V(G)\V(H).

We next claim that 7, = n — 1. Suppose i, <n—2. Then H = Ps;, 43, 4, =n—1,
|G| = 2n+1i, and |W| = 2n—3—i, > n—1. Let @y, 29, . .., X9, 13 be the vertices of H
in order. We may assume that x,z,,1 = a1b; for some ¢ € [2i,+2]. If a vertex w € W
is blue-complete to {a1, b; }, then we obtain a blue H' := G;, under ¢* with vertices
L1y Ly W, Loy, - - ., Tojyro 0 order (when ¢ # 2i, + 2) or xq1, %9, ..., Lo, 42, W in
order (when ¢ = 2i, + 2) such that |E(H') N (Ep U Eg)| < |[E(H) N (Ep U Eg)],
contrary to the choice of H. Thus no vertex in W is blue-complete to {aj, by} under
¢ and so W must be red-complete to {ai, b} under c¢. This proves that W C R
We next claim that ¢ = 1 or £ = 2i, + 2. Suppose ¢ € {2,...,2i, + 1}. Then
{z1, x9;,+3} must be red-complete to {a, b}, else, we obtain a blue H' := G, with
vertices Ty, ..., T1, g1, - .-, T2iy+3 OF T1, ..., Ty, Ty 43, Lot 1, - - -, T2, 12 i order under
¢* such that |[E(H') N (Ep U Eg)| < |E(H)N (Eg U Eg)|. Thus {x1, 29,3} € R!
and so W U {1, x9;, 13} is red-complete to {ay, by }. If n =5, then 4 > |R'| > |[W U
{x1, 22,43} > 6, a contradiction. Thus n =6 and 7 > |R'| > |WU{zy, z2;, 13} > 7.
It follows that R' NV (H) = {1, xa;,+3} and thus either {zy_2, x,_1} or {zp42, xe13}
is blue-complete to {a;,b1}. In either case, we obtain a blue H' := G;, under c¢*
such that |E(H") N (Ep U Eg)| < |E(H)N (Ep U Eg)|, a contradiction. This proves
that £ = 1 or £ = 2i, + 2. By symmetry, we may assume that £ = 1. Then zix3 is
colored blue under ¢ because A; = {aq,b;}. Similarly, for all j € {3,...,2i, + 2},
{zj,xj41} is not blue-complete to {aj,b;}, else we obtain a blue H' := G, with
vertices Ty, %j, ..., T2, Tji1, ..., Te,+3 i order under ¢* such that |E(H') N (Ep U
Eg)| < |[E(H)N(EUEQ)|. Tt follows that 2, € R' and so |[R*N{xy, ..., Toi13}] > is.
Then |RY > |[W|+ |[R' N {xy, ..., 22,43} > 2n — 3,80 4 > |R' > 7 (when n = 5)
or 7> |R' > 9 (when n = 6), a contradiction. This proves that i, = n — 1.

Since i, = n — 1, we see that H = Cy,. Then |G| = 2n + i, and so |W| = i,.
Let ay,xq,...,29,_2,b1 be the vertices of H in order and let W := {wy,... , w; }.
Then z1b; and ajxg, o are colored blue under ¢ because A; = {ay,b1}. Suppose
{zj, 41} is blue-complete to {ai, b} for some j € [2n — 3]. We then obtain a blue
H' := Oy, with vertices ay,x1,...,2;,b1, Tay_2, ..., 241 in order under ¢* such that
|[E(H") N (Ep U Eg)| < |E(H) N (Eg U Eg)|, contrary to the choice of H. Thus,
for all j € [2n — 3], {z;,z;+1} is not blue-complete to {ai, b }. Since {x1, x, o} is
blue-complete to {a;,b;} under ¢, we see that xo, 19, 3 € R', and so 4 > |RY| >
IR'*!NV(H)| > 4 (when n = 5) and 7 > 5+ |%] > R > |[R*NV(H)| > 5
(when n = 6). Thus, when n = 5, the distinct cases are R' = {wy, 24, 75,27} or
R' = {xy, 24,76, 27}, as depicted in Figure 1(a) and Figure 1(b); when n = 6, we
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have R*! NV (H) = {xq, 29} U{x; | j € J}, where J € {{4,6,8}, {4,6,7}, {3,4,6,7},
{3,5,6,7}, {4,5,6,7}, {4,6,7,8}, {3,5,7,8}, {3,5,6,8}, {3,4,5,6,7}, {3,4,5,6,8},
{3,4,5,7,8}}.

a b ar b
T xs X1 xrg
D) Ty T2 L7
T3 Tg T3 L6
T4 Ts X4 Is

(a) (b)
Figure 1: Two cases of R! when i, = 4 and n = 5.

Since |R'| > n—1 and R! is red-complete to {a;,b; } under ¢, we see that 4, > 2.
Let W' := W\R'. Then W’ C B'. Since |B'| > | R, it follows that [W'| > [%] > 1.
We may assume W' = {wy, ..., ww}. We claim that E(H)N (EpU Eg) = {a1b}.
Suppose, say asby € E(H)N(EpUEg). Since {z1,x2} # A; and {zo,_3, Ton_2} # A;

for all i € [t], we may assume that ay = x; and by = z;1; for some j € {2,...,2n—4}.
Then x; 1241 and ;242 are colored blue under c¢. But then we obtain a blue
H' := Cy, under c¢* with vertices a1, 1, ...,2;-1, %41, ..., Ton—2, by, w; in order such

that |[E(H')N(Ep U Eg)| < |E(H)N (EpU Eg)|, contrary to the choice of H. Thus
E(H)N(EgUEg) ={aib}, as claimed.

(¥) Let w € W'. For j € {1,2n—2}, if {z;, w} # A, for all i € [t], then z;w is colored
red. For j € {2,...,2n — 3}, if {z;,w} # A, for all i € [t] and x;_5 or ;45 € B,
then z;w is colored red.

Proof. Suppose there is some j € [2n — 2] such that {z;, w} # A; for all i € [t],
and x;_o or x40 € BYif j € {2,...,2n — 3}, but x;w is colored blue. Then
we obtain a blue Cy, under ¢ with vertices aj,w,xq,...,29, o (When j = 1) or
a1,%1, ..., Ton o, w (when j = 2n — 2) in order if j € {1,2n — 2}, and with vertices
D1y Ton—2, Tan—3, - - -, Tjy2,01,W, Tj, ..., x1 in order (when x5 € B') or ar,zy,...,
Tj_9,b1, W, x ...,y o in order (when x;_» € B)if j € {2,...,2n — 3}, a contra-
diction. -

(xx) For j € [2n — 4], z;z 42 is colored red if {x;, x;40} # A; for all i € [t].

Proof. Suppose x;x; is colored blue for some j € [2n —4]. Then we obtain a blue
Uy, under ¢ with vertices a1, x1,..., 2, Zjt2, ..., Top—2, b1, wy in order, a contradic-
tion. -

We claim that n = 6. Suppose n = 5. Then R' = {z9, 74,24, 25}, where
(e, 8) € {(5,7),(7,6)}. Thus W' =W and z411,Za—2 € B'. Since {z,_1,w;} # A;
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and {z,,w;} # A; for all w; € W and i € [t], it follows from (%) that {z,—1,%s}
must be red-complete to W under ¢. Then for any w; € W, {z,—0,w;} # A,
and {xnq1,w;} # A; for all ¢ € [t] since z4_124—2 and z,x441 are colored blue
under ¢. Thus {z,_9, 241} is red-complete to W by (x). So {Za—2,Ta—1,Tas Tat1}
is red-complete to W under ¢. But then we obtain a red Py under ¢ (when i, <
3) with vertices w3, a1, Zo_1,b1, Ta, W1, To_2, W, Tar1 in order, or a red Cpy under
¢ (when i, = 4) with vertices ay, xo,b1,To_1, W1, To—2, Wa, Totr1, W3, T, in order, a
contradiction. This proves that n = 6, as claimed. By (%), we may assume x; is
red-complete to W'\w; and x1q is red-complete to W'\wy| because |A;| = 2. Recall
that 5 < |R* NV (H)| < 7 when n = 6. We next consider three cases based on the
value of |[R* NV (H)|.

Case 1. |[R'NV(H)| = 5. Then R'NV(H) = {xa, 24, %6, Ta, T3}, Where (o, ) €
{(9,8),(7,9)}. Then xpi1,20-2 € B Since {z,_1,w;} # A; and {z,,w;} # A,
for all w; € W' and @ € [t], {za—1, 2} must be red-complete to W’ under ¢ by (x).
Then for any w; € W', {xq_2,w;} # A; and {z441,w;} # A; for all i € [t] since
To1Ta—2 and TaZqy1 are colored blue under ¢. Thus {x4 29,2411} is red-complete
to W' by (x). So {Za—2,Ta—1,Ta, Tat1} is red-complete to W’ under c¢. We see that
G has a red P; with vertices x,_1, w1, Ty, a1, T2, b1, x4 in order, and so i, > 3 and
|[W'| > (%} > 2. Moreover, x,_1Zay1 and x,_ox, are colored red by (xx). Then G
has a red Py with vertices x1, ws, o1, Tat1, W1, Ta—2, Ta, A1, T2, by, x4 in order under
c. Thus i, = 5 and so [W'| > [%] > 3. Since |A;| = 2 and 2,6 € B*, by (*), we may
assume ,_4 is red-complete to W'\wy. But then we obtain a red Cjy with vertices
A1, Loy, Ta—2, W1, T d, W3, T1, W, Tat1, Ta—1, b1, T2 in order under ¢, a contradiction.

Case 2. |R'NV(H)| = 6. We claim that 4, > 3. Suppose i, = 2. Then
|B'| = |R' = 6 and G[B' U R'] contains no red P3; with at least one end in
R!, else we obtain a red P;. By Claim 3, B! is not blue-complete to R!. Let
r € B' and y € R! such that zy is colored red. Then z is blue-complete to
R'\y and there exists at most one vertex w € B! such that x is blue-complete
to B'\{x,w} because G[B' U R'| contains no red P; with at least one end in
RY. Let i} = 1, 4} := 0, 7 := 0 for all colors j other than red and blue. Let
N* = |G| + [(35_,i%) — if] = 5. Observe that |[R'\y| = 5 = N*, by minimal-
ity of N, G[R"\y] contains a blue Ps. Let y1,%s,...,ys be the vertices of the P;
in order. Then y is blue-complete to {y;,y;+1} for some j € [4] and 21 € B'\z is
not red-complete to {yi,ys} because G[B' U R!| contains no red P; with at least
one end in R' and |A;| = 2. So we may assume zy; is colored blue. But then we
obtain a blue Ci9 under ¢ with vertices a1, z1,y1,. .., Y, ¥, Yjt1s - - -, Y5, T, T2, by, T3 in
order, where 9, 23 € B'\{z,r;,w}, a contradiction. Thus i, > 3, as claimed. Note
that |[B' N V(H)| = 4, so [W’/| > 3. We may further assume that {x,ws} #
A; and {xy,ws} # A; for all i € [t]; and {xi9,un} # A; and {z10,we} # A;
for all i € [t]. By (%), z1 is red-complete to {ws, w3} under ¢; and g is red-
complete to {wy,wy} under c. Let (o, 3,7) € {(5,2,4),(4,7,5)}. Suppose R' N
V(H) = {z2,x3, %0, Ts, T7, Tg }. Since {zg,w;} # Ai, {xs,w;} # A; and {xg, w;} #
A; for all w; € W' and i € [t], by (%), {zs, 23,26} must be red-complete to
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W' under c¢. By (*%), x., is red-complete to {z,_2,T,42}. But then we obtain a
red Co under ¢ with vertices ay, s, x4, Tg, W1, T19, Wa, T1, W3, T3, by, x5 (When a =
5) or ay,xs, Ts, T7, W, T1g, We, T1, W3, Tg, by, T4 (When o = 4) in order, a contradic-
tion. Let (o, f3,7,0) € {(3,8,5,6),(3,5,7,8),(4,6,8,2)}. Suppose R' NV (H) =
V(H)\{a1, b1, 21,210, Za, xg}. Since {z.,w;} # A; and {x5,w;} # A; for all w; €
W' and i € [t], {z,,2s} must be red-complete to W’ under ¢ by (). More-
over, T.,T.,_o and xsrsio are colored red by (xx). Since |A;| = 2, at least one
of 1,210, Ta, s is red-complete to {wy,we, w3} by (x). So we may assume z, is
red-complete to W'\wy and xz is red-complete to {wy, ws, ws}. But then we ob-
tain a red Cyo with vertices ay, z, x,—2, w1, T19, W2, T1, W3, Ts42, Ts, by, x7 in order if
(o, B,7,0) € {(3,8,5,6),(4,6,8,2)} and ay,x7, x5, w, T3, w3, T1, Wa, T10, Ts, b1, Tg N
order if (o, 8,7,0) = (3,5,7,8), a contradiction. Finally if R* NV (H) = {xs, 13, 75,
T6, Tg, To}. By (%), R N V(H) is red-complete to W’. Then G has a red P;; with
vertices o, ay,x3, b1, T5, W1, Tg, Wa, Tg, W3, Tg in order. Thus i, = 5 and so |W’| > 4.
But then we obtain a red C'o with vertices aq, xs9, w1, T3, W, T5, W3, Tg, Wy, Ty, b1, Tg
in order, a contradiction.

Case 3. R' = |[R'"NV(H)| = 7, then i, > 4 and |[W'| = |W| = i,. Let
(o, B) € {(6,5),(7,4)}. Suppose R'={xs, x3, x4, T35, 0, Ts, Tg}. Since {3, w;} # A,
{zg,w;} # A; and {zs,w;} # A; for all i € [t] and any w; € W', {3, 25,25}
must be red-complete to W’ under ¢ by (x). But then we obtain a red Cjy with
vertices ay, T3, Wy, T19, Wa, T1, W3, T, Wy, Ts, b1, T2 in order, a contradiction. Finally if
RY = {9, 3, 24, 5, x5, 7, X9 }. Since {xs, w;} # A; and {xe, w;} # A; for all i € [t]
and any w; € W', {x3, 26} must be red-complete to W’ under ¢ by (x). We may
assume zg is red-complete to W' \wy by (). But then we obtain a red C15 with ver-
tices aq, x3,wy, 19, Wo, T1, W3, Ty, Wy, T, b1, To in order, a contradiction. This proves
that [A;| > 3. -

Claim 7. For any A; with 3 < |A;| < 4, G[A;] has a monochromatic copy of Pj in
some color m € [k] other than red and blue.

Proof. Suppose there exists a part A; with 3 < |A4;] < 4 but G[A;] has no
monochromatic copy of P; in any color m € [k] other than red and blue. We
may assume ¢ = 1. Since GRg(P3) = 3, we see that G[A;] must contain a red or
blue Pj, say blue. We may assume aq, by, c; are the vertices of the blue P; in or-
der. Then [Ai| = 4, else {b1},{a1,c1}, As,..., A, is a Gallai partition of G with
p+ 1 parts. Let z; € Aj\{a1,b1,c1}. Then z; is not blue-complete to {aq,c;}, else
{ar,c1}, {b1, 21}, Ag, ..., A, is a Gallai partition of G with p 4+ 1 parts. Moreover,
b1z is not colored blue, else {b1},{a1,c1,21}, Aa, ..., A, is a Gallai partition of G
with p + 1 parts. If by2; is colored red, then a;2z; and ¢z, are colored either red
or blue because G has no rainbow triangle. Similarly, z; is not red-complete to
{a1, 1}, else {z1},{a1,b1,c1}, Aa, ..., A, is a Gallai partition of G with p + 1 parts.
Thus, by symmetry, we may assume a;2; is colored blue and c¢y2; is colored red,
and so ajc; is colored blue or red because G has no rainbow triangle. But then
{ai}, {01}, {ar}. {z1}, Aa, ..., A, is a Gallai partition of G with p+ 3 parts, a contra-
diction. Thus b;2; is colored neither red nor blue. But then a;z; and ¢;z; must be
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colored blue because G[A;] has neither rainbow triangle nor monochromatic P in
any color m € [k] other than red and blue, a contradiction. -

For the remainder of the proof of Theorem 1.9, we assume that |B| > |R| .
By Claim 5, |R| < n — 1. Let {a;,b;,¢;} C A; if |A;] > 3 for any ¢ € [p]. Let
B :={z1,..., x5} and R := {y1,...,yr/}. We next show that

Claim 8. i, > |R|.

Proof. Suppose i, < |R| —1<mn—2. Then i, =n —1, i, > 3, |A1] < 4, else we
obtain a red G;, because R is not blue-complete to B and |A;| > 3. By Claim 7,
G[A;] has a monochromatic, say green, copy of P;. By Claim 4, iy = 1. We have
|G| > n+ 1414, + 14, + 1, > 2n + 4. This implies that there exist two independent
edges between B and R, say x1yi, T2y2, that are colored red, else we obtain a blue
Con. Then G[A1URU{zy, x2}] has a red Py, it follows that n = 6, i, = 4 and |R| = 5.
Then |AUB| = |G|—|R| > T+iy+i,+i,—|R| = 12, and so G[B] has no blue Gy, _|4,|,
else we obtain a blue Cho. Let i} 1= i, — |A1] < 2,4 =i, — |R|+2 =1, i =1 <2
for all color j € [k] other than red and blue. Let i; := max{i} | j € [k]}. Then

ij <iy. Let N* == |Gy| + [(320_, i%) — i;]. Observe that |B| > N*. By minimality
of N, G[B] has a red G;» = P5 with vertices, say x1,..., s, in order. Because there
is a red P; with both ends in R by using edges between A; and R, we see that R
is blue-complete to {x1, z2, x4, x5}, else G[A; U RU{x1,...,x5}] has a red P;;. But
then we obtain a blue C}5 under ¢ with vertices a1, x1, y1, X2, Y2, 4, Y3, Ts5, b1, 3, C1, Tg

in order, a contradiction. -

Claim 9. i, > |A;| and so |A;| <n — 2.

Proof. Suppose i, < |Aq|. If i, < |A;| — 1, then 4, < n — 2 by Claim 2 and so
i, = n—1. Thus |B| > 2+1i, because |B|+|R| = |G| —|A1] > n+ 1+, + (i, — |A1]) >
3 + 2i,. But then G has a blue G, using edges between A; and B, a contradiction.
Thus i, = |A;]. By Claims 5 and 8, |[R| < n — 1 and 4, > |R|. Observe that
|B| > 1+n+i,—|R| > 14+n. Then G[BUR] has no blue P; with both ends in B, else
we obtain a blue Gy, in G. Let ij := i, — [Ay| = 0, iy := i, — |R|, and i} :=i; <n—4
for all colors j € [k] other than blue and red. Let ij := max{i} | j € [k]}. Then
i; <y, Let N* = |G| + (% 4*) —4%]. Then 3 < N* < N. Suppose first that

oy
|R| > 2. Since B is not red—corrjlplet]e to R, we may assume that y,z is colored blue
for some z € B. Note that if <n —3 and |B\z| = N — |A;| — |R|—1> N*. By
minimality of N, G[B\z| must have a red G;: = Py;x3 with vertices, say x1, ..., z,,
in order, where ¢ = 2if + 3. Since G[B U R] contains no blue P; with both ends in
B and xy; is colored blue, we see that y; must be red-complete to B\z and y, is
not blue-complete to {z1,2,}. We may assume that z,ys is colored red in G. Then
n = 6,14, = |R| =5 and i, = |A;| = 3, else we obtain a red G;_ using vertices in
V(Paisy3) URU Ay Let ' € B\{z, 1,22, 23}. Then {z,2'} € A; and {z,2:} € A4;
for all i € [p] because y;x is colored blue and y,2’, y12; are colored red, and so xx’
and zx; are colored red, else G[A;UBU{y; }] has a blue Py. But then we obtain a red
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Cho with vertices ay, y1, 2', x, 21, T2, T3, Yo, b1, Y3, €1, Y4 in order, a contradiction. Thus
|R| = 1. By Claim 1 applied to i, = |A4], i, > |R| and B, G[B] must have ared Py; 41
with vertices, say x1, s, ..., Tg;, 11, in order. Since G[BU R] contains no blue P3 with
both ends in B, we may assume that y,x; is colored red under ¢. Then 7, =n — 1,
else we obtain a red G;,, a contradiction. Moreover, ;2,1 must be colored blue,
else G has a red (5, with vertices y;,x1,...,T9, 1 in order. Thus y; is red-complete
to {@1,..., 222}, and so {zj, 29,1} € A; for all ¢ € [p] and j € [2n — 2]. So
Tg,—1x; must be colored red for some i € [2n — 3] because G[B] has no blue P;. But
then we obtain a red Cy, with vertices yi, 21, ..., %, Top_1, Ton_2, ..., Ti11 in order,
a contradiction. This proves that i, > |A;], and so |A;| < n —2. -

By Claims 6 and 9, we have 3 < |A;| < n — 2. By Claim 7, G[A;] has a
monochromatic, say green, copy of P;. By Claim 4, ¢, = 1.

Claim 10. If |[A;| = 3, then |As] = 3, |A3] < 2, and 4; = 0 for all colors j € [k]
other than red, blue and green.

Proof. We may assume that the first three colors in [k] are red, blue, and green.
Assume |A;| = 3. To prove |Ay] = 3, we show that G[B U R] has a green P;.
Suppose G[B U R] has no green P;. By Claim 9, i, > |[A;| +1 = 4. Let i} := 0
and 7 := i; for all j € [k] other than green. Let i; := max{s} | j € [k]} and
N* = |G| + [(Zlezj) —i4y]. Then N* = N —1 and |G\ay| = N — 1 = N*. But
then G'\a; has no monochromatic copy of G+ in color j for all j € [k], contrary to
the minimality of N. Thus G[B U R] has a green P; and so |As| = 3. For the rest
of the proof of Claim 10, we do not use the condition |B| > |R| because we make no
use of Claim 8 and Claim 9.

Suppose |A;| = 3. For all 7 € [3], let

A} = {a; € V(R) | aja; is colored blue in R},
Al :={a; € V(R) | aja; is colored red in R}.

Let B' := UajEAi Aj and R" := Ua,ea: Aj- Since each of Ay, Az, A3 can be chosen as
the largest part in the Gallai-partition Ay, A, ..., A, of G, by Claim 5, either |B| <5
or |[R| <5 for all i € [3]. Without loss of generality, we may assume that A, is blue-
complete to Ay U As. Let X := V(G)\(A1 U Ay U A3) = {vy,...,vx}. Then |X| >
l+n+ip+i,+i,—9 = 2n—8+min{iy, i, }. Suppose | X NB'| > 2. We may assume
v1,v2 € X N B'. Then G has a blue C}y with vertices ay, v1, by, vs, €1, ag, as, ba, bs, co
in order and a blue P;; with vertices aq, vy, by, v2, c1, as, as, bs, bs, co, c3 in order, and
son =6 and 7, = 5. Moreover, X \{vy, v} C R3, else, say vs is blue-complete to As,
then we obtain a blue C', under ¢ with vertices aq, vy, by, v9, ¢1, as, as, vs, b, b, c3, o
in order. Thus |R*| > |X\{vi,va}| > 2 +4,, and so i, > 3, else G has a red
G, using the edges between As and R3. Then there exist at least two vertices
in X\{v1,v2}, say vs, vy, such that {vs, vy} is blue-complete to Ay, else G[A; U
Az U (X\{v1,v2})] contains a red G;,. Thus |B*| > |4y U {vy,..., v} = 7 and so
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|R'| < 5. Moreover, {v,v2} C R3, else, say v; is blue-complete to A3, we then
obtain a blue C}5 under ¢ with vertices ay, vs, by, vy, €1, as, as, vy, bz, ba, c3, co in order.
Then X C R? and |R?| > |X| >4+, > 7, and so |B*| <5 and A; is red-complete
to Az. Furthermore, G[B'\ A5] has no blue P, else, say vy, vs, v3 is such a blue Ps in
order, we obtain a blue C5 with vertices a1, vy, V9, v3, b1, v4, €1, as, az, ba, b3, co in order.
Therefore for any U C B'\ A, with |U| > 4, G[U] contains a red Ps because |A;| = 3
and GRy(P3) = 3. Since |R'| < 5 and A3 C R!, we may assume V1,. .., U x|-2 €
B"\A,. Then G[{vy,...,vs}] must contain a red Py with vertices, say vy, vy, v3, in
order. We claim that X C B'. Suppose vx; € R'. Then vy is red-complete
to A; and so G has a red Pj; with vertices c1,v|x|, a1, as, b1, b3, v1,v2,v3,c3,v4 in
order, it follows that i, = 5. Thus |X| > 9, and G[{v4,...,v7}| has a red P3
with vertices, say vy, vs, vg, in order. But then we obtain a red Cjs with vertices
ai, Vx|, by, as, vi, va, v3, bz, vy, Vs, v, 3 in order, a contradiction. Thus X C B! as
claimed. Since |X| > 7, G[{vy,...,v7}] contains a red P3 with vertices, say vy, vs, vg,
in order. Then G has a red P;; with vertices aq,as, by, b3, v1, V9, V3, C3, V4, Us, Vg in
order, and so i, = 5, |X| > 9. Suppose G[{v4,...,v9}] has no red Ps. Then
G[{vs, ..., v} contains at most one part of the Gallai-partition with order three, say
Ay, and we may assume G[A,] has a monochromatic P in some color m other than red
and blue if |A4| = 3 by Claim 7. Let 4 := 1, 4y, := 1, i} := 0 for all color j € [k]\{m}
other than red. Let N* := |G| + [(Zle ii) —irx] = 6 < N. Then G[{vy, ..., v9}] has
no monochromatic copy of Gi; in any color j € [k], which contradicts the minimality

of N. Thus G[{vy,...,v9}] has a red P5 with vertices, say vy, ...,vs, in order. But
then we obtain a red Ci, with vertices as, vy, v, v3,b3, 14, ..., 0, 3,09 in order, a
contradiction. Therefore, | X N B!'| < 1. By symmetry, | XNB3| < 1. Let w € XN B!
when X N B! # () and w’ € X N B? when X N B? # (). Then A; U A3 is red-complete
to X\{w,w'}. Tt follows that n = 5 and |X N B'| = | X N B3| = 1, else G[A; U
Az U (X\{w,w'})] has a red G;. because |X| > 2n — 8 + min{i,, i, }, a contradiction.
But then we obtain a blue Cq with vertices as, ai, w, by, ba, as, w’, b, ca, c3 in order, a
contradiction. This proves that |A3] < 2 and so G[A;] has no monochromatic copy of
P; for all 7 € [p] with ¢ > 3. Since G|RU B] has a green P, it follows that G[As] has
a green P3, so i; = 0 for all color j € [k] other than red, blue and green by Claim 4.

Claim 11. If i, = |A;| 4+ 1, then |R| < 2.

Proof. Suppose i, = |A1] + 1 but |R] > 3. By Claim 8, i, > |R|, it follows that
|B| > 1+n+i,+i, +i, — |A1| — |R| > 3+ n. Thus G[B U R] has no blue P; with
both ends in B, else we obtain a blue G;,. Let i} := 4, — |A1| = 1, i := 4, — |R| + 1
(when n = 5) or iy := max{i, — |R[ + 1,2} (when n = 6), i} := i; for all j € [k] other
than red and blue. Let ij := max{i} | j € [k]} and N* := |G| + [(25:1 i%) — i)
Then 3 < N* < N. Observe that |[B| > N*. By minimality of N, G[B] has a
red Gy = Po;: 13 with vertices, say @1,...,2,, in order, where ¢ = 2i; + 3. If R is
blue-complete to {z1,2,}, then R is red-complete to B\{zy,z,} because G[B U R]
has no blue P; with both ends in B. But then G[A4; U R U {zs,...,2,-1}] has
a red G; , a contradiction. Thus R is not blue-complete to {z1,z,}, and so we
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may assume yixq is colored red. Then i, = n — 1 and R\{y;} is blue-complete to
{g—2, 74}, else G[A; URU{zy,...,2,}] has ared G;.. So R\{y1} is red-complete
to B\{z,—2,7,} because G[B U R] has no blue Ps; with both ends in B. But then
G[A1URU{xg, ..., x4 1}] has ared G;, = Cy,, a contradiction. -

Claim 12. i, =n — 1.

Proof. Suppose i, < n — 2. By Claim 6 and Claim 9, |A;| > 3 and 4, > |A;], it
follows that n = 6, i, =n —1 =5, 4, = 4, and |A;| = 3. By Claim 10, |Ay| = 3,
|As| < 2,4; =0 for all colors j € [k]\[3]. By Claim 11, |R| < 2 and so Ay C B. It
follows that |B| = 7+, +1,+i,—|A1UR| = 14—|R| > 12. Then G[BUR] has no blue
P5 with both ends in B, else G has a blue Pj; because |A;| = 3. Thus there exists a
set W such that (B U R)\(Ay U W) is red-complete to Ay, where W C (B U R)\ A,y
with W] < 1. Let i} := 4, — [A1] = 1, 47 := 2, i} := 0 for all j € [k] other than
red and blue. Let N* := |G| + [(25:1 i;) —iy] = 8. Then N* < N. Observe that
|B\(Ay UW)| = |B|] — |A3] — |W]| > 8 = N*. By minimality of N, G[B\(A4y U W)]
must contain a red G = Pr. But then G[(BUR)\W| has a red C}2, a contradiction.
Thus i, =n — 1. -

Claim 13. |A;|=n—2.

Proof. By Claim 9, |A;| < n — 2. Suppose |4;| < n —3. By Claim 6, n = 6 and
|A;| = 3. By Claim 12, 4, = 5. By Claim 10, [A3| = 3, |A43] < 2 and i; = 0 for all
colors j € [k]\[3]. By Claim 8, 4, > |R|. Then |B| =7+, + i, +i, —|A:| — |R| > 10,
and so G[B U R] has neither blue P; nor blue Ps U P3 with all ends in B else we
obtain a blue Cis.

Suppose |R| < 2. Then A C B and there exists a set W C (B U R)\ Ay with
|W| < 3 such that W is blue-complete to Ay and (B U R)\ (A UW) is red-complete
to Ag. Since |B\(As UW)| > 4, we see that there is a red P; using edges between Ay
and B\(A2UW), so i, > 3 and i, —|R| > 1. Let ij := 2 (when |[BNW| < 1)ori; =0
(when [BNW| > 2), i := min{i, — |R| — 1,2}, i} := 0 for all colors j € [k] other
than red and blue. Let ij := max{7} | j € [k]} and N* := |G| + [(Zlez;‘) — i) =
3 + max{i;, it} + if + 4. Observe that |[B\(AyUW)|=7+14, — |[RUW| > N*. By
minimality of N, G[B\(A; UW)] has a red Gz = Py 13 because G[B] has neither
blue P; nor blue P; U P; and |A3] < 2. But then G[(B U R)\W] has a red G,
because |[(BU R)\W| > 7+ 1, > |G;,| and Aj is red-complete to (B U R)\ (A UW),
a contradiction. Therefore, 3 < |R| <5 and so i, > 3.

We claim that ¢, = 5. Suppose 3 < i, < 4. Let 45 := 2, iy 1= 2, 7} := i for
all colors j € [k] other than red and blue, and N* := |G;:| + [(Zle i%) —iy] = 10.
Observe that |B| > 10 = N*. Since G[B] has no blue P;, by minimality of N,
G[B] has a red P; with vertices, say x1,...,z7, in order. Then R is blue-complete
to {x1,...,x7}\z4, else G[A; U RU{xy,...,27}] has a red G;. = Py, 3. But then
G[B U R] has a blue P; with vertices x1, y1, 2, Y2, T3, Y3, 5 in order, a contradiction.
Thus i, = 5 and so |G| =18, |B| = 15 — |R|.
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We next consider the case |R| = 3. Suppose first Ay = R. Since R is not
red-complete to B, we may assume that A, is blue-complete to ;. Let i} = 2,
iy := 3, 4} := 0 for all colors j € [k] other than red and blue, and N* := |G| +
[(3F_,i%) —if] = 11. Observe that |[B\zy| = 11 = N*. By minimality of N,
G[B\z1] has a red Py with vertices, say xa,..., 210, in order. We claim that A,
is blue-complete to {xq, 19}, else, say x5 is red-complete to A;. Then A, is blue-
complete to {xg,z10}, else G[A; U Ay U {xa,...,x10}] has a red C15. Thus A, is
red-complete to B\{x1, xs, z19} because G[B U R| has no blue P; with both ends in
B. But then we obtain a red C}5 with vertices aq, as, x3, ..., g, ba, by, co in order, a
contradiction. Thus, A, is blue-complete to {z1, xq, x10}, and so A, is red-complete
to B\{x1, z2, 10} because G[B U R] has no blue P; with both ends in B. But then
we obtain a red C'5 with vertices ay, as, x3, ..., xg, bs, by, ¢ in order, a contradiction.
This proves that Ay C B. Then there exists a set W C (BUR)\ Ay with [IWNB| <3
such that W is blue-complete to As and (B U R)\(Ay U W) is red-complete to As,.
Then |W| <3 and |WNB| <3or |W|=4and |IWnN B|=1 because G[B U R] has
no blue P; with both ends in B. Let

iy =2 —|WJ|, ir :=2 when |W| € {0, 1},
iy =0, ir:=2 when |[W|>2and [WnNB|<2,

iy =0, ;. :=1 when |W|=|W N B| =3,

i% := 0 for all colors j € [k] other than red and blue, and N* := |G;:| + [(25:1 i) —
i¥] = 3+2if 4. Observe that |[B\(A;UW)| > N*. By minimality of N, G[B\ (AU
W)] has a red G;» = Pa;» 43 because G| BUR] has neither blue P; nor blue P;UP; with
all ends in B and |A3| < 2. If [IW| < 3 and [WNB| < 2, then G[(BUR)\W| has a red
C1a because |(BU R)\W| > 12 and A, is red-complete to (B U R)\(A2 UW). Thus
[W|=|WnB|=3or|W|=4and |[IWNB| = 1. For the former case, G[B\ (A2 UW)]
has ared Ps with vertices, say x1, ..., s, in order. Let W := {wy, wy, w3} C B. Then
A, is blue-complete to W and red-complete to {z1, ..., x5}, and so W is red-complete
to {z1,...,x5} because G[B] has no blue P;. But then we obtain a red Cj, with
vertices ag, T1, Wy, Ta, Wa, T3, W3, Tg, by, X5, Co, T in order, where x4 € B\(Ay U W U
{z1,...,25}), a contradiction. For the latter case, G[B\(A2 UW)] has a red P; with
vertices, say w1,...,x7, in order. Let W N B := {w}. Then w is red-complete to
{z1,..., 27} because G[B] has no blue P;. But then we obtain a red C5 with vertices
a9, T1,W, T, . .., Te, b, 7, Co, kg in order, where zg € B\(As UW U {x1,...,27}), a
contradiction. This proves that |R| € {4,5}.

We claim that G[E(B, R)| has no blue P5 with both ends in B. Suppose there is a
blue H := P5 with vertices, say x1, y1, T2, Y2, T3, in order. Then G[(BUR)\V (H)] has
no blue P; with both ends in B. Let iy := 0, i) := i, — |R|+1 = 6 —|R|, 7} := i; for all
colors j € [k] other than red and blue, and N* := |G| + [(Zle i%) —ir] = 3+2(6 -
|R|)+1 = 16—2|R|. Observe that |B\{z1,xe,z3}| = 12—|R| > N* since |R| € {4, 5}.
By minimality of N, G[B\{x1,z2, x3}] has a red G;. with vertices, say x4, ..., z,, in
order, where ¢ = 2i% + 6. Then y; is not blue-complete to {x4, z,} because G[(B U
R)\V(H)] has no blue P; with both ends in B. We may assume x4y3 is colored red.
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Then R\{y1, y2,y3} is blue-complete to zg, else say if zgy, is colored red, we obtain a
red C1o with vertices aq, ys3, x4, ..., 2s, Ya, b1, Y1, €1, Y2 in order, a contradiction. Since
G[(B U R)\V(H)] has no blue P; with both ends in B, we see that R\{y1,y2,ys}
is red-complete to {z4,...,2,}\zs. But then we obtain a red Cjy with vertices
a1,Ys3, Ta, - - -, T10,Ys, 01,91 (When |R| = 4), or ay,ys, T4, x5, Ts, Ya, T7, Y5, b1, Y1, C1, Y2
(when |R| = 5) in order, a contradiction. Thus, G[E(B, R)| has no blue P; with
both ends in B. Let ij := 2, 4} := 2, 4} := i; for all colors j € [k] other than red
and blue, and N* := |G| + [(25:12;) —i*] = 10. Observe that |B| > 10 = N*.
By minimality of N, G[B] has a red P; with vertices, say x1,..., 27, in order. We
claim that z; is blue-complete to R. Suppose x1y; is colored red. Then R\y; is
blue-complete to {x5,x7}, else G[A; U RU {xy,...,27}] has a red Cj5. Thus R\y;
is red-complete to B\{xs,z7} because G[E(B, R)] has no blue P; with both ends
in B. But then we obtain a red C\5 with vertices ay,ys, %o, ..., xs, Y3, b1, Ya, C1, Y1
in order, a contradiction. Therefore, x; is blue-complete to R. By symmetry, z7
is blue-complete to R. Then R is red-complete to B\{x1,z7} because G|E(B, R)]
has no blue P5 with both ends in B. But then we obtain a red C}y with vertices
a1,Y2, T2, - -, T, Y3, b1, Y, €1, y1 in order, a contradiction. This proves that |A;| =
n— 2. -

By Claims 12, 13 and 8, i, = n—1, |A1| =n—2, 4, > |R|. By Claim 11, |R| < 2.
Then |B| > 3+n-+1i, —|R| > 3+n, and so G|B U R] has no blue P5 with both ends
in B, else there is a blue Cy,.

Claim 14. i, = n — 1.

Proof. Suppose i, < n—2. By Claim 3, B is not blue-complete to R. Let x € B and
y € R such that xy is colored red. Let ¢} :=1d, — |A;| =1 and ¢} :=4, — |R| < n — 3,

i; == i; < n —4 for all colors j € [k] other than red and blue. Let N* := |G| +

[(3F_,i%) —iz]. Then 3 < N* < N and [B\z| = N — |4j] — |[R| -1 > N*. By
minimality of N, G[B\z] must have a red Py;: 15 with vertices, say @1, s, ..., T2z 43,
in order. Then {zy, xg;43} must be blue-complete to {z,y} and zx, must be colored
blue under c, else we obtain a red P»; 13 using vertices in V/(Pa;x13)U{z,y} UA;. But

then G[BU R] has a blue P5 with vertices o, x, 21, y, £2;»+3 in order, a contradiction.

Recall that |A;] = n — 2, G[A;] has a green Pj, and i, = 1. We next show
that |As| > 3. Suppose |As| < 2. Then by Claim 10, |A;| = 4 and so n = 6. Let
Ay = {ay, b, e, 2} Let i) =iy — |Ay = 1,45 =4, — |R|+1=6—|R| > 4,

iy =iy — 1 = 0 and i} := i; for all j € [k] other than red, blue and green. Let

iy == max{i’ | j € [k]} and N* := |G| + [(X5_;i%) — i;]. Then 3 < N* < N and
|B| = |G| — |A1| = |R| = N*. By minimality of N, G[B] must contain a red G;:. It
follows that |R| = 2 and Gi» = P1y. Let x1,x5,..., 211 be the vertices of the red Py
in order. If R is blue-complete to {x1,z11}, then R is red-complete to B\{z1,z11}
because G[BU R| has no blue Ps with both ends in B. But then G has a red C}5 with

vertices ay, Y1, To, - .., T10, Y2 in order, a contradiction. Thus, R is not blue-complete



H. LEI ET AL. /AUSTRALAS. J. COMBIN. 79 (3) (2021), 380400 398

to {x1, z11} and we may assume 1y, is colored red. Then z11y; and xgys are colored
blue, else G[{x1,...,x11} URU Ay has a red Ciy. If 21195 is colored red, then 1y,
and x3y; are colored blue by the same reasoning. But then we obtain a blue C5 with
vertices ay, x1, Yo, To, by, T3, Y1, T11, C1, T2, 21, T4 in order, a contradiction. Thus x11ys
is colored blue. Then y; is red-complete to B\{xg, x11}, else, say yiw is colored blue
with w € B\{xg, 11}, then G[B U R] has a blue Ps with vertices w, y1, 11, Y2, Tg in
order. It follows that {z11,w} ¢ A; for all j € [p], where w € B\{xg, z11}. Moreover,
Z2ys is colored blue, else G has a red 5 with vertices aq, yo, 29, ..., Z10,y; in order,
a contradiction. Thus, G[B\{x, x9}| has no blue P, else G[A; UBU{y,}] has a blue
C1s. Therefore, z;x1; is colored red for some i € {3,...,7}. But then we obtain a
red Cho with vertices yi, x1,...,x;, 11, T10, - - -, L1 in order, a contradiction. Thus
3 <|Ay| <n—2and Ay C B because |R| < 2.

Since G[B U R] has no blue Ps; with both ends in B, there exists at most one
vertex, say w € (B U R)\As, such that (B U R)\(Ay U {w}) is red-complete to
Ay, and w is blue-complete to A;. Suppose 3 < |A3] < n — 2. Then n = 6 and
|A;1| = 4 by Claim 10, A3 C B and A3 must be red-complete to As, so w ¢ Asz. Since
G[B U R] has no blue P5; with both ends in B, there exists at most one vertex, say
w' € (BUR)\(A2UA3), such that (BUR)\(A2UA3U{w'}) is red-complete to As. Note
that we may have v’ = w. Since |(BUR)\{w,w'}| > |G| —|A1| -2 =18—-4—-2 = 12,
we see that G[(BU R)\{w, w'}| has a red Cis, a contradiction. Thus |A3| < 2 and so
G[B\ As] has no monochromatic copy of P; in color j for all j € [k] other than red
and blue. Let i} := 1, iy :=n — 1 — Ay, and i} := 0 for all colors j € [k] other than
red and blue. Let N* := |G| + [(Zlez;‘) —if] =2i*+1=2n—1-2|Ay|. Then
3 < N* <N and |B\(AyU{w})| >2n+1— |R| —|A2| > N*. By minimality of N,
G[B\(A2 U {w})] has a red G;: = Py y3. But then G[(B U R)\{w}] has a red Ca,,

a contradiction.

This completes the proof of Theorem 1.9. -
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