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to inform each other about their hand without Eve learning any ‘pro-
tected’ information, typically in the sense of weak possibilistic security.
We consider a weakening of this original problem, whereby the cards are
linearly ordered by value. The agents wish to know the value of the best
card held between them, without Eve knowing who holds said card. We
consider standard solutions to the problem based on combinatorial de-
signs, as well as novel solutions based on secret-bit-exchange protocols.
Our results show that this version of the problem can be solved in many
instances where the size of each agent’s hand is linear on that of the
eavesdropper’s.

1 Introduction

The Russian cards problem is a combinatorial puzzle dating back to Kirkman [10],
whereby two card-holding players try to communicate information about their hands
without another player learning any ‘protected’ information. All cards are distributed
over the players, players can only see their own cards, and they know what cards
are in the deck and how many cards each player has drawn. Typically, Alice and
Bob wish to inform each other their entire hand, without Eve learning who holds
any card that is not hers. This version of the problem has been extensively studied
[1, 3, 16, 17, 18]; we will refer to it as the all-card Russian cards problem. More
generally, we can consider a case where there are m communicating agents and an
eavesdropper [5, 6].

However, it may be the case that Alice and Bob do not need to know the entire
deal. Consider a scenario where different cards hold different value; we may number
the cards so that 0 is the most valuable, then 1, and so on. In such a context, it
may suffice for Alice and Bob to know the value of the best card they hold between
them, without Eve learning who holds this card. Meanwhile, it is unimportant if
Eve learns who holds the ‘worse’ cards, or for Alice and Bob to learn them for that
matter.

Essentially, Alice and Bob must employ a form of cryptography using their hands
and their knowledge about the deck. Cryptography with decks of cards has been
investigated in various ways since the 1980s, motivated, for example, by the formal-
ization of bidding in bridge [20]. Since then, card-based protocols have been used
for secret-bit exchange [7, 9], in which the players secretly learn one or more se-
cret bits (where a bit typically represents the ownership of a particular card that
is held between the communicating players), but do not necessarily learn the entire
deal. Card-based protocols have also been studied in the otherwise unrelated con-
text of binary computations [11, 13, 14, 15]. The cryptographic algorithm Solitaire
(https://www.schneier.com/academic/solitaire/) uses a deck of cards wherein
cards are sequentially numbered (valued), and where the deck is randomly shuffled,
as in our case. However, there are no better or worse cards; the values only play a
role in the encryption. We are unaware of any prior research on protocols wherein the

https://www.schneier.com/academic/solitaire/
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communicating players are only required to learn their best card. It seems a natural
intermediate condition between the all-card problem and secret-bit exchange: if the
communicating players (but not the eavesdropper) know all cards, then they know
what the best card is, and if they know what the best card is, then they share at
least one secret bit.

In intuitive terms, the best-card Russian cards problem can be defined as follows:

A group of m agents, with m at least 2, and Eve each draw cards from a
publicly known deck. The cards in the deck are linearly ordered by value,
and the agents wish to communicate in order to know the value of the best
card between them, without Eve learning which of them holds this card.
However, the agents in the group share no private information, and Eve,
who has unlimited computational capacity, can intercept all communica-
tions between them. Can the group of agents achieve this?

As we have mentioned, this is a weakening of the all-card Russian cards problem,
where the agents wish to inform each other their entire hand (and hence the whole
deal) without Eve learning which of them holds any card, aside from those in her
possession. For notational convenience we may identify the deck with the set Ω =
[0, d) of natural numbers, where d is the number of cards. (We use interval notation
for natural numbers, such that [i, j) = {k ∈ N, i ≤ k < j}, etc.)

Two-step protocols

In the two-agent case, classical solutions to the all-card problem typically consist of
two-step protocols (i.e., each of Alice and Bob successively makes one announcement)
often based on combinatorial designs [1], with three- [19] or four-step [3] protocols
appearing exceptionally. As an illustrating example, suppose that there are seven
cards numbered 0, 1, . . . , 6, Alice and Bob each draw three cards, and Eve draws
one. Suppose that the resulting deal is (012, 345, 6), meaning that Alice holds the
set of cards HA = {0, 1, 2}, Bob holds HB = {3, 4, 5}, and Eve holds HE = {6}.
An announcement may be a set of possible hands of cards held by Alice, includ-
ing her actual one. For example, Alice may announce My hand belongs to the set
{012, 034, 056, 135, 246}; it can be checked that after Alice’s announcement, Bob may
deduce Alice’s actual hand, but Eve cannot. Since Bob now knows the entire deal,
the second step of the protocol then consists simply of Bob announcing Eve’s hand.
Note that Eve may be able to make an informed guess about individual card own-
ership. As she holds card 6, she now knows that Alice holds one of {012, 034, 135}.
In the absence of information on how Alice produced her announcement, Eve may
now consider it twice as likely that Alice holds 0 than that she holds 5. In this card
cryptographic community ‘secure’ means that all messages such as this announce-
ment have strictly positive probability, and typically not that all messages are equally
probable, as in the perfect security of [17].

Note that any all-card solution can immediately be applied to the best-card prob-
lem, but there are also best-card solutions that are not all-card solutions. For exam-
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ple, given the deck of cards 0, 1, . . . , 6 and the deal (012, 345, 6), a best-card solution
instance of a two-step protocol would be Alice’s announcement of the four possible
hands {012, 046, 156, 234}. From such an announcement Eve would learn that Alice
holds the card 2, but this is allowed in best-card protocols. In contrast, as we will
discuss later, the first announcement in a two-step all-card solution must consist of
at least five hands [1]. A portion of this article is devoted to showing how small
best-card solutions consisting of sets of hands can be relative to all-card solutions.

Protocols based on exchanged bits

In the deal (012, 3456, 7), Eve already knows that the best card held by Alice and
Bob is 0, even though she does not know who holds it. If the deal were instead
(127, 3456, 0), Eve would know that the best card is 1. However, regardless of the
deal, the best card cannot be 2 or worse. Let us call the cards that could possibly
be the best card good cards, and the rest of the cards bad.

Since the bad cards play a somewhat secondary role in the best-card problem,
Alice and Bob can use them to their advantage, for example by performing a secret-
bit-exchange protocol on them. The secret bits obtained can then be used as a
one-time pad, even if the two have not privately communicated previously and hence
do not share any private information.

In the case of the deal (012, 3456, 7), Bob holds many bad cards, as HB ∩ [2, 7] =
HB = {3, 4, 5, 6}. He will use these cards to generate a shared secret code with Alice.
One way for Bob to do this is to choose two cards {x0, x1} ⊂ [2, 7] such that he
holds exactly one of these two, and ask Alice, Do you hold one of (x0, x1)?

1 If Alice
answers yes, then this produces a secret bit between them: namely, this bit is i if
Alice holds xi.

For example, Bob could ask Alice whether she holds one of {2, 3}, to which Alice
answers yes. This allows them to share a secret bit ι, where for example ι = 0 if
Alice holds 2 and otherwise ι = 1. This secret bit can be used as a one-time pad for
Alice to let Bob know the value of her best card: for example, she can say, If ι = 0
then my best card is 0, and if ι = 1 my card is 1 or worse. By comparing Alice’s
best card to his own, Bob can deduce the best card held between Alice and him.

However, there is some luck involved in Bob’s selection of these two cards. If
instead Bob asked Alice whether she holds a card in {4, 7}, she would answer no.
Now Eve knows that Bob holds the card 4; fortunately this is not an issue, as 4 is
one of the bad cards. Moreover, unlike Alice, Bob holds many bad cards, so he can
‘afford’ to waste some of them. In the next step Bob can ask Alice if she holds a card
in {2, 5}, to which Alice would answer yes, once again giving them a shared secret
bit.2

1Note that it is important that Bob either randomizes the order in which he mentions the two
cards, or always mentions them in some fixed order (e.g., in increasing order), so that Eve does not
know which of the two cards is actually held by him.

2 In this particular example Bob knows Eve’s only card, and thus the entire deal. However, as
we have already seen above, it is not necessary for Bob to learn Eve’s full hand during the exchange.
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As we will see, secret-bit protocol solutions exist for card deals for three or more
communicating players for which no all-card solutions have been reported.

Outline

The outline of the paper is as follows. Section 2 introduces terminology for cards
cryptography. In Section 3 we survey solutions to the all-card problem and show how
they can be used to obtain preliminary results for best-card solvability. Section 4
presents two-step protocols for cases where the eavesdropper holds one or two cards.
In Section 5 we discuss bit-exchange protocols, which are used in Section 6 for the
public code protocol, from which we obtain results for arbitrarily many communicating
agents, and in Section 7, where applications of private bit exchange are discussed,
obtaining some improved bounds for three communicating agents. Finally, Section 8
presents some concluding remarks and open questions.

2 Preliminaries

In this section we establish basic notation and terminology, including a formalization
of card-based protocols as in e.g. [6, 9]. In order to compare our work with the lit-
erature, we will discuss both all-card, best-card and bit-exchange notions of security
and informativity.

2.1 Basic terminology and notation

Definition 2.1. Let A be a finite set representing a group of m+1 agents, including
a designated eavesdropper E ∈ A, which we also refer to as Eve. Elements of A \ {E}
are the communicating agents or players. By a distribution type we mean a vector
τ = (τP)P∈A of positive integers. We write |τ | for ∑P∈A τP .

The deck, Ω, is a finite set of cards with cardinality |τ |. A deal of type τ over Ω
is a partition H = (HP)P∈A of Ω such that |HP | = τP for each agent P. We say HP
is the hand of P. We denote the set of all deals of type τ over Ω by

(
Ω
τ

)
.

We will omit parentheses and commas when writing out τ in an expression
(
Ω
τ

)
.

We assume an initial secure dealing phase in which a card deal is selected at random
from the set of all possible deals. Afterwards, the agents have knowledge of their own
hand and of the distribution type τ of the deal, but know nothing more about others’
cards. Thus, they are not able to distinguish between different deals where they hold
the same hand. We model this by equivalence relations between deals; since from the
perspective of agent P, a deal H is indistinguishable from H ′ whenever HP = H ′

P ,
we define H ∼P H ′ if and only if HP = H ′

P . If the communicating agents are
numbered P0, . . . ,Pm−1 (we exclude Eve from the enumeration), we may write ∼k

instead of ∼Pk
.

We will fix a set Λ representing a language which the agents use to encode in-
formation. In a practical setting, elements of Λ would be strings of symbols, but
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could also be modelled as natural numbers; we will refer to them simply as public
tokens. Similarly we let Θ be a set whose elements are private tokens, which agents
use internally to randomize their behaviour. We will assume that agents take turns,
so that if the communicating agents are listed by P0, . . . ,Pm−1, then P0 places a
public and a private token first, followed by P1, etc.

3

Definition 2.2 (run). Let Λ be a set of public tokens and Θ a set of private tokens.
An action is any α = (λ, θ) ∈ Λ × Θ, and we write λ = αpub. A (finite) run is a
(possibly empty) sequence ρ = α0, . . . , αn of actions. The empty run is denoted by
ε. If ρ = α0, . . . , αn and α is an action we write ρ∗α for α0, . . . , αn, α; α∗ρ and ρ∗ρ′
are defined analogously. We denote the length of a run ρ by |ρ|. We denote the set
of finite runs by Run.

We now define the notion of protocol we will use. Below we use (x)d to mean the
remainder of x modulo d. Since we assume that in a run ρ = α0, . . . , αn the agent Pi

has played exactly those actions αj for j ≡ i (mod m), she has access to the private
information of only these actions. Thus we define ρ[Pi] = α′

0, . . . , α
′
n where α′

j = αj

if j ≡ i (mod m) and α′
j = αpub

j otherwise; when the enumeration of the agents is

clear we may write ρ[i] instead of ρ[Pi]. We also write ρpub = αpub
0 , . . . , αpub

n ; note
that, aside from her own hand, this is the only information that Eve has access to.

Intuitively, a protocol Π is a non-deterministic strategy for the communicating
agents to make announcements. The protocol Π generates a tree-like set of runs XΠ

consisting of all possible executions. Once a deal has been fixed, a protocol assigns
to each run a set of actions out of which the agent whose turn it is must choose one
at random. These actions are determined exclusively by the information the agent
has access to, which is assumed to be only: (i) her hand, (ii) the distribution type
τ and the deck Ω, (iii) the announcements that have been made previously and (iv)
the protocol being executed. The following definition makes this precise.

Definition 2.3 (protocol). Let τ be a distribution type over A = {P0, . . . ,Pm−1, E}.
A protocol (for τ) is a function Π with domain XΠ ⊂ (

Ω
τ

) × Run assigning to each
pair (H, ρ) ∈ XΠ a set Π(H, ρ) ⊂ Λ×Θ such that:

1. (H, ε) ∈ XΠ for every H ∈ (
Ω
τ

)
.

2. For every deal H , every run ρ and every action α, (H, ρ ∗ α) ∈ XΠ if and only
if (H, ρ) ∈ XΠ and α ∈ Π(H, ρ).

3. If k = (|ρ|)m (so that it is the turn of the agent Pk), (H, ρ), (H
′, ρ′) ∈ XΠ,

H ∼k H
′ and ρ[k] = ρ′[k], then Π(H, ρ) = Π(H ′, ρ′).

If (H, ρ) ∈ XΠ, we will say that (H, ρ) is an execution of Π and ρ is a run of Π. If
(H, ρ) ∈ XΠ but Π(H, ρ) = ∅, we say that (H, ρ) is terminal. If there is some n ∈ N

bounding the length of every execution of Π, we say that Π is terminating.

3An alternate approach is for agents to decide when to communicate depending on their cards.
However, this leads to slightly more cumbersome definitions, and can be simulated by adding a
‘pass’ token that agents can use when they do not wish to take a turn.
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Note that protocols are generally non-deterministic and hence a deal H may have
many possible executions assigned to it. Observe that a terminating protocol Π is
uniquely determined by its set of terminating executions, so we will often present
protocols by describing this set. In many of the protocols we will present, the private
or the public parts of certain actions may be unimportant. Technically this can be
modelled by assuming that Λ and Θ both contain ‘empty tokens’ that are used for
such steps, but in informal descriptions we simply state that an agent has played a
private or a public action. More formally, a private action is one of the form (λε, θ)
and a public action is one of the form (λ, θε), where λε, θε are the designated ‘empty’
tokens.

2.2 Informative and secure protocols

The intention of a protocol Π is for the communicating agents to exchange informa-
tion, modelled as elements of an information space I; for example, in 	-bit-exchange
protocols we may have I = [0, 2�). Executions of Π will code messages in I via the
information function μ.

Definition 2.4. Let I be a finite set, τ a distribution type over A and Π a protocol.
An information function for Π over I is a function μ : XΠ → I.

With this we will define some desirable properties that protocols may have. The
first property is informativity : that agents in the team learn the desired message at
the end of its execution.

Definition 2.5 (informativity). Let Π be a protocol and μ be a information function
for Π over some set I. An execution (H, ρ) of a protocol Π is informative for μ for
an agent Pi if whenever (H ′, ρ′) is an execution of Π with H ′ ∼i H and ρ′[i] = ρ[i],
it follows that μ(H ′, ρ′) = μ(H, ρ) (i.e., at the end of the run the agent knows the
precise message).

A terminating protocol Π is informative for μ for an agent P if every terminal
execution of Π is informative for P; it is informative for μ if it is informative for μ
for every agent in A \ {E}.

In addition to the communicating agents learning the message, we also want Eve
to not learn it. This corresponds to the security of a protocol, as we define below.

Definition 2.6 (security of protocols). Let μ be an information function with
codomain I. An execution (H, ρ) of a protocol Π is secure for the information
function μ if for every x ∈ I there is an execution (K, σ) with H ∼E K, ρpub = σpub,
and μ(K, σ) = x.

The protocol Π is secure for μ if every execution of Π is secure for μ.

This notion of security corresponds to strong security in [6], but is weaker than
that considered in e.g. [9], where the eavesdropper should consider all possible mes-
sages equally probable, sometimes known as perfect security [17]. The instances of
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the Russian cards problem that we are interested in can then be defined by choosing
suitable information functions.

Definition 2.7. Given a set of agents A, a distribution type τ , i < |τ | − τE , and a
protocol Π, define an information function owni : X

Π → A \ {E} as follows. For an
execution (H, ρ), enumerate Ω \HE by c0 < c1 < . . . < c|τ |−τE−1. Then, owni(H, ρ) =
P if and only if ci ∈ HP .

Define best : XΠ → Ω by best(H, ρ) = c if and only if min(Ω \HE) = c. Finally,
define hE(H, ρ) = HE .

We say that Π is:

1. best-card informative if it is informative for best and for own0;

2. best-card secure if it is secure for own0;

3. all-card informative if it is informative for hE and for every owni with i < |τ |−τE ;
and

4. all-card secure if it is secure for every owni with i < |τ | − τE .

A distribution type τ is best-card/all-card solvable if there is a secure and informative
best-card/all-card terminating protocol for τ .

The information function owni maps a deal and a run to an agent Pa for each
card ci not held by Eve, meaning that the agent Pa holds the card ci. In particular,
own0 maps a run to the agent holding the best card between all agents except Eve.
Note that none of owni, hE or best depend on ρ, but for bit-exchange protocols we
will be interested in other information functions that do depend on it. In the latter
protocols it does not matter whether the agents share any pre-specified information
(say, about who owns a certain card), provided that they share some information
not known to Eve.

Definition 2.8. A public 	-bit-exchange protocol is a protocol Π equipped with an in-
formation function μ onto a set I with |I| = 2�. The protocol Π is informative/secure
if it is informative/secure for μ.

Similarly, a private k-pair 	-bit-exchange protocol is a protocol Π equipped with
information functions μPQ onto a set I, where P,Q range over all pairs of distinct
communicating agents, such that for every execution of Π there are k distinct pairs
{Pi,Qi}i<k so that Π is informative for μPiQi

for players Pi and Qi, and so that Π
is secure for ⊗

i<k

μPiQi
:= (μP0Q0 , . . . , μPk−1Qk−1

).

Thus, after executing a secure 	-bit-exchange protocol, Eve considers any element
of I to possibly be the information shared by the communicating agents. In public
bit-exchange protocols all agents will share 	 fixed secret bits; in private bit-exchange
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protocols, bits will only be shared pairwise by agents that are not necessarily deter-
mined a priori. In such cases, μ is a vector containing each of the values of μi,
meaning that Eve should consider every combination of shared bits between the
different agents to be possible. Note that Eve may learn which agents share bits.

2.3 Two-step protocols

An n-step protocol is one where every terminal execution has n actions. Many of the
protocols we will discuss here consist of two steps. In the case of a two-step protocol Π
for τ = (a, b, e), we may without loss of generality assume that Alice’s announcement
is a set4 φ ⊂ (

Ω
a

)
, corresponding to the statement My hand is an element of φ. We

make the assumption that, if φ ∈ Π(H, ε), then HA ∈ φ (the announcement X is
truthful), and if H ′ ∈ (

Ω
τ

)
is such that H ′

A ∈ φ, then φ ∈ Π(H ′, ε). This is not a
strong assumption, as any other announcement can easily be converted into one of
this form (although this is trickier for longer protocols, as is done in some detail
in [6]).

After Alice’s announcement, Bob must already be informed (either of the best
card or of all cards, depending on the protocol). In the all-card case, he may simply
reply by announcing the set consisting of Eve’s cards. In the best-card case, he
instead announces the value m of the best card held between him and Alice. Observe
that Eve already knows this value, so this does not provide her with any information
that she did not already have. Note that both Alice’s and Bob’s announcements are
public.

Not all of the protocols presented in this text will consist of two steps, but those
that do will be assumed to follow the conventions detailed above.

3 Reduction to Known Solutions

In this section we discuss how known solutions to the Russian cards problem can be
adapted to generate new best-card solutions. We begin by discussing how all-card
solutions relate to best-card solutions.

3.1 All-card solvability

In the all-card Russian cards problem, Alice and Bob must communicate all of their
cards to each other without Eve learning any of them. Of course it follows that, in
particular, Alice and Bob learn the best card between them, and Eve does not learn
who holds it.

Proposition 3.1. If a protocol Π is an all-card solution for a distribution type τ ,
then Π is also a best-card solution for τ .

4 Two-step protocols do not require private tokens, so to conform to Definition 2.3 we view φ as
a public action, i.e., we tacitly identify it with the pair (φ, θε), where θε is the empty private action.
Similarly, Bob’s subsequent action in a best-card protocol will be identified with the pair (m, θε).
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Proof. This is because all-card secure implies best-card secure and all-card informa-
tive implies best-card informative; see Section 2.

As an immediate application, we see that distribution types that have been solved
in the all-card literature are also best-card solvable. For example, the distribution
type (3, 3, 1) is already known to be all-card solvable; this is one of the oldest results
in combinatorics [10]. Similarly, it is shown in [19] that (4, 4, 2) is all-card solvable,
although it requires at least three steps. From this we obtain the following.

Proposition 3.2. There is a best-card, two-step protocol for the distribution type
(3, 3, 1), and a best-card, three-step protocol for (4, 4, 2).

We remark that all known all-card solutions for (3, 3, 1) are two-step protocols
where Alice announces between five and seven possible hands; we will return to
this point in Section 4. There are also solutions that work for more general classes
of distribution types, as the following first presented in [1] and discussed further
in [16, 12]:

Theorem 3.3. For any prime power q and any e < q, there exists a two-step, all-card
solution for (q + 1, q2 − e, e).

In fact, it is possible to find all-card solutions even when Eve holds more cards
than Alice, as shown in [3]:

Theorem 3.4. If q is a large enough prime power, then:

1. for all e < q
3/2

2
, there is a four-step solution for (q, q3 − q − e, e), and

2. for all e < q2/9, there is a four-step solution for (q, q4 − q − e, e).

There are some other constructions to solve the Russian cards problem; see e.g. [4,
12, 16]. However, they all have in common that the size of the deck is at least
quadratic on e. There are also solutions with a larger number of agents [5, 6],
albeit where Eve holds no cards. In contrast, as we will see, there are many best-
card solvable cases where the deck is linear on e. However, Theorems 3.3 and 3.4
can be used to solve some additional cases, in particular when a is small relative
to e. Before stating this, let us show that the best-card problem (unlike the all-card
problem) enjoys a sort of monotonicity property.

3.2 Monotonicity

Best-card protocols can be adapted to cases where each of the communicating agents
has a larger number of cards. To be precise, if τ, τ ′ are distribution types, write τ � τ ′

if |τ | ≤ |τ ′| and whenever P 
= E , it follows that τP ≤ τ ′P . Similarly, given decks
Ω,Ω′ such that Ω ⊂ Ω′ and partitioned into respectively card deals H,H ′, we write
H � H ′ if for any P 
= E , HP ⊂ H ′

P . If τ � τ ′, protocols for τ can be used to produce
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protocols for τ ′. Given Ω ⊂ Ω′, deal H ′ ∈ (
Ω′
τ ′
)
and f : Ω → Ω′, we define a new

deal H = f−1[H ′] such that for all communicating agents P, HP = f−1[H ′
P ], and

HE = Ω \⋃P∈A f
−1[H ′

P ]. We may view H as a sequence of private actions, namely
(λε, H0), . . . (λε, Hm−1), recalling that λε is the empty public action.

Definition 3.5. Let τ � τ ′ be distribution types, Ω and Ω′ be decks of |τ | and |τ ′|
cards, respectively, Π be a protocol for τ on the deck Ω, and H be a τ ′-deal.

Then, if K � H has distribution type τ and
⋃

P∈AKP = Ψ ⊂ Ω′, a simulation of
Π with virtual deal K on the sub-deck Ψ is any run ρ such that there is a bijection
f : Ω → Ψ, where (f−1[K], ρ) is a run of Π.

Note that in f−1[K], Eve may hold more cards than she did in H , but all other
agents hold at most as many cards as they held before. Simulations of protocols
will yield a monotonicity property for best-card solvability. As we mentioned in the
introduction, good cards are those that may be the best card in at least one possible
deal, and it is not hard to see that c is good if and only if c ≤ e. If c > e, c is bad,
and we often denote the set of bad cards by Δ.

Proposition 3.6. Let τ ′ � τ be distribution types such that for all communicating
agents P, either τ ′P = τP or τ ′P ≥ τ ′E . If there exists a best-card protocol Π′ for τ ′,
then there also exists a best-card protocol Π for τ .

Proof. We consider two cases: one where τE = τ ′E but |τ | < |τ ′|, and the other where
τE > τ ′E but |τ | = |τ ′|. It should be clear that the general case follows by applying
one case and then the other. We focus on the first case.

Informally, each agent discards τP − τ ′P of their bad cards (chosen randomly),
obtaining a new deal H ′ over some deck Ψ ⊂ Ω. Then, the agents simulate Π′ using
the deal H ′.

More formally, we define a protocol Π whose terminal executions are pairs(
H, (H ′, f) ∗ ρ) as follows. Given H ∈ (

Ω
τ

)
, each agent P privately chooses H ′

P ⊂ HP
such that |H ′

P | = τ ′P and HP \H ′
P consists only of bad cards. She then announces

HP \H ′
P . We set H ′

E = HE and Ψ =
⋃

P∈AH
′
P . In addition, the last agent chooses a

bijection f : Ω′ → Ψ which is the identity on the good cards, and publicly announces
f so that her public token is of the form (HP \H ′

P , f). We identify the pair (H ′, f)
with this sequence of announcements, one for each communicating agent. Then, ρ is
such that (f−1[H ′], ρ) is an execution of Π′.

Let us check that Π is best-card informative. Suppose that P is a communicating
agent and K ∼P H . Then, an execution of Π on the deal H consists of a suitable
choice of (H ′, f) and a run ρ of Π′. Similarly, an execution of Π on K consists of a
suitable choice of (K ′, g) and a run σ of Π′. If the two executions are indistinguishable
to P, then H ′

P = K ′
P , f = g and ρ[P] = σ[P]. But then f−1[H ′] ∼P f−1[K ′], and

since Π′ was informative we conclude that the best card in f−1[H ′] and f−1[K ′] is
the same and held by the same agent. Since H and H ′ coincide on the good cards,
as do K and K ′, and f is the identity on the good cards, the best card in H and K
is also the same and held by the same agent.
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To check that Π is secure, if
(
H, (H ′, f) ∗ ρ) is an execution of the protocol and

Q is a communicating agent, since Π′ is secure there is a deal K ′ ∈ (
Ω′
τ ′
)
and a run

σ so that K ′ ∼E f−1[H ′], ρpub = σpub, (K ′, σ) is an execution of Π′ and Q holds
the best card in K ′. Now consider a deal K ∈ (

Ω
τ

)
by letting KE = f [K ′

E ] and
for any communicating agent P 
= E , KP = f [K ′] ∪ (HP \ H ′

P). One can see that(
K, (K ′, f) ∗ σ) is an execution of Π in which Q holds the best card.

The case where |τ | = |τ ′| but τE > τ ′E is similar, the difference being that the
agents do not announce HP \H ′

P . Instead, the cards in f−1(HP \H ′
P) are assigned

to Eve. Aside from this, the protocol and proof are essentially identical.

As an application, we see that (a, b, e) is almost always best-card solvable when
e ≤ 2:

Proposition 3.7. If a, b ≥ 3, then (a, b, 1) is best-card solvable, and if a, b ≥ 4, then
(a, b, 2) is best-card solvable.

Proof. Immediate from Propositions 3.2 and 3.6.

It should be noted that if (a, b, e) is all-card solvable then not necessarily all
(a′, b′, e) for a′ > a or b′ > b are all-card solvable. For example, the construction
used for Theorem 3.3 requires that the deck have exactly q2 + q + 1 cards [1]. On
the other hand, we can use Propositions 3.1 and 3.6 to ‘import’ all-card protocols:

Proposition 3.8. Given a prime power q, if e+ 1 ≤ q ≤ a− 1 and b ≥ q2 − e, then
(a, b, e) is best-card solvable.

Proof. By Theorem 3.3, (q + 1, q2 − e, e) is all-card solvable for all e ≤ q − 1, hence
it is best-card solvable by Proposition 3.1. Thus, we may apply Proposition 3.6.

We may also use Theorem 3.4 to obtain best-card solutions in cases where e may
be greater than a.

Proposition 3.9. If a is a large enough prime power, then:

1. there exists a best-card solution for any distribution type (a, b, e) such that b ≥
a3 − a− e and e < a

3/2

2
, and

2. there exists a best-card solution for any distribution type (a, b, e) such that b ≥
a4 − a− e and e < a2/9.

Proof. In both cases it suffices to check that b > e (since a is assumed large enough, it
suffices to look at the corresponding degrees), hence we can apply Proposition 3.6.

Thus we can adapt all-card solutions to obtain best-card solutions. For multiple
agents one can derive similar results from the all-card protocols in [5]; note however
that in these cases, Eve holds no cards.

Next we will see that there are many ways to produce best-card solutions that
are not all-card solutions.
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4 Two-Step Protocols

In this section we construct two-step solutions to the problem in the cases where
e ≤ 2. Unlike in the all-card case, it suffices to solve a ‘small’ case, and then
extend it using the following. From here on we will often assume that the cards are
sequentially numbered 0, ..., a+ b+ e− 1 where lower means better. The good cards
are therefore defined as the cards in [0, e], just as in the example in the introductory
section. We will often denote card deals (HA, HB, HE) of distribution type (a, b, e)
as (A,B,E).

Proposition 4.1. If there exists a two-step, best-card solution for a distribution type
(a, b, e) such that a, b > e and Alice’s announcement has (at most) m hands, then
there exists a solution with the same properties for any (a′, b′, e) with a′ ≥ a and
b′ ≥ b.

Proof. The proof mimics that of Proposition 3.6, but tailored for two-step protocols.
Let Ω = [0, a + b + e) and Ω′ = [0, a′ + b′ + e), with a′ ≥ a and b′ ≥ b, and fix a
protocol Π for (a, b, e) satisfying the conditions of the proposition. We define a new
protocol Π′ for (a′, b′, e) in the following way: for a deal H ∈ (

Ω′
a′ b′ e

)
, we have that

φ ∈ Π′(H, ε) if there exist:

1. an injection f : Ω → Ω′ which is the identity on the good cards and such that
|f(Ω) ∩HA| = a,

2. a deal K ∈ (
Ω

a b e

)
such that f(KA) = HA ∩ f(Ω), and

3. an announcement ψ ∈ Π(K, ε),

such that, setting H−
A = HA \ f(Ω), we have that

φ = {f(A) ∪H−
A : A ∈ ψ}. (1)

It is not hard to check that a suitable injection f and a suitable deal K can be chosen
(randomly) by Alice, and moreover that Π′ is indeed a protocol.

To see that Π′ is best-card informative, suppose that f(A) ∪ H−
A ∈ φ is a hand

avoiding HB. Note that f−1(HB) has at least b elements, since Ω has cardinality
a+ b+ e, |f(Ω)∩HA| = a and |f(Ω)∩HE | ≤ e. Choose B ⊂ f−1(HB) with exactly b
elements and containing all of the good elements of f−1(HB). Since Π was best-card
informative, it follows that min(A ∪ B) = min(f−1(HA) ∪ B) ≤ e, and since f fixes
the good cards and H−

A contains only bad cards,

min((f(A) ∪H−
A) ∪ f(B)) = min(HA ∪HB),

as needed. This shows that Π′ is best-card informative to Bob. Given Bob’s subse-
quent announcement of the value of the best card, it is clear that the protocol is also
informative to Alice.
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As for best-card security, we must construct for a given execution (H, φ ∗m) of
the protocol a deal K such that HE = KE , (K, φ ∗m) is also an execution of Π, and
a different agent holds the best card in each of H and K. Without loss of generality,
we assume that Bob holds the best card in H . Let ψ and f be such that (1) holds.
Since Π is best-card secure, there is a deal K ∈ (

Ω
a b e

)
in which Alice holds the best

card and such that ψ ∈ Π(K, ε). Define a deal K ′ ∈ (
Ω′

a′ b′ e

)
with K ′

A = f(KA)∪H−
A ,

K ′
E = HE , and K ′

B = Ω′ \ (K ′
A ∪K ′

E). Then, (K
′, φ ∗m) is a terminal execution of Π′

in which Alice holds the best card.

Below, we will use Proposition 4.1 to show that there are relatively simple two-
step solutions when Eve holds one or two cards.

4.1 A two-step, four-hand solution for e = 1

We recall the introductory example, wherein for the distribution type (3, 3, 1), there
is a two-step all-card solution where Alice’s first announcement consists of a tuple
of five possible hands, whereas a best-card solution required only four hands. Thus
a natural question is whether there is a two-step all-card solution to the problem
which uses only four hands; however, a negative answer is immediately given by the
following result combining [1, Prop. 1 & 2].

Theorem 4.2. In any two-step all-card secure and informative protocol for any
distribution type (a, b, e), Alice’s first announcement must contain at least

max

(
(a + b+ e)(e + 1)

a
,
(a+ b+ e)(a+ b)

b(b+ e)

)

possible hands.

From this we immediately obtain the following:

Corollary 4.3. In any two-step all-card secure and informative protocol for any dis-
tribution type (a, b, 1), Alice’s first announcement must contain at least five possible
hands.

Indeed, if a ≤ b and e = 1 then the left-hand expression is easily seen to be
greater than four, while for a > b (and hence a ≥ b+ 1) the right-hand expression is
greater than four. Moreover, observe that these bounds can become arbitrarily large
if we fix one of a, b and let the other parameter grow. However, as we will see, for
any (a, b, 1) with b ≥ a ≥ 3 there is a simple protocol using four a-tuples as Alice’s
announcement. First, let us give a combinatorial characterization of informative
announcements.

Lemma 4.4. Alice’s announcement in a two-step protocol for (a, b, e) is best-card
informative to Bob if and only if whenever φ is an announcement of the protocol and
A0, A1 ∈ φ are such that minA0 
= minA1 and min(A0 ∪ A1) ≤ e, then |A0 \ A1| >
e−min(A0 ∪A1).
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Proof. Let Ω = [0, a + b + e). First assume that for any announcement φ of the
protocol, if A0, A1 ∈ φ are such that minA0 
= minA1 and min(A0 ∪ A1) ≤ e, then
|A0 \ A1| > e − min(A0 ∪ A1). Consider an announcement φ of the protocol, and
suppose that (A0, B, E0) and (A1, B, E1) are two deals with A0, A1 ∈ φ. We claim
that min(A0 ∪ B) = min(A1 ∪ B).

Let m = min(A0 ∪ A1). If minB < m, we have that minB is the best card on
both deals. Otherwise, note that m ≤ e, and assume towards a contradiction that
minA0 
= minA1. It follows from our hypothesis that |A0 \ A1| > e − m. Note
moreover that [0, m− 1] ⊂ E0 ∩ E1 (as m is the best card between Alice and Bob).
We then have that

|Ω| ≥ |[0, m)|+ |A0 \ A1|+ |A1|+ |B|
> m+ (e−m) + a+ b

= a + b+ e,

a contradiction.

For the other direction, assume that there is an announcement φ of the protocol
and two hands A0, A1 ∈ φ such that, for m = minA0 < minA1, we have that m ≤ e
and |A0 \ A1| ≤ e − m. Choose two deals H i = (Ai, Bi, Ei), i ∈ {0, 1} as follows.
Choose a (possibly empty) set

D ⊂ Ω \ ([0, m) ∪ A0 ∪A1)

with e−m− |A0 \ A1| elements, which is possible since

|D| = |Ω \ ([0, m) ∪ A0 ∪A1)| ≥ (a + b+ e)−m− a− |A0 \ A1|
= b+ e−m− |A0 \ A1|.

Then, set Ei = [0, m) ∪ (Ai \ A1−i) ∪D, and

B0 = B1 = Ω \ ([0, m) ∪ A0 ∪ A1 ∪D).

It is easy to see that Alice holds the best card m in H0, and that m is not the best
card in H1 (in this case, it may that Alice or that Bob holds the best card). From
this it is easy to see that H0 ∼B H1, that the announcement φ is executable on both,
yet each deal has a different best card. It follows that such an announcement is not
best-card informative to Bob.

We conclude that Alice’s first announcement in a two-step best-card protocol
must satisfy the constraints of Lemma 4.4, because with a subsequent second an-
nouncement by Bob, he cannot inform himself.

Lemma 4.5. In any two-step best-card protocol for any distribution type (a, b, e),

Alice’s announcement must contain at least e(e+3)
2

+ 2 possible hands.
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Proof. Consider any deal H and any set φ ⊂ (
Ω
a

)
and suppose that φ is the first

announcement in some best-card secure protocol. First we claim that there must be
some A∞ ∈ φ with minA∞ > e. Otherwise, let m∗ be the maximum number such
that m∗ = minA for some A ∈ φ. If m∗ ≤ e, consider a deal where Eve holds [0, m∗)
and does not hold any cards in A; in such a deal, Eve would know that the best card,
m∗, is held by Alice, as Eve can rule out any hand of Alice whose best card is less
than m∗, and there are no hands in the announcement whose best card is greater
than m∗. Thus we must have that m∗ > e. Similarly, there must be a hand Ae such
that minAe = e; for, otherwise, if Eve held [0, e), then she would know that the best
card, e, was held by Bob.

Finally, fixm < e; we claim that there must be at least e+1−m hands A ∈ φ such
that minA = m. Let {Am

1 , . . . , A
m
k } be the set of hands A ∈ φ with minA = m, and

toward a contradiction, assume k ≤ e−m. Construct a hand E for Eve as follows. For
each i ≤ k, we have by Lemma 4.4 that |Am

i \A∞| > e−min(Am
i ∪A∞) = e−m ≥ 1,

and hence we can choose a card xi ∈ (Am
i \ A∞) \ {m}. Let E ′ = [0, m) ∪ {xi}ki=1

and choose E ⊃ E ′ with e elements such that A∞ ∩ E = ∅, and moreover E ′

does not intersect A∞. This is possible since by assumption k ≤ e − m, so that
k +m ≤ (e −m) +m = e, hence |E ′| ≤ e. Consider a deal where Alice holds A∞

and Eve holds E; then, Eve would know that the best card, m, is held by Bob, as
Eve can rule out any hand of the form Am

i .

Adding these lower bounds together and counting the extra hands Ae, A∞, we
conclude that there must be at least

2 +
e−1∑
m=0

(e+ 1−m) =
e(e + 3)

2
+ 2

possible hands in φ.

Thus any best-card, two-step protocol when e = 1 must use at least four hands.
Let us show that this is indeed possible.

Theorem 4.6. If a, b ≥ 3, then there is a two-step, four-hand, best-card solution for
(a, b, 1).

Proof. The announcement

φfour = {016, 025, 123, 456}

is readily verified to be best-card secure and informative. Moreover, if Alice’s hand
is not contained in φfour, she can produce a suitable announcement by permuting the
bad cards in Ω; note that since φfour contains hands where Alice holds any possible
set of good cards (i.e., ∅, {0}, {1}, {0, 1}), such a permutation can always be found.

It follows that (3, 3, 1) is best-card solvable in two steps with four hands, and by
Proposition 4.1, so is (a, b, 1) for all a, b ≥ 3.
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Example 4.7. Consider card deal (678, 01234, 5) of distribution type (3, 5, 1). A
secure and informative announcement is

{017, 058, 145, 678}
after which Bob announces that the best card between them is 0. The announcement
can be obtained from φfour by defining an injection

f = {(0, 0), (1, 1), (2, 5), (3, 4), (4, 6), (5, 8), (6, 7)},
as in the proof of Proposition 4.1. Note that the cards 2 and 3 do not occur in
the announcement, as they are not in the image of f ; Eve therefore learns from the
announcement that Bob holds 2 and 3. However, this does not matter as these are
bad cards, and Eve remains uncertain between Alice holding 017 or 678.

Example 4.8. A best-card solution for card deal distribution type (4, 4, 1) is as
follows. The pack consists of the cards 0, . . . , 8. Suppose that the card deal is
(5678, 0123, 4). Alice announces

{0158, 0378, 1348, 5678}.
This announcement is obtained from φfour and Proposition 4.1 by the injection

f = {(0, 0), (1, 1), (2, 3), (3, 4), (4, 6), (5, 7), (6, 5)}.
Note that at this stage Alice does not know yet whether Bob holds 0, as she also
considers it possible that Bob’s hand is 1234. Bob then announces that the best card
between him and Alice is 0, from which Alice but not Eve learns that Bob holds 0.

Alternatively, Alice and Bob may use Proposition 3.6 as follows. Alice announces
one of the bad cards that she holds; for example, she may announce that she holds
8. Similarly, Bob announces that he holds (say) 2, and they proceed to apply the
four hand protocol for the distribution type (3, 3, 1) on the card deal (567, 013, 4).
For example, Alice announces {015, 037, 134, 567}, then Bob announces that the best
card between him and Alice is 0.

Observe that even though the second approach requires more announcements,
the information shared is essentially the same: for example, in both cases Eve learns
that Alice holds 8. Indeed, Proposition 4.1 is basically an adaptation of Proposition
3.6 to a two-announcement format.

4.2 A two-step, ten-hand solution for e = 2

Now, we consider deals of distribution type (a, b, 2), with a, b ≥ 5. Since we will
be considering a deck with twelve elements, we will use hexadecimal notation and
number the cards 0, . . . , 9,A,B.

If Eve holds two cards, the combinatorial requirements for an announcement φ
by Alice (that is truthful, i.e. contains her actual hand) are that:
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1. if A1, A2 ∈ φ are such that minA1 
= minA2 and min(A1 ∪ A2) ≤ e, then
|A1 \ A2| > e−min(A1 ∪ A2);

2. the card 2 is secure against the hand 01;

3. for all x ≥ 2, 1 is secure against 0x, and

4. for all x, y 
= 0, 0 is secure against xy.

where a card x is secure against yz if there are hands A1 and A2 in φ not containing
y or z with x ∈ A1 but x /∈ A2 (compare to the notion of security for the information
function ownx mapping executions with the announcement φ to {A,B}). By Lemma
4.4, the first item guarantees that Alice’s announcement is best-card informative
to Bob. The other three items guarantee that it is best-card secure against Eve.
We implemented a Haskell program to check the above conditions, and showed the
following.

Theorem 4.9. If a, b ≥ 5, then (a, b, 2) is best-card solvable in two steps with ten
hands.

Proof. A best-card solution for (5, 5, 2) that consists of ten hands (quintuples) for
Alice’s announcement, represented hexadecimally, is

{0147B, 0259A, 13489, 156AB, 23456,
789AB, 05689, 0368A, 1237A, 12679}.

As usual in a two-announcement solution, following Alice’s announcement, Bob an-
nounces which is the best card held between Alice and him. Given an arbitrary card
deal of distribution type (5, 5, 2), a permutation of the set of bad cards [3,B] can
always make Alice’s actual hand of cards match one in the announcement above.

We then use Proposition 4.1 to lift this construction to all (a, b, 2) with
a, b ≥ 2.

It is tedious, but possible, to check by hand that this is indeed a best-card solution.
Note that Bob may not learn all of Alice’s cards. For example, if Bob holds 0458B
he remains uncertain between Alice holding 1237A and 12679, so that he does not
learn whether Alice holds the card 3 (or 6, or A).

Example 4.10. By Theorem 4.9, there is a ten-hand, two-step, best-card solution
for (5, 10, 2). However, by Theorem 4.2, no such protocol can be an all-card solution.
Note that 10 is the smallest value of b ≥ 5 for which (5, b, 2) violates the bounds of
Theorem 4.2; we do not know if there are all-card, ten-hand solutions for smaller b.

We did not find any solution with fewer than ten hands for (5, 5, 2), but do not
know if ten is the minimal required number of hands (we found many solutions of
more than ten hands). However, it is possible to prove that the lower bound of seven
hands obtained from Lemma 4.5 cannot be attained; we omit the details. We did not
find two-announcement solutions for (a, b, 2) with a or b smaller than 5 by Haskell
programming; however, for protocols consisting of more than two announcements
these sometimes do exist, as we have seen in Proposition 3.2.
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5 Bit-Exchange Protocols

As mentioned in Section 2, an 	-bit-exchange protocol allows the communicating
agents to share one of 2� possible messages so that Eve considers each one equally
possible. As was the case for best-card protocols, bit-exchange protocols enjoy a
monotonicity property.

Proposition 5.1. If there exists a secure public (k-pair private) 	-bit-exchange pro-
tocol for a distribution type τ and τ � τ ′, then there also exists a secure public (k-pair
private) 	-bit-exchange protocol for τ ′.

The proof is similar to that of Proposition 3.6. Fischer and Wright construct
protocols between arbitrarily many players holding a small portion of the deck. We
present a slight variant of their result.

Theorem 5.2 ([8], Corollary 4.4). There exist positive constants c1 < 2.7096 and
c2 < 0.0647 such that for any distribution type τ with m ≥ 2 communicating agents
and real number r ∈ (0, 1/m], if for each P 
= E we have that τP ≥ r|τ | and |τ | ≥
(4/r)c1(	+ c2), then there is a secure 	-bit-exchange protocol for τ .

In [8] it is assumed that τP = �r|τ |�, but the inequality τP ≥ �r|τ |� suffices in
view of Proposition 5.1. For the case of two communicating agents it will be better to
use a simpler solution which nevertheless provides bounds that are more convenient
in our setting. The following protocol is an adaptation of a 1-bit secret key exchange
protocol from [7], modified for 	-bit exchange.

Protocol 5.3 (card pair protocol). Let τ be a distribution type over m + 1 agents.
The card pair bit-exchange protocol proceeds as follows. Let H be a deal. If there
are fewer than two communicating agents holding cards, the protocol terminates.
Otherwise, let P be any communicating agent holding a maximal number of cards.

P chooses a card w she holds, a card v she does not hold, and asks:

Who holds one of {w, v}?
For Q 
= P, if Q holds one of {w, v} then Q answers I do, otherwise Q answers I
do not; all communicating agents answer the question.

1. If Q answers I do, the protocol is then repeated recursively on the deal H ′ with
H ′

P = HP \ {w}, H ′
Q = HQ \ {v}, and H ′

X = HX for all X 
∈ {P,Q}.
For the resulting run ρ = α ∗ ρ′ we recursively set μPQ(H, ρ) = γ ∗μPQ(H ′, ρ′),
where γ = 0 if P held min{w, v}, otherwise γ = 1. For all other pairs of
communicating agents X ,Y we set μXY(H, ρ) = μXY(H ′, ρ′).

2. If all agents answer I do not, the protocol is then repeated recursively on the
deal H ′ given by H ′

P = HP \{w}, H ′
E = HE \{v}, H ′

X = HX for all X 
∈ {P, E}
with 	′ = 	. For all pairs of communicating agents X ,Y we set μXY(H, ρ) =
μXY(H ′, ρ′).
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Once an agent has asked who holds one of {w, v}, we will say that the cards w, v
have been named; until then, they are unnamed. In the case of two communicating
agents, Protocol 5.3 provides secure 	-bit exchange, provided Alice and Bob have
enough cards. Note that in this case there is no difference between private and
public bit exchange (see Definition 2.8).

Theorem 5.4. If a, b ≥ 	 and a+ b ≥ e+2	 then Protocol 5.3 performs secure 	-bit
exchange for (a, b, e).

Proof. If x = (x0, . . . , xn) is a sequence and 	 a natural number we introduce the
notation x � 	 = (x0, . . . , x�−1), with the convention that xi is understood as 0 if
i > n. We will replace the information functions μXY by μXY � 	, to ensure they
have the right length.

Then, proceed by induction on the number of cards. If (say) Alice asks Do you
hold one of {w, v}? on the first round and Bob answers I do, then Alice and Bob
share a bit γ. This bit is not known by Eve, as we can easily define a deal H̃ where
Alice and Bob trade w and v, and clearly Alice could have asked the same question
and obtained the same answer if the deal were H̃ , but then they would instead share
the bit 1− γ. If we let a′ = |A′|, b′ = |B′| and e′ = |E ′|, then a′ = a− 1 ≥ 	− 1 = 	′,
and similarly b′ ≥ 	′, while a′ + b′ ≥ e + 2	 − 2 = e + 2	′. Hence by the induction
hypothesis the recursive application of the protocol performs secure 	′-bit exchange,
and in total Alice and Bob exchange 	 bits.

Otherwise since Alice held more than 	 cards then a′ ≥ 	, while b′ = b ≥ 	 and
a′+b′ ≥ e−1+2	 = e′−2	. Hence the recursive application of the protocol performs
secure 	-bit exchange.

Theorem 5.5. If a = b = c = e + 2	 then Protocol 5.3 performs secure two-pair
private 	-bit exchange for (a, b, c, e).

Proof. Once again we work with the information functions μXY � 	. First we observe
by induction on the number of rounds in the protocol that the two agents holding
the most unnamed cards differ by at most one in number of unnamed cards. More
precisely, suppose that at some round of the game, P0,P1,P2 are ordered in non-
decreasing order according to the number of cards they hold that have not previously
been named: then, P2 holds at most one more unnamed card than P1. This is seen
by a case-by-case analysis: for the first case, if at one stage of the protocol each agent
Pi holds ki unnamed cards and k1 = k2, then after P2 asks Who holds one of {w, v}?,
P2 holds k′2 = k2 − 1 unnamed cards, while P1 holds either k′1 = k2 or k′1 = k2 − 1.
Meanwhile, P0 holds k′0 ≤ k2 cards, so the agent with the most unnamed cards has
at most k2 unnamed cards and the second agent has at least k2 − 1 unnamed cards.
The other case is where k1 < k2, which by induction implies that k1 = k2 − 1; this
case can be checked similarly.

It follows from this that when the protocol terminates each agent holds at most
one unnamed card, for otherwise one of the agents can make a question. Now consider
Alice’s hand. She has at most one unnamed card, which means that each of her other
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e+2	− 1 cards was mentioned in a question Who holds one of {w, v}? In at most e
cases, Alice asked the question and Eve held the other card. The other 2	− 1 cards
correspond to secret bits shared with Bob or Carol, so by the pigeonhole principle
Alice shares at least 	 bits with at least one of the two.

By similar considerations, Bob and Carol each share at least 	 bits with another
agent, and this is only possible if there are (at least) two 	-bit exchange pairs.

6 The Public Code Protocol

We now show how bit-exchange protocols can be used to provide solutions to the
best-card problem. We call this method the public code protocol. In this protocol,
the communicating agents use the ‘bad’ cards to share secret bits between them, use
those bits to produce a code, and then communicate their best card using that code.
Recall that a card x is good if x ≤ e and bad otherwise; a card is bad if it cannot be
the best card of one of the communicating agents. Recall also that (p)q denotes the
remainder of p modulo q.

Protocol 6.1 (public code protocol). Let τ be a distribution type with m ≥ 2 com-
municating agents P0, . . . ,Pm−1. Let

• η = τE if m = 2, η = τE + 1 otherwise,

• 	 = �log2(η + 1)�, and
• Δ = Ω \ [0, τE ]; elements of Δ are ‘bad cards’.

For H ∈ (
Ω
τ

)
, the protocol proceeds as follows.

1. Each agent P privately chooses a maximal hand H ′
P ⊂ HP ∩Δ at random such

that H ′
P 
= HP . Setting H ′

E = Δ \⋃P�=E H
′
P , we thus obtain a deal H ′ ∈ (

Δ
τ ′
)
.

2. The agents simulate an (m− 1)	-bit-exchange protocol on the deck Δ using the
deal H ′, if one exists (otherwise the protocol fails).

3. Let (x1, . . . , xm−1) be the exchanged bits, where xi ∈ [0, 2�). For i ∈ [1, m], let
c∗i be the best card of Pi.

Then, P1, . . . ,Pm−1 successively announce the value of
(
min{c∗i , η}+ xi

)
η+1

.

4. Finally, P0 announces the value c∗ of the best card held between the communi-
cating agents.

Observe that in step 1, the agent P must choose H ′
P as follows. If P holds any

good cards, then HP ∩Δ � HP , so that H ′
P = HP ∩Δ is the only maximal sub-hand

satisfying the required conditions. Otherwise HP ∩ Δ = HP , which (as we will see
later) is undesirable. Thus P randomly chooses b ∈ HP and sets H ′

P = HP \ {b}.
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Finally, note that Eve may hold more cards in H ′ than in H , i.e. it may be that
τ ′E > τE .

Next we give sufficient conditions for which the secret code protocol is a solution
for the best-card problem. Below, the general intuition is that each agent P will hold
kP good cards, where kP ≤ τE +1. These cards will have to be discarded in order to
perform a bit-exchange protocol. Moreover, it is crucial for security that at least one
card is discarded by each communicating agent, and thus P will discard a total of
max{kP , 1} cards in order to perform the bit-exchange. Note that the precise value
of kP depends on the particular deal and thus we do not know it a priori.

Theorem 6.2. Let τ be a distribution type over a set A with m communicating
agents and Eve, and define η, 	 as in Protocol 6.1.

Suppose that for any vector (kP)P∈A of natural numbers such that
∑

P∈A kP =
τE + 1, there is an (m − 1)	-secret bit-exchange protocol for the distribution type τ ′

defined by

• τ ′P = τP −max{kP , 1} if P 
= E , and
• τ ′E = τE − kE + |{P ∈ A \ {E} : kP = 0}|.

Then, Protocol 6.1 satisfies

1. Correctness: it is a protocol in the sense of Definition 2.3 and never termi-
nates on step 2,

2. Informativity: it is best-card informative, and

3. Security: it is best-card secure.

Proof. Correctness. Let H be any τ -deal. For P ∈ A, let kP be the number of
good cards that P holds. Note that

∑
P∈A kP = τE +1. Let τ ′ be as in the statement

of the theorem. Each agent P 
= E privately chooses a hand H ′
P ⊂ HP ∩Δ with τ ′P

cards, and Eve is assigned H ′
E = Δ \ ⋃

P∈A\{E}H
′
P ; it is not hard to check that H ′

is a τ ′-deal. It follows from the assumptions that there is a protocol for τ ′ for the
agents to securely share (m − 1)	 secret bits, so the protocol does not terminate at
step 2. The secret bits uniquely determine a sequence (x1, . . . , xm−1) ∈ [0, 2�)m−1,
allowing the agents to perform step 3.

Since P0 can then compute each value of min{c∗i , η}, she can tell if either all other
agents hold bad cards (and hence she holds the best card), or if at least one other
agent holds good cards, she can compare them to her own and determine the value
of the best card. Therefore P0 can perform step 4.

Informativity. To see that Protocol 6.1 is informative, clearly after step 4, all
agents know the value of the best card. They also know who holds it, which we show
considering two cases. First assume that m > 2. If the best card is held by Pi with
i ≥ 1, then the best card of Pi is a good card, and hence others can compute its
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value using Pi’s announcement in step 3. Otherwise, by computing each agent’s best
card they know it is worse than the one announced by P0, hence P0 must hold the
best card.

If instead m = 2, we have that η = τE . Let P0 be Alice and P1 be Bob, with
best cards c∗A and c∗B, respectively. If c∗B < η or c∗A < η, we can reason as in the
general case. Otherwise, c∗A, c

∗
B ≥ η; but since the best card is at most η, then either

Alice holds η, and hence she knows that she holds the best card, or she holds a card
worse than η, and can deduce that Bob holds η and it is his best card. In either case
Alice announces that η is the value of the best card, and by similar reasoning this is
informative to Bob.

Security. Finally we check that the protocol is secure. Suppose that the agent A
holds the best card, c∗, and let B 
= A be another communicating agent. Let (H, ρ)
be an execution of the protocol so that H ′ is the deal chosen by the agents in step
1. For P ∈ A \ {E}, set DP = HP \H ′

P ; note that DP is the set of cards discarded
by P when choosing H ′

P , so that DP 
= ∅ for all P. In particular, we may define
c = minDB. We remark that since DB contains all good cards held by B, B must
have announced min{c∗B, η} = min{c, η}. The idea will be for A and B to swap c∗

and c.

To do this, consider a deal H̃ as follows. First, define c̃ to be the best card
of (HA ∪ {c}) \ {c∗}. Using the assumption that the bit-exchange protocol of step
2 is secure, let K ′ ∼E H ′ be a deal on Δ according to which the agents share
(x′1, . . . , x

′
m−1), defined by

x′i =

⎧⎪⎨
⎪⎩
(
min{c∗, η} −min{c̃, η}+ xi

)
η+1

if Pi = A,(
min{c, η} −min{c∗, η}+ xi

)
η+1

if Pi = B, and
xi otherwise.

We will replace H ′
P by K ′

P , allowing A and B to swap c∗ and c. Formally, for P 
= E ,
define KP = DP ∪K ′

P , then set

H̃P =

⎧⎪⎨
⎪⎩
(KA \ {c∗}) ∪ {c} if P = A,

(KB \ {c}) ∪ {c∗} if P = B, and
KP otherwise.

Finally, define H̃E = Ω \⋃P∈A\{E} H̃P . It is not too hard to check that (H̃, ρ) is an

execution of Protocol 6.1 where B holds the best card, and H ∼E H̃ . Since B 
= A
was arbitrary, we conclude that Protocol 6.1 is secure.

From this, we obtain many instances of best-card solvable distribution types.

Corollary 6.3. Let 	 = �log2(e + 1)� and suppose that (a, b, e) are such that a, b ≥
e + 	 + 1 and at least one of the two inequalities is strict. Then, Protocol 6.1 is
best-card secure and informative for (a, b, e).
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Proof. Let (kA, kB, kE) be a vector of natural numbers with kA+kB+kE = e+1 and
define τ ′ = (a′, b′, e′) as in the statement of Theorem 6.2. It not hard to check that
a′, b′ ≥ 	 and that

a′ + b′ ≥ a + b− e− 2 ≥ e+ 1 + 2	.

If e′ ≤ e + 1, we may use Theorem 5.4 to see that there is an (m − 1)	-secret bit-
exchange protocol for (a′, b′, e′), so that from Theorem 6.2 we can conclude that the
public code protocol is a best-card solution for (a, b, e). So it remains to check that
indeed e′ ≤ e+ 1.

First note that this inequality holds trivially if Eve holds at least one good card,
since e′ ≤ e − kE + 2. So suppose that she holds no good cards. Note that we
cannot have kA = kB = 0 since at least one of the two holds a good card; but then
|{P ∈ A \ {E} : kP = 0}| ≤ 1, so that e′ ≤ e + 1, as claimed.

In particular, Protocol 6.1 is best-card secure and informative for distribution
types (a, b, 1) with a ≥ 3 and b ≥ 4 and (a, b, 2) with a ≥ 5 and b ≥ 6. These
distribution types are not lower bounds: we recall Proposition 3.2 for (3, 3, 1) and
(4, 4, 2). Some open cases for small decks of cards are discussed in the concluding
section.

Example 6.4. Let us reconsider the example in the introduction, for distribution
type (3, 4, 1). The deal is (012, 3456, 7); {0, 1} is the set of good cards and [2, 7] is
the set of bad cards, and 	 = �log2(e+ 1)� = 1. Therefore, Alice holds the bad card
2 and all of Bob’s cards are bad. Alice and Bob now execute Protocol 6.1.

In step 1 we get that H ′
A = {2}, and suppose that H ′

B = {3, 4, 6} (Bob has to
choose a proper subset of {3, 4, 5, 6}). So, H ′

E = {5, 7}, and H ′ = (2, 346, 57).

In step 2 Alice and Bob simulate a 1-bit-exchange protocol usingH ′ = (2, 346, 57).
For example, Bob asks Alice: Do you hold one of {2, 3}?, the answer is Yes, and the
protocol terminates (Alice has no unnamed card and Bob has two unnamed cards).

In step 3 Alice announces the value of (min{c∗i , η}+ xi)η+1. Let us suppose that
xi = 0 when Alice holds 2 and that xi = 1 when Alice holds 3. Then, this amounts to
(0+0)2 = 0. Eve cannot learn Alice’s card from this announcement: she is uncertain
whether Alice holds 2 or 3, therefore she is uncertain whether Alice’s announcement
one is the result of (0 + 0)2 = 0 or (1 + 1)2 = 0. In the latter case, Alice’s best card
would have been 1 and she would also have held 3.

In step 4 Bob announces that the value of the best card held between him and
Alice is 0. We note that Eve who holds 6 already knows this, so that this is also
secure.

Now we consider larger groups of agents.

Corollary 6.5. There exist constants κ1, κ2 such that for any distribution type τ
with m ≥ 3 communicating agents, r ∈ (0, 1/m] and 	 = (m− 1)�log2(τE + 2)�, if for
each P 
= E we have that τP ≥ τE + r|τ |+1 and |τ | − τE ≥ (4/r)κ1(	+ κ2), then there
is a secure 	-bit-exchange protocol for τ .
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Proof. Let c1, c2 be the constants of Theorem 5.2. Define κ1 = c1 and κ2 = c2+1/12c1 .
Then, if |τ | − τE ≥ (4/r)κ1(	 + κ2), since r ≤ 1/m ≤ 1/3 we have that 4/r ≥ 12, from
which it follows that

|τ | − τE − 1 ≥ (4/r)κ1(	+ κ2)−
(

4/r
12

)c1

= (4/r)c1(	+ c2).

Then, as before we can check that the assumptions of Theorem 6.2 hold, but now
using Theorem 5.2.

In view of the estimates given in Theorem 5.2 of c1 and c2, we can set κ1 = 2.7096
and κ2 = 0.0659.

Example 6.6. As an illustration of Corollary 6.5, let there be three agents Alice,
Bob, Carol, and an eavesdropper Eve, where Eve holds two cards. To minimize the
size of the deck, take r = 1/3, so that

	 = (m− 1)�log2(τE + 2)� = (3− 1)�log2(2 + 2)� = 4.

From the requirements τP ≥ τE + r|τ | + 1 and |τ | − τE ≥ (4/r)κ1(	 + κ2) the second
requirement calculates to 122.7096(4+0.0659) = 3414.3355 which gives a lower bound
of the size of the deck of 3437. The first requirement is then easily met by equally
distributing the remaining cards over the three communicating players, so that giving
them each somewhat under 1200 cards guarantees the existence of a 4-bit-exchange
protocol. Once these bits have been gathered, two can be used as a one-time-pad by
Alice to communicate whether her best card is 0 (the best card in the deck), 1 or 2
or worse, and the other two for Bob to similarly communicate whether his best card
is 0, 1 or 2 or worse. After this, Carol can publicly announce the best card between
Alice, Bob, and herself, from which all agents can deduce who holds this best card.

7 Private Code Protocols

Having all agents share all secret bits may be overkill: it may be enough to have
bits shared between pairs of agents, who can then spread secrets throughout the
group. As we will see, this idea can lead to better bounds. We present a variation
of Protocol 6.1 tailored for three communicating agents.

Protocol 7.1 (private code protocol). Let (a, b, c, e) be a distribution type. Let
	 = �log2(e + 2)� and Δ = Ω \ [0, e]. For H ∈ (

Ω
τ

)
, the protocol proceeds as follows.

1. Each agent P privately chooses a maximal hand H ′
P ⊂ HP ∩Δ at random such

that H ′
P 
= HP .

2. Set H ′
E = Δ \ ⋃

P�=E H
′
P . The agents simulate a two-pair (	 + 1)-bit-exchange

protocol on the deck Δ using the deal H ′, if such a protocol exists. We let P,Q0

and P,Q1 be two pairs of agents who share 	+ 1 bits.
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3. Q0 and Q1 use 	 bits shared with P to securely tell her the least between their
best card and e+ 1.

4. P announces the value c∗ of the best card held between the communicating
agents. She then uses the remaining bit shared with each of Q0 and Q1 to
indicate whether it is P who holds the best card or not.

The security and informativity of this protocol can be checked similarly to those
of Protocol 6.1, giving the following.

Theorem 7.2. Let τ be a distribution type over A = {A,B, C, E} and define 	 as in
Protocol 7.1.

Suppose that for any vector k = (kA, kB, kC, kE) of natural numbers such that∑
k = e + 1, there is a two-pair private (	 + 1)-secret bit-exchange protocol for the

distribution type τ ′ defined by

• τ ′P = τP −max{kP , 1} if P 
= E , and
• τ ′E = τE − kE + |{P ∈ A \ {E} : kP = 0}|.

Then, Protocol 6.1 satisfies Correctness, Informativity and Security, as de-
fined in Theorem 6.2.

Corollary 7.3. Let (a, b, c, e) be a distribution type and 	 = �log2(e + 2)�. Then, if
a, b, c > 2(e+ 	+ 1), Protocol 7.1 is best-card secure and informative for (a, b, c, e).

Proof. Fix (kA, kB, kC, kE) and τ ′ = (a′, b′, c′, e′) as in the statement of Theorem 7.2.
If kE > 0 then e′ ≤ e− 1 + 3 = e + 2, and if kE = 0 then at least one of kA, kB, kC is
positive and e′ ≤ e + 2; in either case, e′ ≤ e + 2. From this it is easy to check that
a′, b′, c′ ≥ e′ + 2	, and thus Protocol 7.1 performs two-pair (	 + 1)-bit exchange by
Theorem 5.5 and Proposition 3.6. Thus we may apply Theorem 7.2.

Example 7.4. Let Eve hold a single card. Corollary 7.3 prescribes that a, b, c >
2(1+2+1) = 8. So for the distribution type (9, 9, 9, 1), Protocol 7.1 is already a best-
card solution. If Eve holds two cards, we similarly obtain a solution to (11, 11, 11, 2).
This is a stark contrast with Example 6.6, wherein a best-card solution was only
guaranteed for (1145, 1145, 1145, 2).

We remark that it is also possible to modify Protocol 7.1 for a larger number of
agents. For example, suppose that we could always use the bad cards so that some
agent P could share 	 + �log(m)� private bits with each other agent. Then, each
agent Q uses 	 shared bits to tell P her best card, after which P announces the value
of the best card held between them and uses the remaining �log(m)� bits shared with
each other agent to let them know who holds the best card.

Alternately, we can have Pi share sufficiently many bits with Pi+1 for all i < m−1.
Indeed, suppose that each such pair shares 	+2�log(m)� bits. Then, Pi successively
uses 	 bits to let Pi+1 know the value of the best card held by any Pj with j ≤ i and
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�log(m)� to let her know who holds this card, until we reach Pm−1, who then knows
the best card and who holds it. Pm−1 publicly announces the value of the best card,
then tells Pm−2 who holds it using the remaining �log(m)� bits they share, and so
on until we reach P0 again.

However, we are not aware of any protocols that achieve such a private, but not
public, bit exchange. It is likely that private bit exchange with more than three
communicating agents can be achieved using a smaller deck than is required for
public bit exchange, but we leave the development of such protocols for future work.

8 Concluding Remarks

We introduced the best-card Russian cards problem, where given m + 1 players and
a pack of ranked cards, m of the players wish to know the value of the best card
between them without the remaining player getting to know who holds said card.
We used methods inspired by both block design as well as secret bit sharing schemes.
This problem is a weakening of the more standard, all-card Russian cards problem,
and thus one would expect the best-card problem to be better-behaved. Indeed,
this is the case, both with respect to the complexity of the solutions and the sets of
solvable instances of the problem.

As we have shown, whenever Alice and Bob each hold at least three cards and Eve
holds one, it suffices for Alice to announce that her hand is one of four possibilities.
Contrast this with the fact that the maximum length of an all-card secure and
informative (5, 5, 1)-announcement is 66 quintuples [1]. However, fewer hands leak
more information to Eve, so an alternative goal (for a two-step protocol) could be to
maximize the number of hands. Either way, the number of hands in an announcement
is only a crude measure of complexity; while typically one may require less bits to
communicate a small number of hands, oftentimes a set consisting of a large number
of hands may be represented by a small amount of information, for example by the
sum of a player’s cards modulo a suitable prime [2].

If we allow longer protocols, then many distribution types for which we have no
known all-card solutions become best-card solvable. Generally speaking, it is hard to
determine whether a given distribution type (a, b, e) is best-card or all-card solvable
(although the all-card unsolvability of (1, 1, 1) is proved in [9]). For example, we
currently do not know whether (3, 2, 1) or (4, 3, 2) is best-card solvable.

Nevertheless, all known all-card solutions (be it in two or more steps) require the
deck to be at least quadratic on e (see e.g. [1, 3]). On the other hand, the public
code protocol only requires Alice and Bob to have linearly many cards as Eve. This
suggests that there are many best-card solvable cases that are not all-card solvable.

With more than two communicating agents the contrast between all-card and
best-card solvability is starker; in fact, no all-card solutions are currently known when
Eve holds cards and there are at least three communicating agents. The solution we
propose also allows the size of the deck to grow linearly on Eve’s hand (for a fixed
number of agents holding a fixed portion of the deck).
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There are several directions for future work, but we mention two natural pos-
sibilities. First, observe that Proposition 3.9 shows that there are many best-card
solvable cases with e > a. Nevertheless, the deck grows quadratically on e, which
is not surprising since the protocol relies on an all-card solution. For 	-bit-exchange
protocols there are solutions where the eavesdropper holds most of the cards [8].
Thus it is natural to ask if there are best-card protocols where Eve holds more cards
than one or more of the communicating agents, with the size of the deck linear on
Eve’s hand.

Finally, we remark that the protocols we have presented are not perfectly secure,
as Eve may learn probabilistic information about the owner of the best card even
if she does not learn who it is with certainty. The development of perfectly secure
best-card protocols is another interesting direction for future inquiry.
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