6-Cycle decompositions of complete 3-uniform hypergraphs

R. Lakshmi T. Poovaragavan

Department of Mathematics
Annamalai University, Annamalainagar-608 002
India

mathlakshmi@gmail.com poovamath@gmail.com

Abstract

A complete 3-uniform hypergraph of order n has vertex set V with |V| = n and the set of all 3-subsets of V as its edge set. A 6-cycle in this hypergraph is $v_1, e_1, v_2, e_2, v_3, e_3, v_4, e_4, v_5, e_5, v_6, e_6, v_1$ where $v_1, v_2, v_3, v_4, v_5, v_6$ are distinct vertices and $e_1, e_2, e_3, e_4, e_5, e_6$ are distinct edges such that $v_i, v_{i+1} \in e_i$ for $i \in \{1, 2, 3, 4, 5\}$ and $v_6, v_1 \in e_6$. A decomposition of a hypergraph is a partition of its edge set into disjoint subsets. In this paper we give necessary and sufficient conditions for a decomposition of the complete 3-uniform hypergraph of order n into 6-cycles.

1 Introduction

A hypergraph \mathcal{H} consists of a finite nonempty set V of vertices and a set $\mathcal{E} = \{e_1, e_2, \ldots, e_m\}$ of edges where each $e_i \subseteq V$ with $|e_i| > 0$ for $i \in \{1, 2, \ldots, m\}$. If $|e_i| = h$, then we call e_i an h-edge. If every edge of \mathcal{H} is an h-edge for some h, then we say that \mathcal{H} is h-uniform. The complete h-uniform hypergraph $K_n^{(h)}$ is the hypergraph with vertex set V, where |V| = n, in which every h-subset of V determines an h-edge. It then follows that $K_n^{(h)}$ has $\binom{n}{h}$ edges. When h = 2, $K_n^{(2)} = K_n$, the complete graph on n vertices.

A decomposition of a hypergraph \mathcal{H} is a set $\mathcal{F} = \{\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_k\}$ of subhypergraphs of \mathcal{H} such that $\mathcal{E}(\mathcal{F}_1) \cup \mathcal{E}(\mathcal{F}_2) \cup \dots \cup \mathcal{E}(\mathcal{F}_k) = \mathcal{E}(\mathcal{H})$ and $\mathcal{E}(\mathcal{F}_i) \cap \mathcal{E}(\mathcal{F}_j) = \emptyset$ for all $i, j \in \{1, 2, \dots, k\}$ with $i \neq j$. We denote this by $\mathcal{H} = \mathcal{F}_1 \oplus \mathcal{F}_2 \oplus \dots \oplus \mathcal{F}_k$. If $\mathcal{H} = \mathcal{F}_1 \oplus \mathcal{F}_2 \oplus \dots \oplus \mathcal{F}_k$ is a decomposition such that $\mathcal{F}_1 \cong \mathcal{F}_2 \cong \dots \cong \mathcal{F}_k \cong \mathcal{G}$, where \mathcal{G} is a fixed hypergraph, then \mathcal{F} is called a \mathcal{G} -decomposition of \mathcal{H} .

A cycle of length k in a hypergraph \mathcal{H} is a sequence of the form $v_1, e_1, v_2, e_2, \ldots, v_k, e_k, v_1$, where v_1, v_2, \ldots, v_k are distinct vertices and e_1, e_2, \ldots, e_k are distinct edges satisfying $v_i, v_{i+1} \in e_i$ for $i \in \{1, 2, \ldots, k-1\}$ and $v_k, v_1 \in e_k$.

Decompositions of $K_n^{(3)}$ into Hamilton cycles were considered in [1, 2] and the proof of their existence was given in [10]. Decompositions of $K_n^{(h)}$ into Hamilton

ISSN: 2202-3518 ©The author(s)

cycles were considered in [5, 6], a complete solution for $h \geq 4$ and $n \geq 30$ was given in [5], and cyclic decompositions were considered in [6]. In [3], necessary and sufficient conditions were given for a \mathcal{G} -decomposition of $K_n^{(3)}$, where \mathcal{G} is any 3-uniform hypergraph with at most three edges and at most six vertices. In [4], decompositions of $K_n^{(3)}$ into 4-cycles were considered and their existence was established.

In this paper, we are interested in 6-cycle decompositions of $K_n^{(3)}$. For convenience, we will often write the edge $\{v_a, v_b, v_c\}$ as v_a - v_b - v_c and the cycle $v_1, e_1, v_2, e_2, v_3, e_3, v_4, e_4, v_5, e_5, v_6, e_6, v_1$ as $(v_1$ - y_1 - v_2, v_2 - y_2 - v_3, v_3 - y_3 - v_4, v_4 - y_4 - v_5, v_5 - y_5 - v_6, v_6 - y_6 - $v_1)$, where $e_i = v_i$ - y_i - v_{i+1} for $i \in \{1, 2, 3, 4, 5\}$ and $e_6 = v_6$ - y_6 - v_1 . A necessary condition for the existence of a 6-cycle decomposition of $K_n^{(3)}$ is: 6 divides the number of edges in $K_n^{(3)}$, that is, $6 \mid \binom{n}{3}$. Clearly, if n is even and $6 \mid \binom{n}{3}$, then $n \equiv 0$, 2 or 10 (mod 18) and if n is odd and $6 \mid \binom{n}{3}$, then $n \equiv 1$, 9 or 29 (mod 36). Thus we have:

Lemma 1.1. For $n \geq 6$, if there exists a 6-cycle decomposition of $K_n^{(3)}$, then $n \equiv 0 \pmod{18}$, $2 \pmod{18}$, $10 \pmod{18}$, $1 \pmod{36}$, $9 \pmod{36}$ or $29 \pmod{36}$.

In Sections 3 through 8, we prove sufficiency. To prove it, we need the following theorems.

Theorem 1.1. (Šajna [7]) Let n be an odd integer and m be an even integer with $3 \le m \le n$. The complete graph K_n can be decomposed into cycles of length m whenever m divides the number of edges in K_n .

Theorem 1.2. (Tarsi [9]) Let t and n be positive integers. There exists a P_{t+1} -decomposition of the complete graph K_n if and only if $n \ge t + 1$ and $n(n-1) \equiv 0 \pmod{2t}$, where P_{t+1} is the path of length t.

Theorem 1.3. (Sotteau [8]) The complete bipartite graph $K_{m,n}$ can be decomposed into 2k-cycles if and only if m and n are even, $m \ge k$, $n \ge k$, and 2k divides mn.

2 Preliminary lemmas

We assume the vertex set of $K_n^{(3)}$ is $\{v_i : i \in \mathbb{Z}_n\}$, where \mathbb{Z}_n is the set of integers modulo n. For non-negative integers i and j with i < j, we denote the set $\{v_i, v_{i+1}, \ldots, v_j\}$ by $[v_i, v_j]$, and the set $\{i, i+1, \ldots, j\}$ by [i, j].

2.1 The hypergraph $\mathcal{H}_m^{'}$

Define the 3-uniform hypergraph \mathcal{H}'_m of order 3m as follows. Let $V(\mathcal{H}'_m)$ be $\{v_i : i \in \mathbb{Z}_{3m}\}$, and let $\mathcal{E}(\mathcal{H}'_m)$ be the set of all 3-edges v_a - v_b - v_c such that $a \in [0, m-1]$, $b \in [m, 2m-1]$ and $c \in [2m, 3m-1]$. Note that $|\mathcal{E}(\mathcal{H}'_m)| = m^3$.

A necessary condition for the existence of a 6-cycle decomposition of \mathcal{H}'_m is: $6|m^3$, i.e., $m \equiv 0 \pmod{6}$. Our aim is to decompose \mathcal{H}'_m into $\frac{m^3}{6}$ edge-disjoint 6-cycles whenever $m \equiv 0 \pmod{6}$.

By Theorem 1.3, the complete bipartite graph $K_{m,m}$ with partite sets $[v_0, v_{m-1}]$ and $[v_m, v_{2m-1}]$ can be decomposed into 6-cycles if and only if $m \equiv 0 \pmod{6}$. Let \mathscr{F} be a decomposition of $K_{m,m}$ into 6-cycles. For each 6-cycle $(x_1, x_2, x_3, x_4, x_5, x_6, x_1)$ of \mathscr{F} , construct m edge-disjoint 6-cycles $(x_1-v_i-x_2, x_2-v_i-x_3, x_3-v_i-x_4, x_4-v_i-x_5, x_5-v_i-x_6, x_6-v_i-x_1)$ of \mathscr{H}'_m where $i \in [2m, 3m-1]$. Thus, we have

Lemma 2.1. For $m \equiv 0 \pmod{6}$, \mathcal{H}'_m decomposes into 6-cycles.

2.2 The hypergraph $\mathcal{H}_m^{''}$

Define the hypergraph \mathcal{H}_m'' of order 2m+1 as follows: let $V(\mathcal{H}_m'') = \{\infty\} \cup \{v_i : i \in \mathbb{Z}_{2m}\}$ and let $\mathcal{E}(\mathcal{H}_m'')$ be the set of all 3-edges ∞ - v_b - v_c where $b \in [0, m-1]$ and $c \in [m, 2m-1]$. Note that $|\mathcal{E}(\mathcal{H}_m'')| = m^2$.

A necessary condition for the existence of a 6-cycle decomposition of \mathcal{H}''_m is that $6|m^2$, i.e., $m \equiv 0 \pmod{6}$. Our aim is to decompose \mathcal{H}''_m into $\frac{m^2}{6}$ edge-disjoint 6-cycles whenever $m \equiv 0 \pmod{6}$.

By Theorem 1.3, the complete bipartite graph $K_{m,m}$ with partite sets $[v_0, v_{m-1}]$ and $[v_m, v_{2m-1}]$ can be decomposed into 6-cycles if and only if $m \equiv 0 \pmod{6}$. Let \mathscr{F} be a decomposition of $K_{m,m}$ into 6-cycles. For each 6-cycle $(x_1, x_2, x_3, x_4, x_5, x_6, x_1)$ of \mathscr{F} , construct the 6-cycle $(x_1-\infty-x_2, x_2-\infty-x_3, x_3-\infty-x_4, x_4-\infty-x_5, x_5-\infty-x_6, x_6-\infty-x_1)$ of \mathscr{H}''_m . Thus, we have

Lemma 2.2. For $m \equiv 0 \pmod{6}$, \mathcal{H}''_m decomposes into 6-cycles.

2.3 The hypergraph \mathcal{H}_m

Define the 3-uniform hypergraph \mathcal{H}_m of order 2m as follows: let $V(\mathcal{H}_m) = \{v_i : i \in \mathbb{Z}_{2m}\}$ grouped as $G_0 = [v_0, v_{m-1}]$ and $G_1 = [v_m, v_{2m-1}]$. Let $\mathcal{E}(\mathcal{H}_m)$ be the set of all 3-edges v_a - v_b - v_c such that v_a , v_b and v_c are not all from the same group, that is, at least one of v_a , v_b , v_c is an element of G_0 and at least one of v_a , v_b , v_c is an element of G_1 . Note that $|\mathcal{E}(\mathcal{H}_m)| = m^2(m-1)$.

A necessary condition for the existence of a 6-cycle decomposition of \mathcal{H}_m is that $6|m^2(m-1)$, i.e., $m \equiv 0, 1, 3$ or $4 \pmod{6}$. For required m, our aim is to decompose \mathcal{H}_m into $\frac{m^2(m-1)}{6}$ edge-disjoint 6-cycles.

By Theorem 1.1, if m is odd and 12|m(m-1), i.e., $m \equiv 1$ or $9 \pmod{12}$, then K_m with vertex set G_0 and K_m with vertex set G_1 are decomposable into 6-cycles. Let \mathscr{F}_0 and \mathscr{F}_1 be decompositions of K_m into 6-cycles with vertex sets G_0 and G_1 , respectively. For each 6-cycle $(x_1, x_2, x_3, x_4, x_5, x_6, x_1)$ of \mathscr{F}_0 , construct m edge-disjoint 6-cycles $(x_1 \cdot v_i \cdot x_2, x_2 \cdot v_i \cdot x_3, x_3 \cdot v_i \cdot x_4, x_4 \cdot v_i \cdot x_5, x_5 \cdot v_i \cdot x_6, x_6 \cdot v_i \cdot x_1)$, where $v_i \in G_1$ and for each 6-cycle $(y_1, y_2, y_3, y_4, y_5, y_6, y_1)$ of \mathscr{F}_1 , construct m edge-disjoint 6-cycles $(y_1 \cdot v_j \cdot y_2, y_2 \cdot v_j \cdot y_3, y_3 \cdot v_j \cdot y_4, y_4 \cdot v_j \cdot y_5, y_5 \cdot v_j \cdot y_6, y_6 \cdot v_j \cdot y_1)$, where $v_j \in G_0$. The collection of all these 6-cycles yields a decomposition of \mathcal{H}_m . Thus, we have:

Lemma 2.3. Let $m \equiv 1$ or $9 \pmod{12}$. If $m \neq 1$, then \mathcal{H}_m decomposes into 6-cycles.

Lemma 2.4. \mathcal{H}_6 decomposes into 6-cycles.

```
Proof. The 6-cycle decomposition of \mathcal{H}_{6} is as follows:

For v_{i} \in [v_{6}, v_{11}], (v_{i}-v_{0}-v_{1}, v_{1}-v_{i}-v_{5}, v_{5}-v_{i}-v_{2}, v_{2}-v_{i}-v_{4}, v_{4}-v_{i}-v_{3}, v_{3}-v_{2}-v_{i}) and (v_{i}-v_{1}-v_{2}, v_{2}-v_{i}-v_{0}, v_{0}-v_{i}-v_{3}, v_{3}-v_{i}-v_{5}, v_{5}-v_{i}-v_{4}, v_{4}-v_{1}-v_{i}); for v_{j} \in [v_{0}, v_{5}], (v_{j}-v_{6}-v_{7}, v_{7}-v_{j}-v_{11}, v_{11}-v_{j}-v_{8}, v_{8}-v_{j}-v_{10}, v_{10}-v_{j}-v_{9}, v_{9}-v_{8}-v_{j}) and (v_{j}-v_{7}-v_{8}, v_{8}-v_{j}-v_{6}, v_{6}-v_{j}-v_{9}, v_{9}-v_{j}-v_{11}, v_{11}-v_{j}-v_{10}, v_{10}-v_{7}-v_{j}); for (k, \ell) \in \{(6, 7), (8, 9), (10, 11)\}, (v_{\ell}-v_{3}-v_{1}, v_{1}-v_{3}-v_{k}, v_{k}-v_{0}-v_{4}, v_{4}-v_{\ell}-v_{0}, v_{0}-v_{k}-v_{5}, v_{5}-v_{0}-v_{\ell}); and for (k, \ell) \in \{(0, 1), (2, 3), (4, 5)\}, (v_{\ell}-v_{9}-v_{7}, v_{7}-v_{9}-v_{k}, v_{k}-v_{6}-v_{10}, v_{10}-v_{\ell}-v_{6}, v_{6}-v_{k}-v_{11}, v_{11}-v_{6}-v_{\ell}).
```

Lemma 2.5. If $m \equiv 0 \pmod{18}$, then \mathcal{H}_m decomposes into 6-cycles.

Proof. Let m = 18k, where k is a positive integer, $G_0 = A_1 \cup A_2 \cup \cdots \cup A_{3k}$ and $G_1 = B_1 \cup B_2 \cup \cdots \cup B_{3k}$, where $A_i = [v_{6i-6}, v_{6i-1}]$ and $B_j = [v_{18k+6j-6}, v_{18k+6j-1}]$.

For $i, j \in \{1, 2, ..., 3k\}$, let $\mathcal{H}_{i,j} \cong \mathcal{H}_6$ be the hypergraph with vertex set grouped A_i and B_j . By Lemma 2.4, \mathcal{H}_6 is 6-cycle decomposable.

For $i, j, k \in \{1, 2, ..., 3k\}$ with j < k, let $\mathcal{H}'_{i,j,k} \cong \mathcal{H}'_6$ be the hypergraph with vertex set $A_i \cup B_j \cup B_k$ and edge set $\{E : |E \cap A_i| = |E \cap B_j| = |E \cap B_k| = 1\}$. For $i, j, k \in \{1, 2, ..., 3k\}$ with i < j, let $\mathcal{H}''_{i,j,k} \cong \mathcal{H}'_6$ be the hypergraph with vertex set $A_i \cup A_j \cup B_k$ and edge set $\{E : |E \cap A_i| = |E \cap A_j| = |E \cap B_k| = 1\}$. By Lemma 2.1, \mathcal{H}'_6 is 6-cycle decomposable.

Since
$$\mathcal{H}_m = \mathcal{H}_{18k} = 9k^2\mathcal{H}_6 \oplus 9k^2(3k-1)\mathcal{H}_6'$$
, the lemma follows.

Lemma 2.6. \mathcal{H}_{10} decomposes into 6-cycles.

```
Proof. Note that V(\mathcal{H}_{10}) = \{v_i : i \in \mathbb{Z}_{20}\}, G_0 = [v_0, v_9] \text{ and } G_1 = [v_{10}, v_{19}].
```

The complete graph K_{10} with vertex set $[v_0, v_9]$ is Hamilton-path decomposable by Theorem 1.2. Decompose each Hamilton-path P_{10} in the decomposition into a P_7 and a P_4 . For each P_7 : $(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ in the resulting decomposition of K_{10} , $(v_i$ - x_1 - x_2 , x_2 - v_i - x_3 , x_3 - v_i - x_4 , x_4 - v_i - x_5 , x_5 - v_i - x_6 , x_6 - x_7 - v_i), where $i \in [10, 19]$, is a 6-cycle in \mathcal{H}_{10} . For each P_4 : (y_1, y_2, y_3, y_4) in the resulting decomposition of K_{10} , $(v_k$ - y_2 - y_1 , y_1 - v_ℓ - y_2 , y_2 - v_k - y_3 , y_3 - y_2 - v_ℓ , v_ℓ - y_3 - y_4 , y_4 - y_3 - v_k), where $(k, \ell) \in \{(10, 11), (12, 13), (14, 15), (16, 17), (18, 19)\}$ is a 6-cycle in \mathcal{H}_{10} .

Similarly, the complete graph K_{10} with vertex set $[v_{10}, v_{19}]$ is Hamilton-path decomposable. Decompose each Hamilton-path P_{10} in the decomposition into a P_7 and a P_4 . For each $P_7: (x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ in the resulting decomposition of K_{10} , $(v_j-x_1-x_2, x_2-v_j-x_3, x_3-v_j-x_4, x_4-v_j-x_5, x_5-v_j-x_6, x_6-x_7-v_j)$, where $j \in [0, 9]$, is a 6-cycle in \mathcal{H}_{10} . For each $P_4: (y_1, y_2, y_3, y_4)$ in the resulting decomposition of K_{10} , $(v_k-y_2-y_1, y_1-v_\ell-y_2, y_2-v_k-y_3, y_3-y_2-v_\ell, v_\ell-y_3-y_4, y_4-y_3-v_k)$, where $(k, \ell) \in \{(0, 1), (2, 3), (4, 5), (6, 7), (8, 9)\}$, is a 6-cycle in \mathcal{H}_{10} .

The collection of all these 6-cycles yields a decomposition of \mathcal{H}_{10} into 6-cycles.

2.4 The hypergraph $K_{m,n}^{(3)}$

Define the 3-uniform hypergraph $K_{m,n}^{(3)}$ of order m+n as follows. Let $V(K_{m,n}^{(3)}) = \{v_i : i \in \mathbb{Z}_{m+n}\}$ be grouped as $G_0 = [v_0, v_{m-1}]$ and $G_1 = [v_m, v_{m+n-1}]$. Let $\mathcal{E}(K_{m,n}^{(3)})$ be the set of all 3-edges v_a - v_b - v_c such that v_a , v_b and v_c are not all from the same group, that is, at least one of v_a , v_b , v_c is an element of G_0 and at least one of v_a , v_b , v_c is an element of G_1 . Note that $\left|\mathcal{E}(K_{m,n}^{(3)})\right| = \frac{mn(m+n-2)}{2}$ and $K_{m,m}^{(3)} = \mathcal{H}_m$. A necessary condition for the existence of a 6-cycle decomposition of $K_{m,n}^{(3)}$ is that 12|mn(m+n-2).

Lemma 2.7. If $m \equiv 1$ or 9 (mod 12), $n \equiv 0, 1, 4$ or 9 (mod 12) and $n \geq 7$, then $K_{m,n}^{(3)}$ decomposes into 6-cycles.

Proof. By Theorem 1.1, K_m with vertex set $[v_0, v_{m-1}]$ is 6-cycle decomposable. For each 6-cycle $(x_1, x_2, x_3, x_4, x_5, x_6, x_1)$ in the C_6 -decomposition of K_m , the 6-cycle $(v_j-x_1-x_2, x_2-v_j-x_3, x_3-v_j-x_4, x_4-v_j-x_5, x_5-v_j-x_6, x_6-x_1-v_j)$, where $j \in [m, m+n-1]$ is a 6-cycle in $K_{m,n}^{(3)}$. By Theorem 1.2, K_n with vertex set $[v_m, v_{m+n-1}]$ is P_7 -decomposable. For each $P_7: (x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ in the P_7 -decomposition of K_n , $(v_i-x_1-x_2, x_2-v_i-x_3, x_3-v_i-x_4, x_4-v_i-x_5, x_5-v_i-x_6, x_6-x_7-v_i)$, where $i \in [0, m-1]$, is a 6-cycle in $K_{m,n}^{(3)}$. The collection of all these 6-cycles yields a 6-cycle decomposition of $K_{m,n}^{(3)}$.

Lemma 2.8. $K_{10,18}^{(3)}$ decomposes into 6-cycles.

Proof. The 6-cycle decomposition of $K_{10,18}^{(3)}$ is as follows.

The complete graph K_{10} with vertex set $[v_0, v_9]$ is Hamilton-path decomposable. Decompose each Hamilton-path P_{10} in the decomposition into a P_7 and a P_4 . For each $P_7: (x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ in the resulting decomposition of K_{10} , $(v_i-x_1-x_2, x_2-v_i-x_3, x_3-v_i-x_4, x_4-v_i-x_5, x_5-v_i-x_6, x_6-x_7-v_i)$, where $i \in [10, 27]$, is a 6-cycle in $K_{10,18}^{(3)}$. For each $P_4: (y_1, y_2, y_3, y_4)$ in the resulting decomposition of K_{10} , $(v_k-y_2-y_1, y_1-v_\ell-y_2, y_2-v_k-y_3, y_3-y_2-v_\ell, v_\ell-y_3-y_4, y_4-y_3-v_k)$, where $(k, \ell) \in \{(10, 11), (12, 13), \ldots, (26, 27)\}$, is a 6-cycle in $K_{10,18}^{(3)}$.

For convenience, relabel the vertices in $[v_{10}, v_{27}]$ by $[u_0, u_{17}]$. The complete graph K_{18} with vertex set $[u_0, u_{17}]$ is decomposable into 25 P_7 's, one P_3 and one P_2 . To see this, for $i \in \{0, 1, ..., 8\}$, let

 $H_i = u_i u_{i+1} u_{i+17} u_{i+2} u_{i+16} u_{i+3} u_{i+15} u_{i+4} u_{i+14} u_{i+5} u_{i+13} u_{i+6} u_{i+12} u_{i+7} u_{i+11} u_{i+8} u_{i+10} u_{i+9}$

be a Hamilton path decomposition of K_{18} , where subscripts are reduced modulo 18. For $i \in \{0, 1, ..., 7\}$, decompose H_i into

```
u_{i}u_{i+1}u_{i+17}u_{i+2}u_{i+16}u_{i+3} \oplus u_{i+3}u_{i+15}u_{i+4}u_{i+14}u_{i+5}u_{i+13}u_{i+6}\oplus u_{i+6}u_{i+12}u_{i+7}u_{i+11}u_{i+8}u_{i+10}u_{i+9},
```

a P_6 and two copies of P_7 . Decompose H_8 into $u_8u_9u_7u_{10}u_6u_{11}u_5 \oplus u_5u_{12}u_4u_{13}u_3u_{14}u_2 \oplus u_2u_{15}u_1 \oplus u_1u_{16} \oplus u_{16}u_0 \oplus u_0u_{17}$, two copies of P_7 , one P_3 and three P_2 's. Now decompose (eight P_6 's and two P_2 's) $\{u_iu_{i+1}u_{i+17}u_{i+2}u_{i+16}u_{i+3}: i \in \{0, 1, ..., 7\}\} \cup \{0, 1, ..., 7\}$

 $\{u_1u_{16}, u_0u_{17}\}\$ into (seven P_7 's) $\{u_{17}u_0u_1u_{17}u_2u_{16}u_3, u_{16}u_1u_2u_0u_3u_{17}u_4, u_2u_3u_1u_4u_0u_5u_{10}, u_3u_4u_2u_5u_1u_6u_9, u_4u_5u_3u_6u_2u_7u_8, u_5u_6u_4u_7u_3u_8u_6, u_6u_7u_5u_8u_4u_9u_5\}$. For each $P_7: (x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ in the resulting decomposition of $K_{18}, (v_i-x_1-x_2, x_2-v_i-x_3, x_3-v_i-x_4, x_4-v_i-x_5, x_5-v_i-x_6, x_6-x_7-v_i)$, where $i \in [0, 9]$, is a 6-cycle in $K_{10,18}^{(3)}$. Obtain from $P_3 \cup P_2$: $u_2u_{15}u_1 \cup u_0u_{16}, (v_k-u_{15}-u_2, u_2-v_\ell-u_{15}, u_{15}-v_k-u_1, u_1-u_{15}-v_\ell, v_\ell-u_0-u_{16}, u_{16}-u_0-v_k)$, where $(k, \ell) \in \{(0, 1), (2, 3), \dots, (8, 9)\}$, a 6-cycle in $K_{10,18}^{(3)}$.

The collection of all these 6-cycles yields a decomposition of $K_{10.18}^{(3)}$ into 6-cycles.

Lemma 2.9. $K_{29,36}^{(3)}$ decomposes into 6-cycles.

Proof. The complete graph K_{29} with vertex set $[v_0, v_{28}]$ is Hamilton-cycle decomposable. Decompose each Hamilton-cycle C_{29} in the decomposition into four P_7 , one P_4 and one P_3 . For each $P_7: (x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ in the resulting decomposition of $K_{29}, (v_i\text{-}x_1\text{-}x_2, x_2\text{-}v_i\text{-}x_3, x_3\text{-}v_i\text{-}x_4, x_4\text{-}v_i\text{-}x_5, x_5\text{-}v_i\text{-}x_6, x_6\text{-}x_7\text{-}v_i)$, where $i \in [29, 64]$, is a 6-cycle in $K_{29,36}^{(3)}$. For each $P_4: (y_1, y_2, y_3, y_4)$ in the resulting decomposition of $K_{29}, \{v_k\text{-}y_2\text{-}y_1, y_1\text{-}v_\ell\text{-}y_2, y_2\text{-}v_k\text{-}y_3, y_3\text{-}y_2\text{-}v_\ell, v_\ell\text{-}y_3\text{-}y_4, y_4\text{-}y_3\text{-}v_k\}$, where $(k, \ell) \in \{(29, 30), (31, 32), \dots, (63, 64)\}$, is a 6-cycle in $K_{29,36}^{(3)}$. For each $P_3: (z_1, z_2, z_3)$ in the resulting decomposition of $K_{29}, \{z_2\text{-}z_3\text{-}v_k, v_k\text{-}z_2\text{-}z_1, z_1\text{-}z_2\text{-}v_\ell, v_\ell\text{-}z_2\text{-}z_3, z_3\text{-}z_2\text{-}v_m, v_m\text{-}z_1\text{-}z_2\}$, where $(k, \ell, m) \in \{(29, 30, 31), (32, 33, 34), \dots, (62, 63, 64)\}$, is a 6-cycle in $K_{29,36}^{(3)}$.

By Theorem 1.2, the complete graph K_{36} with vertex set $[v_{29}, v_{64}]$ is P_7 -decomposable. For each $P_7: (x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ in the P_7 -decomposition of K_{36} , $(v_i-x_1-x_2, x_2-v_i-x_3, x_3-v_i-x_4, x_4-v_i-x_5, x_5-v_i-x_6, x_6-x_7-v_i)$, where $i \in [0, 28]$, is a 6-cycle in $K_{29,36}^{(3)}$.

The collection of all these 6-cycles yields a decomposition of $K_{29.36}^{(3)}$ into 6-cycles.

2.5 $K_n^{(3)}$ to $K_{n+1}^{(3)}$

Lemma 2.10. If $n \ge 7$, $n \equiv 0, 1, 4$, or $9 \pmod{12}$ and the hypergraph $K_n^{(3)}$ has a 6-cycle decomposition, then the hypergraph $K_{n+1}^{(3)}$ has a 6-cycle decomposition.

Proof. Let $V(K_{n+1}^{(3)}) = \{\infty\} \cup \{v_i : i \in \mathbb{Z}_n\}$ and $\mathcal{E}(K_{n+1}^{(3)}) = \mathcal{E}(K_n^{(3)}) \cup \{(\infty - v_i - v_j) \mid i, j \in [0, n-1]\}$. By hypothesis, $K_n^{(3)}$ has a 6-cycle decomposition. It is enough to prove that the remaining 3-uniform hypergraph $\{\infty - v_i - v_j \mid i, j \in [0, n-1]\}$ admits a 6-cycle decomposition. By Theorem 1.2, the complete graph K_n has a P_7 -decomposition. Let \mathcal{P} be the set of all paths of length 6 in the decomposition of K_n . If $P_7 = (v_0, v_1, \dots, v_6) \in \mathcal{P}$, then $(\infty - v_0 - v_1, v_1 - \infty - v_2, \dots, v_4 - \infty - v_5, v_5 - v_6 - \infty)$ is a 6-cycle in $K_{n+1}^{(3)}$. Applying the method to each path $P_7 \in \mathcal{P}$, we get a 6-cycle decomposition of $K_{n+1}^{(3)}$.

$3 \quad n \equiv 0 \pmod{18}$

Lemma 3.1. $K_9^{(3)}$ decomposes into 6-cycles.

Proof. A 6-cycle decomposition of $K_0^{(3)}$ is as follows:

```
 (v_0-v_1-v_2,v_2-v_3-v_4,v_4-v_5-v_6,v_6-v_7-v_8,v_8-v_4-v_3,v_3-v_2-v_0), \\ (v_0-v_1-v_3,v_3-v_2-v_5,v_5-v_7-v_4,v_4-v_6-v_8,v_8-v_5-v_7,v_7-v_8-v_0), \\ (v_0-v_2-v_4,v_4-v_1-v_3,v_3-v_0-v_5,v_5-v_2-v_1,v_1-v_4-v_8,v_8-v_5-v_0), \\ (v_0-v_4-v_1,v_1-v_5-v_6,v_6-v_8-v_2,v_2-v_5-v_7,v_7-v_0-v_4,v_4-v_5-v_0), \\ (v_0-v_8-v_3,v_3-v_5-v_1,v_1-v_7-v_4,v_4-v_3-v_7,v_7-v_4-v_6,v_6-v_8-v_0), \\ (v_0-v_8-v_1,v_1-v_3-v_8,v_8-v_5-v_3,v_3-v_7-v_6,v_6-v_4-v_2,v_2-v_6-v_0), \\ (v_1-v_0-v_6,v_6-v_4-v_0,v_0-v_6-v_7,v_7-v_2-v_3,v_3-v_4-v_5,v_5-v_4-v_1), \\ (v_4-v_3-v_0,v_0-v_5-v_6,v_6-v_8-v_1,v_1-v_6-v_7,v_7-v_1-v_8,v_8-v_0-v_4), \\ (v_5-v_6-v_7,v_7-v_4-v_8,v_8-v_3-v_6,v_6-v_5-v_2,v_2-v_8-v_4,v_4-v_2-v_5), \\ (v_5-v_1-v_0,v_0-v_7-v_3,v_3-v_1-v_7,v_7-v_0-v_2,v_2-v_7-v_6,v_6-v_3-v_5), \\ (v_6-v_5-v_8,v_8-v_2-v_3,v_3-v_6-v_2,v_2-v_3-v_1,v_1-v_2-v_4,v_4-v_3-v_6), \\ (v_6-v_3-v_0,v_0-v_5-v_2,v_2-v_8-v_5,v_5-v_3-v_7,v_7-v_5-v_1,v_1-v_2-v_6), \\ (v_7-v_8-v_2,v_2-v_0-v_8,v_8-v_7-v_3,v_3-v_1-v_6,v_6-v_4-v_1,v_1-v_2-v_7), \\ (v_8-v_5-v_4,v_4-v_7-v_2,v_2-v_8-v_1,v_1-v_0-v_7,v_7-v_0-v_5,v_5-v_1-v_8). \\ \end{cases}
```

Lemma 3.2. $K_{18}^{(3)}$ decomposes into 6-cycles.

Proof. By Lemmas 3.1 and 2.3, $K_9^{(3)}$ and \mathcal{H}_9 are, respectively, 6-cycle decomposable, and so is $K_{18}^{(3)} = 2K_9^{(3)} \oplus \mathcal{H}_9$.

Lemma 3.3. For each positive integer $n \geq 36$, with $n \equiv 0 \pmod{18}$, $K_n^{(3)}$ decomposes into 6-cycles.

Proof. Let n=18k where $k\geq 2$ is a positive integer. We may think of $K_n^{(3)}$ as k copies of $K_{18}^{(3)}$, k(k-1)/2 copies of \mathcal{H}_{18} and k(k-1)(k-2)/6 copies of \mathcal{H}_{18}' . That is: for k=2, $K_{36}^{(3)}=2K_{18}^{(3)}\oplus\mathcal{H}_{18}$; and for $k\geq 3$, $K_{18k}^{(3)}=kK_{18}^{(3)}\oplus\frac{k(k-1)}{2}\mathcal{H}_{18}\oplus\frac{k(k-1)(k-2)}{6}\mathcal{H}_{18}'$. As each of the hypergraphs $K_{18}^{(3)}$, \mathcal{H}_{18} and \mathcal{H}_{18}' is decomposable into 6-cycles by Lemmas 3.2, 2.5 and 2.1, respectively, we have the required decomposition. \square

 $4 \quad n \equiv 2 \pmod{18}$

Lemma 4.1. $K_{20}^{(3)}$ decomposes into 6-cycles.

Proof. By Lemmas 2.10 and 2.6, $K_{10}^{(3)}$ and \mathcal{H}_{10} are, respectively, 6-cycle decomposable and so is $K_{20}^{(3)} = 2K_{10}^{(3)} \oplus \mathcal{H}_{10}$.

Lemma 4.2. For each positive integer $n \geq 38$, with $n \equiv 2 \pmod{18}$, $K_n^{(3)}$ decomposes into 6-cycles.

Proof. Let n=18k+2 where $k \geq 2$ is a positive integer. We may think of $K_n^{(3)}$ as k copies of $K_{20}^{(3)}$, k(k-1)/2 copies of \mathcal{H}_{18} , k(k-1)(k-2)/6 copies of \mathcal{H}'_{18} and k(k-1) copies of \mathcal{H}''_{18} . That is: for $k \geq 2$, $K_{38}^{(3)} = 2K_{20}^{(3)} \oplus \mathcal{H}_{18} \oplus 2\mathcal{H}''_{18}$; and for $k \geq 3$, $K_{18k+2}^{(3)} = kK_{20}^{(3)} \oplus \frac{k(k-1)}{2}\mathcal{H}_{18} \oplus \frac{k(k-1)(k-2)}{6}\mathcal{H}'_{18} \oplus k(k-1)\mathcal{H}''_{18}$. As each of the hypergraphs $K_{20}^{(3)}$, \mathcal{H}_{18} , \mathcal{H}'_{18} and \mathcal{H}''_{18} is decomposable into 6-cycles by Lemmas 4.1, 2.5, 2.1 and 2.2, respectively, we have the required decomposition.

5 $n \equiv 1 \pmod{36}$

Lemma 5.1. For each positive integer $n \geq 37$, with $n \equiv 1 \pmod{36}$, $K_n^{(3)}$ decomposes into 6-cycles.

Proof. By Lemma 3.3, $K_{36}^{(3)}$ is decomposable into 6-cycles, and therefore by Lemma 2.10, $K_{37}^{(3)}$ is decomposable into 6-cycles.

Let n=36k+1, where $k\geq 2$ is a positive integer. We may think of $K_n^{(3)}$ as k copies of $K_{36}^{(3)}$, k(k-1)/2 copies of \mathcal{H}_{36} , k(k-1)(k-2)/6 copies of \mathcal{H}'_{36} and k(k-1)/2 copies of \mathcal{H}''_{36} . That is: for k=2, $K_{73}^{(3)}=2K_{37}^{(3)}\oplus\mathcal{H}_{36}\oplus\mathcal{H}''_{36}$; and for $k\geq 3$, $K_{36k+1}^{(3)}=kK_{37}^{(3)}\oplus\frac{k(k-1)}{2}\mathcal{H}_{36}\oplus\frac{k(k-1)(k-2)}{6}\mathcal{H}'_{36}\oplus\frac{k(k-1)}{2}\mathcal{H}''_{36}$. As each of the hypergraphs $K_{37}^{(3)}$, \mathcal{H}_{36} , \mathcal{H}'_{36} and \mathcal{H}''_{36} is decomposable into 6-cycles by above and by Lemmas 2.5, 2.1 and 2.2, respectively, we have the required decomposition.

6 $n \equiv 10 \pmod{18}$

Lemma 6.1. $K_{10}^{(3)}$ decomposes into 6-cycles.

Proof. By Lemma 3.1, $K_9^{(3)}$ is decomposable into 6-cycles, and therefore by Lemma 2.10, $K_{10}^{(3)}$ is decomposable into 6-cycles.

Lemma 6.2. $K_{28}^{(3)}$ decomposes into 6-cycles.

Proof. By Lemmas 6.1, 3.2 and 2.8, $K_{10}^{(3)}$, $K_{18}^{(3)}$ and $K_{10,18}^{(3)}$ are, respectively, 6-cycle decomposable, and so is $K_{28}^{(3)} = K_{10}^{(3)} \oplus K_{18}^{(3)} \oplus K_{10,18}^{(3)}$.

Lemma 6.3. For each positive integer $n \ge 46$, with $n \equiv 10 \pmod{18}$, $K_n^{(3)}$ decomposes into 6-cycles.

Proof. Let n = 18k + 10, where $k \ge 2$ is a positive integer. We may think of $K_n^{(3)}$ as an edge-disjoint union of a copy of $K_{10}^{(3)}$, k copies of $K_{18}^{(3)}$, k copies of $K_{10,18}^{(3)}$, k(k-1)/2 copies of \mathcal{H}_{18} , k(k-1)(k-2)/6 copies of \mathcal{H}'_{18} and 5k(k-1) copies of \mathcal{H}''_{18} . That is: for k = 2, $K_{46}^{(3)} = K_{10}^{(3)} \oplus 2K_{10}^{(3)} \oplus 2K_{10,18}^{(3)} \oplus \mathcal{H}_{18} \oplus 10\mathcal{H}''_{18}$; and for $k \ge 3$, $K_{18k+10}^{(3)} = K_{10}^{(3)} \oplus kK_{18}^{(3)} \oplus kK_{10,18}^{(3)} \oplus \frac{k(k-1)}{2}\mathcal{H}_{18} \oplus \frac{k(k-1)(k-2)}{6}\mathcal{H}'_{18} \oplus 5k(k-1)\mathcal{H}''_{18}$. As each of the hypergraphs $K_{10}^{(3)}$, $K_{18}^{(3)}$, $K_{10,18}^{(3)}$, \mathcal{H}_{18} , \mathcal{H}'_{18} and \mathcal{H}''_{18} is decomposable into 6-cycles by Lemmas 6.1, 3.2, 2.8, 2.5, 2.1 and 2.2, respectively, we have the required decomposition. □

7 $n \equiv 9 \pmod{36}$

Lemma 7.1. For each positive integer $n \ge 45$, with $n \equiv 9 \pmod{36}$, $K_n^{(3)}$ decomposes into 6-cycles.

Proof. Let n = 36k + 9, where k is a positive integer. We may think of $K_n^{(3)}$ as an edge-disjoint union of a copy of $K_9^{(3)}$, k copies of $K_{36}^{(3)}$, k copies of $K_{9,36}^{(3)}$, k(k-1)/2 copies of \mathcal{H}_{36} , k(k-1)(k-2)/6 copies of \mathcal{H}_{36}' and 9k(k-1)/2 copies of \mathcal{H}_{36}'' . That is: for k = 1, $K_{45}^{(3)} = K_9^{(3)} \oplus K_{36}^{(3)} \oplus K_{9,36}^{(3)}$; for k = 2, $K_{81}^{(3)} = K_9^{(3)} \oplus 2K_{36}^{(3)} \oplus 2K_{9,36}^{(3)} \oplus \mathcal{H}_{36} \oplus \mathcal{H}_{36}^{(3)} \oplus \mathcal{H}_{36}^{(3)}$; and for $k \geq 3$, $K_{36k+9}^{(3)} = K_9^{(3)} \oplus kK_{36}^{(3)} \oplus kK_{9,36}^{(3)} \oplus \frac{k(k-1)}{2}\mathcal{H}_{36} \oplus \frac{k(k-1)(k-2)}{6}\mathcal{H}_{36}' \oplus \mathcal{H}_{36}^{(k-1)}\mathcal{H}_{36}''$. As each of the hypergraphs $K_9^{(3)}$, $K_{36}^{(3)}$, $K_{9,36}^{(3)}$, \mathcal{H}_{36} , \mathcal{H}_{36}' and \mathcal{H}_{36}'' is decomposable into 6-cycles by Lemmas 3.1, 3.3, 2.7, 2.5, 2.1 and 2.2, respectively, we have the required decomposition. □

8 $n \equiv 29 \pmod{36}$

Lemma 8.1. $K_{29}^{(3)}$ decomposes into 6-cycles.

Proof. By Lemma 6.2, $K_{28}^{(3)}$ is decomposable into 6-cycles, and therefore by Lemma 2.10, $K_{29}^{(3)}$ is decomposable into 6-cycles.

Lemma 8.2. For each positive integer $n \ge 65$, with $n \equiv 29 \pmod{36}$, $K_n^{(3)}$ decomposes into 6-cycles.

Proof. Let n = 36k + 29, where k is a positive integer. We may think of $K_n^{(3)}$ as an edge-disjoint union of a copy of $K_{29}^{(3)}$, k copies of $K_{36}^{(3)}$, k copies of $K_{29,36}^{(3)}$, k(k-1)/2 copies of $\mathcal{H}_{36}^{''}$. That is: for k = 1, $K_{65}^{(3)} = K_{29}^{(3)} \oplus K_{36}^{(3)} \oplus K_{29,36}^{(3)}$; for k = 2, $K_{101}^{(3)} = K_{29}^{(3)} \oplus 2K_{36}^{(3)} \oplus 2K_{29,36}^{(3)} \oplus 2K_{29,36}^{(3)} \oplus \mathcal{H}_{36} \oplus 29\mathcal{H}_{36}^{''}$; and for $k \geq 3$, $K_{36k+29}^{(3)} = K_{29}^{(3)} \oplus kK_{36}^{(3)} \oplus kK_{29,36}^{(3)} \oplus kK_{29,36}^{(3)} \oplus kK_{36}^{(3)} \oplus kK_{29,36}^{(3)} \oplus kK_{29,36}^{(3)} \oplus kK_{36}^{(3)} \oplus kK_{29,36}^{(3)} \oplus kK_{36}^{(3)} \oplus kK_{36}^{(3)} \oplus kK_{29,36}^{(3)} \oplus kK_{36}^{(3)} \oplus kK_{36}^{$

9 Main result

Theorem 9.1. For $n \ge 6$, the complete 3-uniform hypergraphs $K_n^{(3)}$ has a 6-cycle decomposition if and only if $n \equiv 0 \pmod{18}$, $2 \pmod{18}$, $10 \pmod{18}$, $1 \pmod{36}$, $9 \pmod{36}$ or $29 \pmod{36}$.

Proof. This follows from Lemmas 1.1, 3.2, 3.3, 4.1, 4.2, 5.1, 6.1, 6.2, 6.3, 3.1, 7.1, 8.1 and 8.2. \Box

Acknowledgements

We would like to thank the reviewers for their valuable suggestions which improved the presentation of the article.

References

- [1] J. C. Bermond, Hamiltonian decompositions of graphs, directed graphs and hypergraphs, *Ann. Discrete Math.* 3 (1978), 21–28.
- [2] J. C. Bermond, A. Germa, M. C. Heydemann and D. Sotteau, Hypergraphes hamiltoniens, in Problems combinatoires et théorie des graphes, (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), pp. 39–43, *Colloq. Internat.* CNRS, 260, CNRS, Paris, 1978.
- [3] D. Bryant, S. Herke, B. Maenhaut and W. Wannasit, Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs, *Australas. J. Combin.* 60 (2) (2014), 227–254.
- [4] H. Jordon and G. Newkirk, 4-Cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin. 71 (2) (2018), 312–323.
- [5] D. Kühn and D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, *J. Combin. Theory Ser. A* 126 (2014), 128–135.
- [6] P. Petecki, On cyclic hamiltonian decompositions of complete k-uniform hypergraphs, *Discrete Math.* 325 (2014), 74–76.
- [7] M. Sajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Des. 10, no. 1, (2002), 27–78.
- [8] D. Sotteau, Decompositions of $K_{m,n}$ ($K_{m,n}^*$) into cycles (circuits) of length 2k, J. Combin. Theory Ser. B 29 (1981), 75–81.
- [9] M. Tarsi, Decomposition of a complete multigraph into simple paths: nonbal-anced handcuffed designs, J. Combin. Theory Ser. A 34(1) (1983), 60–70.
- [10] H. Verrall, Hamilton decompositions of complete 3-uniform hypergraphs, *Discrete Math.* 132 (1994), 333–348.

(Received 9 Jan 2020; revised 20 Feb 2021)