AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 80(1) (2021), Pages 79-88

6-Cycle decompositions of complete
3-uniform hypergraphs

R. LAKSHMI T. POOVARAGAVAN

Department of Mathematics
Annamalai University, Annamalainagar-608 002
India

mathlakshmi@gmail.com  poovamath@gmail.com

Abstract

A complete 3-uniform hypergraph of order n has vertex set V' with |V| =
n and the set of all 3-subsets of V' as its edge set. A 6-cycle in this hyper-
graph is vy, ey, vg, €2, U3, €3, V4, €4, Us, €5, Vs, €6, U1 Where vy, v, U3, Vg, Us, Ug
are distinct vertices and ey, es, e3, ey, €5, €6 are distinct edges such that
v;, Vi1 € e for @ € {1,2,3,4,5} and vg,v1 € eg. A decomposition of
a hypergraph is a partition of its edge set into disjoint subsets. In this
paper we give necessary and sufficient conditions for a decomposition of
the complete 3-uniform hypergraph of order n into 6-cycles.

1 Introduction

A hypergraph H consists of a finite nonempty set V of vertices and a set £ =
{e1,ea,... ey} of edges where each e; C V with |e;] > 0 for i € {1,2,...,m}.
If |e;| = h, then we call e; an h-edge. If every edge of H is an h-edge for some h,
then we say that H is h-uniform. The complete h-uniform hypergraph K is the
hypergraph with vertex set V', where |V| = n, in which every h-subset of V' deter-
mines an h-edge. It then follows that K has (Z) edges. When h = 2, KP = K,,
the complete graph on n vertices.

A decomposition of a hypergraph H is a set F = {Fy, Fa, ..., Fr} of subhyper-
graphs of H such that E(F) UE(F)U---UE(Fy) = E(H) and E(F) NE(F;) =0
for all 4,5 € {1,2,...,k} with i # j. We denote thisby H = F1 & Fo & --- § Fy.
EH=F &F&- & Fis a decomposition such that F; = F, = --- = Fp, =G,
where G is a fixed hypergraph, then F is called a G-decomposition of H.

A cycle of length k in a hypergraph H is a sequence of the form wvy,eq, vg,
€9, ..., Uk, €, V1, Where vy, vg, ..., v, are distinct vertices and eq,es, ..., e, are dis-
tinct edges satisfying vy, v;41 € €; for i € {1,2,...,k — 1} and vg, v; € eg.

Decompositions of K'Y into Hamilton cycles were considered in [1, 2] and the

)

proof of their existence was given in [10]. Decompositions of K into Hamilton
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cycles were considered in [5, 6], a complete solution for h > 4 and n > 30 was given
in [5], and cyclic decompositions were considered in [6]. In [3], necessary and suffi-
cient conditions were given for a G-decomposition of K,(f)’), where G is any 3-uniform
hypergraph with at most three edges and at most six vertices. In [4], decompositions

of K into 4-cycles were considered and their existence was established.

In this paper, we are interested in 6-cycle decompositions of K}(f). For conve-

nience, we will often write the edge {v,, vp, v.} as v,-vp-v. and the cycle vy, eq, va, €9,
Vs, €3, V4, €4, Us, €5, Vg, €6, U1 aAS (Ul-yl-’UQ, V2-Y2-U3, U3-Y3-V4, V4-Y4-U5, U5-Y5-Vg, U6'3/6-’01)7
where e; = vi-y;-v;11 for i € {1,2,3,4,5} and eg = vg-ys-v1. A necessary condition
for the existence of a 6-cycle decomposition of K% is: 6 divides the number of edges
in KY(LB), that is, 6] (g) Clearly, if n is even and 6| (;L), then n =0, 2 or 10 (mod 18)
and if n is odd and 6|(}), then n =1, 9 or 29 (mod 36). Thus we have:

Lemma 1.1. For n > 6, if there exists a 6-cycle decomposition of K}(Lg), then n =
0 (mod 18), 2 (mod 18), 10 (mod 18), 1 (mod 36), 9 (mod 36) or 29 (mod 36).

In Sections 3 through 8, we prove sufficiency. To prove it, we need the following
theorems.

Theorem 1.1. (Sajna [7]) Let n be an odd integer and m be an even integer with
3 < m < n. The complete graph K, can be decomposed into cycles of length m
whenever m divides the number of edges in K, .

Theorem 1.2. (Tarsi [9]) Let t and n be positive integers. There exists a Pyyq-
decomposition of the complete graph K, if and only if n > t+ 1 and n(n — 1) =
0 (mod 2t), where P,y is the path of length t.

Theorem 1.3. (Sotteau [8]) The complete bipartite graph K,,, can be decomposed
into 2k-cycles if and only if m and n are even, m > k, n > k, and 2k divides mn.

2 Preliminary lemmas

We assume the vertex set of K,(f)’) is {v; : i € Z,}, where Z, is the set of inte-
gers modulo n. For non-negative integers ¢ and j with ¢+ < j, we denote the set
{vi, vit1,...,v;} by [v;,v;], and the set {4,7+1,...,5} by [4, j].

2.1 The hypergraph H,,

Define the 3-uniform hypergraph H,, of order 3m as follows. Let V(#,,) be {v; :
i € Zam}, and let E(H,,) be the set of all 3-edges v,-v-v, such that a € [0,m — 1],
b € [m,2m — 1] and ¢ € [2m, 3m — 1]. Note that |E(,,)| = m®.

A necessary condition for the existence of a 6-cycle decomposition of H;n is: 6|m3,
i.e., m = 0(mod 6). Our aim is to decompose H;n into %3 edge-disjoint 6-cycles
whenever m = 0 (mod 6).
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By Theorem 1.3, the complete bipartite graph K, ,, with partite sets [vg, vy,—1]
and [vy,, Vom—1] can be decomposed into 6-cycles if and only if m = 0 (mod 6). Let &
be a decomposition of K,,,, into 6-cycles. For each 6-cycle (z1, xq, 3, T4, x5, T, T1)
of Z, construct m edge-disjoint 6-cycles (x1-v-22, To-v-T3, T3-V;-Ty, T4-V~T5, T5-V;-
6, 6-v-r1) of H,, where i € [2m,3m — 1]. Thus, we have

Lemma 2.1. For m = 0(mod 6), H,, decomposes into 6-cycles.

2.2 The hypergraph H,,

Define the hypergraph ., of order 2m + 1 as follows: let V(H,, ) = {oo} U {v; :
i € Zom} and let £(H,,) be the set of all 3-edges oo-vy-v, where b € [0,m — 1] and
¢ € [m,2m — 1]. Note that |E(%,,)| = m>.

A necessary condition for the existence of a 6-cycle decomposition of H:n is that
6|m?, i.e., m = 0 (mod 6). Our aim is to decompose 7—[;;1 into %2 edge-disjoint 6-cycles
whenever m = 0 (mod 6).

By Theorem 1.3, the complete bipartite graph K, ,, with partite sets [vg, V1]
and [vy,, Vom—1] can be decomposed into 6-cycles if and only if m = 0 (mod 6). Let &
be a decomposition of K,,,, into 6-cycles. For each 6-cycle (z1, xq, 3, T4, x5, T, T1)
of Z, construct the 6-cycle (x1-00-T3, T9-00-T3, T3-00-T 4, T4-00-T5, T5-00-Tg, Tg-00-T1)
of H.,. Thus, we have

Lemma 2.2. For m = 0(mod 6), H., decomposes into 6-cycles.

2.3 The hypergraph H,,

Define the 3-uniform hypergraph H,, of order 2m as follows: let V(H,,) = {v; : i €
Zom} grouped as Gy = [vg, Up—1] and Gy = [V, Vo—1]. Let E(H,,) be the set of all
3-edges v,-vp-v. such that v,, v, and v. are not all from the same group, that is, at
least one of v,, vy, v, is an element of GGy and at least one of v,, vy, v, is an element of
G1. Note that |E(H,,)| = m?*(m — 1).

A necessary condition for the existence of a 6-cycle decomposition of H,, is that
6|m?*(m—1),i.e., m =0, 1, 3 or 4 (mod 6). For required m, our aim is to decompose
‘H,, into % edge-disjoint 6-cycles.

By Theorem 1.1, if m is odd and 12|m(m—1), i.e., m = 1 or 9 (mod 12), then K,
with vertex set Gy and K,,, with vertex set G; are decomposable into 6-cycles. Let .%
and % be decompositions of K, into 6-cycles with vertex sets Gy and G, respec-
tively. For each 6-cycle (1,9, 23, x4, x5, 6, 21) of Fpy, construct m edge-disjoint
6-cycles (1-vi-g, To-V-T3, T3-V;-Ty, T4-Vi-T5, T5-V-Te, Te-U;-T1), Where v; € G and
for each 6-cycle (y1,y2, Y3, Ya, Ys, Ys, y1) of F1, construct m edge-disjoint 6-cycles (y1-
Vj-Ya, Y2-Vj-Y3, Y3-V;-Ya, Y1-V-Ys, Ys5-Vj-Ys, Y6-V;-Y1), where v; € Go. The collection of
all these 6-cycles yields a decomposition of H,,. Thus, we have:

Lemma 2.3. Letm =1 or9 (mod 12). If m # 1, then H,, decomposes into 6-cycles.
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Lemma 2.4. Hg decomposes into 6-cycles.

Proof. The 6-cycle decomposition of Hg is as follows:

For v; € [UG, Ull]a
(V=V0-V1, V1-0=Vs, U5-0i=Va, Vg=U3=Vy, Vg=V3=V3, U3-U2-0; ) and
(V=V1-V2, Vg=0;-Vp, Vo-Vi-U3, V3=V;=Vs, Vs=Vj=V4, V4=V1-0;);

for v; € [vg, vs],
(Uj—UG—U7, U7-V;-V11, U11-U;-Usg, Vg-V;-V10, V10-V;-V9, Ug—Ug—Uj) and
(Uj—U7—U8, Vg-V;-Vg, Vg-V;-V9g, U9-V;-V11, V11-V;-V10, U10—1)7—Uj);

for (k,0) € {(6,7),(8,9),(10,11)},
(Vg-V3-V1, V1-V3-Uk, Vp=V0=V4, V4=Vg=Vp, Vo-V=V5, Us-Vo-Ug );

and for (k,¢) € {(0,1),(2,3),(4,5)},

(Ve-V9-V7, V7-V9-U, U=Ug-V10, V10-Ve-Ug, Vg-Vk-V11, V11-UgVe).- O
Lemma 2.5. If m =0 (mod 18), then H,, decomposes into 6-cycles.

Proof. Let m = 18k, where k is a positive integer, Gy = A; U Ay U --- U Ag, and
G1=Bi1UDByU---U By, where A; = [vgi—6, Vsi—1] and B; = [Vigk16j—6, Visk+6j—1)-

Fori,j € {1,2,...,3k}, let H;; = Hg be the hypergraph with vertex set grouped
A; and B;. By Lemma 2.4, Hg is 6-cycle decomposable.

For 4,7,k € {1,2,...,3k} with j < k, let H;;jyk >~ 7 be the hypergraph with
vertex set A; U B; U By, and edge set {E : |[ENA;| = |EN B;| =|E N By| =1}. For
i,5,k € {1,2,...,3k} with i < j, let H;,Jk >~ H, be the hypergraph with vertex set
A;UA;UByj and edge set {E : |[ENA;| = |ENA,j| =|ENBg| =1}. By Lemma 2.1,
H% is 6-cycle decomposable.

Since H,, = Hige = 9k*He © 9k*(3k — 1)H;, the lemma follows. O

Lemma 2.6. H,y decomposes into 6-cycles.

Proof. Note that V(Hi) = {v; : i € Zao}, Go = [v, v9] and Gy = [v1g, v1g].

The complete graph Ko with vertex set [vg, vg] is Hamilton-path decomposable
by Theorem 1.2. Decompose each Hamilton-path Py in the decomposition into
a P; and a P,. For each P; : (x1,29, 3, 24,25, 26, 27) in the resulting decom-
position of Kig, (v;-%1-T2, To-v;-T3, T3-V;-Ty, T4-V-Ts, T5-Vi-Tg, Te-T7-V;), where i €
[10,19], is a 6-cycle in Hyg. For each Py : (y1,y2,¥ys3,y4) in the resulting decom-
position of Ko, (Vk-Yo-y1, Y1-Ve-Y2, Y2-Vk-Y3, Y3-Yo-Vs, Up-Y3-Ya, Y4-Y3-vx ), where (k, () €
{(10,11),(12,13), (14, 15), (16,17), (18,19)} is a 6-cycle in Ho.

Similarly, the complete graph Ky with vertex set [v19, v1g] is Hamilton-path de-
composable. Decompose each Hamilton-path Py, in the decomposition into a P; and
a P,. For each P; : (z1, %9, 3,24, x5, T, x7) in the resulting decomposition of Ky,
(Vj-T1-T2, To-Vj-T3, T3-Vj-T4, T4-V;-T5, T5-V;-Tg, Te-T7-V; ), where j € [0,9], is a 6-cycle
in Hqo. For each Py : (y1, Y2, Y3, y4) in the resulting decomposition of Ko, (vk-y2-41,
Y1-Ve-Y2, Yo-Vk-Y3, Y3-Ya-Ve, Ve-Y3-Ya, Ya-Y3-vk), where (k, £) € {(0,1),(2,3), (4,5), (6,7),
(8,9)}, is a 6-cycle in Hp.

The collection of all these 6-cycles yields a decomposition of H;g into 6-cycles.O
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2.4 The hypergraph Kr(,f)n

Define the 3-uniform hypergraph Kr(s)n of order m+n as follows. Let V(KT(S’)”) = {v; :

i € L} be grouped as Gy = [vg, Vym—1] and Gy = [V, Umgn—1]. Let E(Kr(s)n) be the

set of all 3-edges v,-vp-v.. such that v,, vy and v, are not all from the same group, that

is, at least one of v,, vy, v, is an element of GGy and at least one of v,, vy, v, is an element

of G;. Note that E(K,(qf)n) = W and Kg)m = H,,. A necessary condition
)

for the existence of a 6-cycle decomposition of Ki, is that 12lmn(m +n — 2).

Lemma 2.7. I[fm =1 or9 (mod 12), n =0, 1, 4 or 9 (mod 12) and n > 7, then
Kr(,:f,)n decomposes into 6-cycles.

Proof. By Theorem 1.1, K, with vertex set [vg, v,_1] is 6-cycle decomposable. For
each 6-cycle (21, 2, T3, T4, Ts5, T6, 1) in the Cg-decomposition of K,,, the 6-cycle (v;-
T1-T2, To-Vj-T'3, T3-Vj-Ly, T4-V;-T5, L5-Vj-T, Te-L1-V; ), where j € [m,m+n — 1] is a 6-
cycle in Ky(,i)n. By Theorem 1.2, K,, with vertex set [vy,, Vpmin_1] is Pr-decomposable.
For each Pr : (xy, %2, 3,24, x5, T, x7) in the Pr-decomposition of K, (vi-z1-z9,
To-Ui~T3, T3-V;-Ty, Ty-Vi-Ts, T5-Vi~Te, Te-T7-v;), where ¢ € [0,m — 1], is a 6-cycle in
Ky(,i)n. The collection of all these 6-cycles yields a 6-cycle decomposition of Ky(,i)n. a

Lemma 2.8. ng?lg decomposes into 6-cycles.

Proof. The 6-cycle decomposition of K {3?18 is as follows.

The complete graph Kio with vertex set [vg, vg] is Hamilton-path decomposable.
Decompose each Hamilton-path P in the decomposition into a P; and a P;. For each
P; 2 (21,9, 3, T4, T5, Tg, 7) in the resulting decomposition of Ko, (vi-21-22, To-v;-
T3, T3-Vi-Tq, T4-Vi~T5, T5-V;-Tg, Te-T7-0; ), where ¢ € [10,27], is a 6-cycle in ng?ls. For
each Py : (y1, Y2, Y3, ys) in the resulting decomposition of Ko, (vVk-y2-y1, Y1-Ve-Y2, Yo-
Vk=Y3, Y3-Yo-Ug, Vg-Y3-Ya, Ya-Y3Ux ), where (k,¢) € {(10,11), (12,13),...,(26,27)}, is a
6-cycle in K {3?18.

For convenience, relabel the vertices in [v19, va7] by [ug, u17]. The complete graph

Kig with vertex set [ug, uq7] is decomposable into 25 P;’s, one P3 and one P,. To see
this, for ¢ € {0,1,...,8}, let

H; = Uit 1 Ui 17U 42U 4 16Wi4-3Wig 15Wig4Uig14Ui4-5 Ui 13U 46 Wit 12Wi 7Ui411 Ui 48U 10Ui49

be a Hamilton path decomposition of Kig, where subscripts are reduced modulo 18.
For i € {0,1,...,7}, decompose H; into

Uil 1 Ui 17U 2Ui+16Wit3 D Uip3Uip15Ui44Ui114Ui45Ui413Ui46
D UjpeUip12Uir7Uit11Ui18Ui+10Ui49,

a Ps and two copies of P;. Decompose Hg into ugtgtizt1otgti11ts B UsUitsU3Us3U14U2
P U151 P UrUe DB UrgUy P Uo7, two copies of Pr, one P3 and three P’s. Now
decompose (eight Ps’s and two Py’s) {w;w; 1 17uiouiy16uivs - 0 € {0,1,..., 7} U
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{U1U16,UOU17} into (Seven P77S) {U17UOU1U17U2U16U3, U1eUTUUQU3IUITU4, U2U3UTULUQ
UsU10, U3U4UL2UFUTUgUY, U4U5U3UULUTUS, UsUgU4LUTUIULUE, U6U7U5U8U4U9U5}. For each
P; : (xq1, 29, 3, 24, 5, Tg, 7) in the resulting decomposition of Kig, (v;-x1-T9, To-v4-
T3, X3-Vi-Tq, T4-V-T5, T5-V;-Tg, Te-L7-0; ), where ¢ € [0,9], is a 6-cycle in Kg?lg. Ob-
tain from PsU Py ugui5uy UtgUie, (Vg-Uis-Us, Ua-Ve-Urs, Uts-Uk-U1, Ut-U15-Vg, Vg=Ug-U1g,

uie-uo-vy,), where (k, ) € {(0,1),(2,3),...,(8,9)}, a 6-cycle in K{).

The collection of all these 6-cycles yields a decomposition of K {3?18 into 6-cycles.O
Lemma 2.9. Kég?% decomposes into 6-cycles.

Proof. The complete graph Ksg with vertex set [vg, vgg] is Hamilton-cycle decompos-
able. Decompose each Hamilton-cycle Cyg in the decomposition into four Pr, one P
and one P3;. For each P; : (x1,x,x3, 24,5, %6, 27) in the resulting decomposition
of Kag, (0i~21-T2, To-V-T3, T3-V;-Ty, Ty-Vi-Ts, T5-Vi~Te, Te-T7-V;), Where i € [29,64],
is a 6-cycle in Kgg?%. For each Py : (y1,¥2,y3,v4) in the resulting decomposi-
tion of Kag, {vk-Y2-y1, Y1-Ve-Y2, Y2-Uk-Ys3, Ys-Yo-Ve, V-Y3-Ya, Ya-ys-vi}, where (k,€) €
{(29,30),(31,32),...,(63,64)}, is a 6-cycle in Kiyss. For each Py : (21,2, 23) in
the resulting decomposition of Kag, {22-23-0k, Vx-22-21, 21-29-Vp, Vg-22-23, 23-29-Upy, Upy~
z1-20}, where (k,¢,m) € {(29,30,31),(32,33,34),...,(62,63,64)}, is a 6-cycle in
Kég?%'

By Theorem 1.2, the complete graph K3g with vertex set [vqg, vg4] is Pr-decom-
posable. For each P; : (z1,x9,x3, 24,5, 26, r7) in the P;-decomposition of Kjg,
(V~T1-T9, To-V~T3, T3-V;-Ty, Ty4-Vi-Ts5, T5-Vi~Tg, Te-T7-V;), Where i € [0, 28], is a 6-cycle
n Kgg?%'

The collection of all these 6-cycles yields a decomposition of Kég?% into 6-cycles.O

3
2.5 K\ to K,

Lemma 2.10. Ifn>7,n=0, 1, 4, or 9 (mod 12) and the hypergraph KY has a

6-cycle decomposition, then the hypergraph K(le has a 6-cycle decomposition.

Proof. Let V(K®))) = {oo} U{v; : i € Z,} and E(KPY,) = £(KY) U {(o0-v;-
v;) | 4,7 € [0,n — 1]}. By hypothesis, K has a 6-cycle decomposition. It is
enough to prove that the remaining 3-uniform hypergraph {oo-v;-v; | 4,7 € [0,n—1]}
admits a 6-cycle decomposition. By Theorem 1.2, the complete graph K, has a P;-
decomposition. Let P be the set of all paths of length 6 in the decomposition of
K,. If Pr = (vo,v1,...,v6) € P, then (00-vg-v1, v1-00-vy, . . . , V4-00-Vs5, V5-V-00) 18

a 6-cycle in K (:21 Applying the method to each path P; € P, we get a 6-cycle

decomposition of K, le O
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3 n=0 (mod 18)
Lemma 3.1. KSB) decomposes into 6-cycles.

Proof. A 6-cycle decomposition of K, 53) is as follows:

(UQ—Ul—Ug, V9-V3-U4, U4-VU5-Vg, Vg-U7-Vg, UVg-V4-V3, U3—1)2—U0),
(UQ—Ul—Ug, V3-U2-Us, Us-U7-Vyg, Ug4-Vg-Vg, Ug-Us-U7, U7—Ug—U0),
(Vo-V9-V4, V4=V1-V3, V3-V0-Us,, V5-V2-V1, V1-V4-Ug, Vg=U5-Vp),
(Vo-v4-V1, V1-V5-Vg, Vg-Vg-Va, Va-U5-V7, V7-V0-Us, V4=U5-Vp),
(Vo-Vs-U3, V3-V5-V1, V1-U7-V4, V4=U3-V7, V7-V4-Vg, V6=Us=0p),
(UQ—US—Ul, V1-V3-Ug, Ug-U5-V3, U3-U7-Vg, Vg-UV4g-V2, UQ—UG—U()),
(1)1—7}0—1)6, Vg-UV4-Vp, Vp-Vg-V7, U7-VU2-V3, U3-Vy4-V5, U5—U4—U1),
(V4-V3-V0, Vo-V5-V, Vg-Vs-U1, V1-V6-V, V7-V1-Ug, Ug=Vo-Vs),
(V5-V6-U7, V7-V4-Vg, Ug-U3-Up, Vg=U5-V2, Va-Us-Us, V4=U2-V5 ),
(V5-01-Vp, Vo-V7-V3, V3-V1-V7, V7-Vp=Vz, V2-V7-V,, V6=U3-Vs ),
(UG—U5—1)8, Vg-Ug-Us, U3-Vg-Vg, Ug-U3-V1, U1-U2-Uy4, U4—1)3—U6),
(UG—Ug—UQ, Vo-U5-V2, U2-VUg-VUs5, U5-U3-VU7, U7-Us-U1, Ul—UQ—UG),
(1)7—7}8—1)2, V2-Vg-Ug, Ug-U7-V3, UV3-U1-Vg, Vg-UV4g-U1, Ul—UQ—U7),
(Ug-V5-V4, V4=V7-Vg, Va-Ug-V1, V1-V0-V7, V7-Up-5, Us=V1-Ug ). O

Lemma 3.2. K{g) decomposes into 6-cycles.

Proof. By Lemmas 3.1 and 2.3, Kg(f’) and Hg are, respectively, 6-cycle decomposable,
and so is Kg) = 2Kg(,3) P Ho. a

Lemma 3.3. For each positive integer n > 36, with n = 0(mod 18), K decomposes
into 6-cycles.

Proof. Let n = 18k where k > 2 is a positive integer. We may think of KY ask copies
of Kg), k(k —1)/2 copies of Hys and k(k — 1)(k — 2)/6 copies of Hg. That is: for
k=2, K =2K% ®Hyg; and for k> 3, K&} = kKS @My, @ He-D0=2)
As each of the hypergraphs K{?, His and H;S is decomposable into 6-cycles by

Lemmas 3.2, 2.5 and 2.1, respectively, we have the required decomposition. O

4 n=2 (mod 18)

Lemma 4.1. KQ(S) decomposes into 6-cycles.

Proof. By Lemmas 2.10 and 2.6, K {3) and H,g are, respectively, 6-cycle decomposable
and so is Kég) = QKS) ® Hio. O

Lemma 4.2. For each positive integer n > 38, withn = 2 (mod 18), K

into 6-cycles.

decomposes
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Proof. Let n = 18k + 2 where k > 2 is a positive integer. We may think of Kq(f)
as k copies of K, k(k —1)/2 copies of Hug, k(k —1)(k —2)/6 copies of H'4 and
k(k — 1) copies of Hjs. That is: for k > 2, K?Eg) = 2[(2(3) ® His ® 2H,g; and for
E>3 KO pK® g kg, k(k—1)(k—2) 4, "

>3, Kighyo = kKyy @ =5—His @ =5 ——H1s ® k(k — 1)H 5. As each of the
hypergraphs Kéﬁ), His, Hlls and 7—[/1/8 is decomposable into 6-cycles by Lemmas 4.1,
2.5, 2.1 and 2.2, respectively, we have the required decomposition. O

5 n=1 (mod 36)

Lemma 5.1. For each positive integern > 37, withn = 1 (mod 36), K9 decomposes
into 6-cycles.

Proof. By Lemma 3.3, Kég) is decomposable into 6-cycles, and therefore by Lemma
2.10, Kg) is decomposable into 6-cycles.

Let n = 36k + 1, where k£ > 2 is a positive integer. We may think of KP
as k copies of Kég), k(k —1)/2 copies of Hsg, k(k — 1)(k — 2)/6 copies of Hsys and
k(k —1)/2 copies of Hay. That is: for k = 2, K%) = 2K3(§) @ Hae © Hag; and for

k>3, K9, = kK @ Mgy g MEDER 9y g Mgyl As each of the

hypergraphs Kég), Hse, H;% and ng‘ is decomposable into 6-cycles by above and by
Lemmas 2.5, 2.1 and 2.2, respectively, we have the required decomposition. O

6 n=10 (mod 18)

Lemma 6.1. ng) decomposes into 6-cycles.

Proof. By Lemma 3.1, KSB) is decomposable into 6-cycles, and therefore by
Lemma 2.10, ng) is decomposable into 6-cycles. O

Lemma 6.2. KQ(? decomposes into 6-cycles.

Proof. By Lemmas 6.1, 3.2 and 2.8, ng), Kg) and ng?ls are, respectively, 6-cycle
decomposable, and so is Kég) =K ff;’ oK g) oK S?lg. O

Lemma 6.3. For each positive integer n > 46, with n = 10 (mod 18), K decom-
poses into 6-cycles.

Proof. Let n = 18k 4 10, where k > 2 is a positive integer. We may think of Kq(f)
as an edge-disjoint union of a copy of K{g), k copies of Kg), k copies of K{g?w,
k(k —1)/2 copies of His, k(k —1)(k —2)/6 copies of H,g and 5k(k — 1) copies of
Hg. That is: for k = 2, Kg) = ng) 692K§) @QKS?IS ® His ® 10H 5; and for k > 3,
Kifkyno = K1 © kK1) © KEK(Ghg © M52 M @ MO0, @ 5k(k — DHjs. As
each of the hypergraphs ng), Kfé), ng?lg, Hais, 7—[’18 and H/l/g is decomposable into
6-cycles by Lemmas 6.1, 3.2, 2.8, 2.5, 2.1 and 2.2, respectively, we have the required
decomposition. a
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7 n=9 (mod 36)

Lemma 7.1. For each positive integer n > 45, withn = 9 (mod 36), KT(LB) decomposes
into 6-cycles.

Proof. Let n = 36k+9, where k is a positive integer. We may think of K asan edge-
disjoint union of a copy of Kég), k copies of K. éz), k copies of Ké?gG, k(k — 1)/2 copies
of Has, k(k — 1)(k —2)/6 copies of Hys and 9k(k — 1)/2 copies of Hayg. That is: for
k=1,KY = KoK oK ) for k=2, K = K @2K) @2K ) @ Has@9Hs;
and for k > 3, K)o = KV Ok K ok K @0 e q 00D gy aght gyl
As each of the hypergraphs KSB), K §2), Ké?g)(j, Hsg, Hag and Hyg is decomposable into
6-cycles by Lemmas 3.1, 3.3, 2.7, 2.5, 2.1 and 2.2, respectively, we have the required
decomposition. a

8 n =29 (mod 36)

Lemma 8.1. KQ%) decomposes into 6-cycles.

Proof. By Lemma 6.2, KQ(? is decomposable into 6-cycles, and therefore by
Lemma 2.10, Kég) is decomposable into 6-cycles. O

Lemma 8.2. For each positive integer n > 65, with n = 29 (mod 36), K}(f) decom-
poses into 6-cycles.

Proof. Let n = 36k + 29, where k is a %jositive integer. We may think of K
as an edge-disjoint union of a copy of KQS), k copies of Kgé), k copies of KQ(S?%,
k(k —1)/2 copies of Hsg, k(k — 1)(k — 2)/6 copies of Hys and 29k(k — 1)/2 copies
of Hys. That is: for k = 1, Kég) = 53) ® Kg(z) ® Kég?gcs; for k = 2, K{g)l =
K5 @ 2K ® 2K ® Has © 29Hsg; and for k > 3, K33 00 = Kiy @ kK @

kKég?% &) —k(k;)?-l% &) 7k(k_1é(k_2) 7—[;6 S5 29’“(’“2‘1)%6. As each of the hypergraphs KQ(S),

Kég), KQ(S?%, Hsg, Hag and Hys is decomposable into 6-cycles by Lemmas 8.1, 3.3,
2.9, 2.5, 2.1 and 2.2, respectively, we have the required decomposition. O

9 Main result

Theorem 9.1. For n > 6, the complete 3-uniform hypergraphs K has a 6-cycle
decomposition if and only if n = 0 (mod 18), 2 (mod 18), 10 (mod 18), 1 (mod 36),
9 (mod 36) or 29 (mod 36).

Proof. This follows from Lemmas 1.1, 3.2, 3.3, 4.1, 4.2, 5.1, 6.1, 6.2, 6.3, 3.1, 7.1, 8.1
and 8.2. O
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