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Abstract

Path pairs are a modification of parallelogram polyominoes that provide
yet another combinatorial interpretation of the Catalan numbers. More
specifically, the number of path pairs of length n and distance δ corre-
sponds to the (n− 1, δ− 1) entry of Shapiro’s so-called Catalan triangle.
In this paper, we widen the notion of path pairs (γ1, γ2) to the situation
where γ1 and γ2 may have different lengths, and then enforce divisibility
conditions on runs of vertical steps in γ2. This creates a two-parameter
family of integer triangles that generalize the Catalan triangle and qualify
as proper Riordan arrays for many choices of parameters. In particular,
we use generalized path pairs to provide a new combinatorial interpre-
tation for all entries in every proper Riordan array R(d(t), h(t)) of the
form d(t) = Ck(t)

i, h(t) = tCk(t)
k, where 1 ≤ i ≤ k and Ck(t) is the

generating function for some sequence of Fuss-Catalan numbers (some
k ≥ 2). Closed formulas are then provided for the number of general-
ized path pairs across an even broader range of parameters, as well as
for the number of “weak” path pairs with a fixed number of non-initial
intersections.

1 Introduction

The Catalan numbers are a seemingly ubiquitous sequence of positive integers whose
nth entry is Cn = 1

n+1

(
2n
n

)
. The Catalan numbers satisfy the recurrence Cn+1 =∑

i+j=nCiCj for all n ≥ 0, which translates to the ordinary generating function

C(t) =
∑∞

n=0Cnt
n as the relation C(t) = tC(t)2 + 1. It follows that C(t) = 1−√

1−4t
2t

.

Hundreds of combinatorial interpretations for the Catalan numbers have been
compiled by Stanley [13]. One such interpretation identifies Cn with the number
of parallelogram polyominoes with semiperimeter n + 1. These are ordered pairs of
lattice paths (γ1, γ2) that satisfy all of the following:
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1. Both γ1 and γ2 are composed of n+ 1 steps from the step set
{E = (1, 0), N = (0, 1)}, where γ1 must begin with an N step
and γ2 must begin with an E step.

2. Both γ1 and γ2 begin at (0, 0) and end at the same point.

3. γ1 and γ2 only intersect at their initial and final points.

See Figure 1 for an illustration of all parallelogram polyominoes with semiperime-
ter 4, noting that the number of such paths is C3 = 5.

Figure 1: The C3 = 5 parallelogram polyominoes with semiperimeter 4, with the
corresponding path pairs of length 3 (and δ = 1) appearing as the bold edges.

Generalizing the notion of parallelogram polyominoes are (fat) path pairs, as
introduced by Shapiro [11] and developed by Deutsch and Shapiro [4]. A path pair
of length n is an ordered pair (γ1, γ2) of lattice paths that satisfy all of the following:

1. Both γ1 and γ2 are composed of n steps from the step set
{E = (1, 0), N = (0, 1)}.

2. Both γ1 and γ2 begin at (0, 0).

3. Apart from at (0, 0), γ1 stays strongly above γ2.

Now consider the path pair (γ1, γ2), and suppose that γ1 terminates at (x1, y1)
while γ2 terminates at (x2, y2). Clearly x1 < x2 and y1 > y2. The path pair (γ1, γ2)
is said to have distance δ if x2 − x1 = δ, and in this case we write |γ2 − γ1| = δ. We
henceforth use Pn,δ to denote the set of all path pairs of length n and distance δ.

There is a simple bijection between Pn,1 and parallelogram polynomials of semi-
perimeter n + 1, via a map that adds an E step to the end of γ1 and an N step
to the end of γ2. See Figure 1 for an illustration of the n = 3 case. It follows that
Pn,1 = Cn for all n ≥ 0.

Enumeration of Pn,δ for all δ ≥ 1 and n ≥ 1 was addressed by Shapiro [11], who
identified |Pn,δ| = 2δ

2n

(
2n
n−δ

)
with the (n−1, δ−1) entry of his so-called Catalan triangle.

See Figure 2 for the first five rows of Shapiro’s Catalan triangle, an infinite lower-
triangular matrix (with zero entries suppressed) whose entries di,j are generated by
the recurrence d0,0 = 1 and di,j = di−1,j−1+2di−1,j + di−1,j+1 for all i ≥ 1, 0 ≤ j ≤ i.1

1Shapiro’s Catalan triangle should not be confused with the “Catalan triangle” whose (i, j) entry
is the ballot number di,j =

j+1
i+1

(
2i−j
i

)
. We alternatively refer to this second infinite lower-triangular

matrix as the ballot triangle. See Aigner [1] for connections between the ballot triangle and the
Catalan triangle.
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1
2 1
5 4 1
14 14 6 1
42 48 27 8 1

Figure 2: The first five rows of Shapiro’s Catalan triangle.

The Catalan triangle is a well-known example of a proper Riordan array. Given
a pair of generating functions d(t) and h(t) such that d(0) �= 0, h(0) = 0, and
h′(0) �= 0, the associated proper Riordan array R(d(t), h(t)) is the infinite lower-
triangular matrix whose (i, j) entry is di,j = [ti]d(t)h(t)j. Here we use the standard
notation in which [ti] identifies the coefficient of ti in a power series. It may be verified
that Shapiro’s Catalan triangle is the proper Riordan array with d(t) = C(t)2 and
h(t) = t C(t)2.

For general information about Riordan arrays, see Rogers [10], Merlini et al. [9],
or Shapiro et al. [12]. For a more focused discussion about how Riordan arrays similar
to the Catalan triangle may be used to define so-called “Catalan-like numbers”, see
Aigner [2].

Central to our work is the fact that every proper Riordan array R(d(t), h(t))
possesses sequences of integers {zi}∞i=0 and {ai}∞i=0 such that

dn,k =

{
z0dn−1,k + z1dn−1,k+1 + z2dn−1,k+2 + . . . for k = 0 and all n ≥ 1;

a0dn−1,k−1 + a1dn−1,k + a2dn−1,k+1 + . . . for all k ≥ 1 and n ≥ 1.
(1)

These sequences are referred to as the Z-sequence and the A-sequence of
R(d(t), h(t)), respectively. When represented as generating functions Z(t) =

∑
i zi t

i

and A(t) =
∑

i ai t
i, the Z- and A-sequences of a proper Riordan array are known to

satisfy the relations

d(t) =
d(0)

1− tZ(h(t))
, h(t) = tA(h(t)). (2)

The defining recurrence of the Catalan triangle implies that it is a proper Riordan
array with Z(t) = 2 + t and A(t) = 1 + 2t = t2 = (1 + t)2.

We pause to recap a few facts about the one-parameter Fuss-Catalan numbers,
also known as the k-Catalan numbers, since they will play a major role in what
follows. For any k ≥ 2, the k-Catalan numbers are an integer sequence whose nth

entry is Ck
n = 1

kn+1

(
kn+1
n

)
. Observe that the k = 2 case corresponds to the “original”

Catalan numbers. For any k ≥ 2, the k-Catalan numbers satisfy the recurrence
Ck

n+1 =
∑

i1+...+ik
Ck

i1. . .C
k
ik

for all n ≥ 0, implying that their generating functions

Ck(t) =
∑∞

n=0C
k
nt

n satisfy Ck(t) = tCk(t)
k+1. For an introduction to the k-Catalan

numbers, see Hilton and Pederson [8]. For a list of combinatorial interpretations for
the k-Catalan numbers, see Heubach, Li and Mansour [7].
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The goal of this paper is to simultaneously explore several generalizations of path
pairs. Firstly, we eliminate the requirement that the two paths of (γ1, γ2) have equal
length, setting ε = |γ2| − |γ1| and examining the full range of differences ε ≥ 0 with
|γ1| ≥ 0. We also enforce conditions on the N steps of γ2 that are designed to mirror
the generalization of the Catalan numbers to the k-Catalan numbers. We refer to
the resulting combinatorial objects as k-path pairs of length (n− ε, n).

Section 2 focuses upon the enumeration of k-path pairs. In Subection 2.1, we
construct a two-parameter collection of infinite lower-triangular arrays Ak,ε, whose
entries correspond to the number of k-path pairs of varying lengths and distances.
For all 0 ≤ ε ≤ k − 1, Theorem 2.2 identifies the triangle Ak,ε with the proper
Riordan array R(d(t), h(t)) where d(t) = Ck(t)

k−ε and h(t) = tCk(t)
k. In Subsection

2.2, we directly enumerate sets of k-path pairs for all k ≥ 2 and ε ≤ 0. Theorem 2.5
uses the results of Subsection 2.2 to derive a closed formula for the size of all such
sets, and Theorem 2.6 provides a significantly simplified formula within the range of
0 ≤ ε ≤ (k − 1)δ.

Section 3 introduces a related generalization where we now allow the two paths
(γ1, γ2) to intersect away from (0, 0), so long as γ1 stays weakly above γ2 for the
entirety of its length. Theorem 3.2 applies the techniques of Section 2 to derive a
closed formula for the number of “weak k-path pairs” whose paths intersect pre-
cisely m times away from (0, 0), assuming that we restrict ourselves to the range
0 ≤ ε ≤ (k − 1)δ.

2 Generalized k-Path Pairs

Take any pair of integers n, ε such that 0 ≤ ε < n. Then define Pε
n,δ to be the

collection of ordered pairs (γ1, γ2) of lattice paths that satisfy all of the following:

1. Both γ1 and γ2 begin at (0, 0) and use steps from {E = (1, 0), N = (0, 1)}.
2. γ2 is composed of precisely n steps, the first of which is an E step.

3. γ1 is composed of precisely n− ε steps, the first of which is a N step.

4. γ1 and γ2 do not intersect apart from at (0, 0).

5. The difference between the terminal x coordinates of γ1 and γ2 is δ.

The case ε = 0 obviously corresponds to the original notion of path pairs. If
γ2 terminates at (x2, y2), then γ1 terminates at (x1, y1) = (x2 − δ, y2 + δ − ε). In
particular, y1 − y2 ≥ 0 precisely when δ ≥ ε.

Now fix k ≥ 2, and consider some (γ1, γ2) ∈ Pε
n,δ. The path pair (γ1, γ2) is

said to be a k-path pair of length (n − ε, n) and distance δ if the bottom path γ2 =
E1N b1E1N b2 . . . E1N bm satisfies bi = (k − 2) mod(k − 1) for all i. Clearly, 2-path
pairs correspond to the notion of path pairs discussed above.

For any k-path pair (γ1, γ2), the bottom path γ2 must decompose into a sequence
of length-(k− 1) subpaths, each of which is either Nk−1 or E1Nk−2. In particular,
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the length n of γ2 must be divisible by k−1. To avoid a large number of empty sets,
we define Pk,ε

n,δ to be the collection of all k-path pairs of length ((k−1)n− ε, (k−1)n)
and distance δ.

We continue to use the notation δ = |γ2 − γ1| for the distance of k-path pairs.
For any (γ1, γ2) ∈ Pk,ε

n,δ, it is always the case that 1 ≤ δ ≤ n, with the maximum

distance of n only being obtained by the pair with γ1 = Nn−ε and γ2 = (ENk−2)n.
It follows that the sets Pk,ε

n,δ encompass all nonempty collections of k-path pairs if we
range over 1 ≤ δ ≤ n and 0 ≤ ε ≤ (k − 1)n.

2.1 Generalized k-Path Pairs with 0 ≤ ε ≤ k − 1

In order to enumerate arbitrary Pk,ε
n,δ, we fix k, ε and define a recurrence with respect

to n, δ. This recurrence will directly generalize Shapiro’s original recurrence for the
Catalan triangle [11]. We begin with the range 0 ≤ ε ≤ k − 1, where the recursion
will eventually correspond to the Z- and A-sequences of a proper Riordan array.

Theorem 2.1. For any k ≥ 2, n ≥ 1, and 0 ≤ ε ≤ k − 1,

|Pk,ε
n,δ| =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k∑
j=1

(
k

j

)
|Pk,ε

n−1,j| −
ε∑

j=1

(
ε

j

)
|Pk,ε

n−1,j| for δ = 1, and

k∑
j=0

(
k

j

)
|Pk,ε

n−1,δ−1+j | for δ > 1.

Proof. For any length-(k−1) word w in the alphabet {E,N}, define Uw to be the set
of all (γ1, γ2) ∈ Pk,ε

n,δ such that γ1 terminates with w and γ2 terminates with Nk−1.

If w contains precisely j instances of E, this implies γ1 = η1w and γ2 = η2N
k−1 for

some (η1, η2) ∈ Pk,ε
n−1,δ+j . Similarly define Vw to be all (γ1, γ2) ∈ Pk,ε

n,δ such that γ1
terminates with w and γ2 terminates with ENk−2. If w contains precisely j instances
of E, then γ1 = η1w and γ2 = η2ENk−2 for some k-path pair (η1, η2) ∈ Pk,ε

n−1,δ+j−1.

By construction, Pk,ε
n,δ = (

⋃
w Uw) ∪ (

⋃
w Vw).

See Figure 3 for the general form of terminal subpaths in an element (γ1, γ2) of
Uw or Vw. In both diagrams, (a, b) is fixed as the terminal point of γ1, whereas the
final k − 1 steps of γ1 are determined by w and lie within the dotted triangle in the
upper-left of each image.

Now take any length-(k−1) word w with precisely j instances of E. Our strategy
is to enumerate Uw and Vw via consideration of the injective maps gw : Pk,ε

n−1,δ+j → S,

gw(η1, η2) = (η1w, η2N
k−1) and hw : Pk,ε

n−1,δ+j−1 → S, hw(η1, η2) = (η1w, η2ENk−2).
Here S denotes some collection of path-pairs whose elements may intersect apart
from at (0, 0). We clearly have Uw ⊆ Im(gw) and Vw ⊆ Im(hw) for any word w. We
also have Uw = Im(gw) if and only if every path pair in Im(gw) is non-intersecting
apart from (0, 0), and Im(hw) = Vw if and only if every path pair in Im(hw) is
non-intersecting apart from (0, 0).
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Begin with gw. The path pair g(η1, η2) = (η1w, η2N
k−1) can only feature an

intersection away from (0, 0) if the final k− 1 steps of η1w pass through some north-
west corner of η2N

k−1. As seen in Figure 3, the largest possible y-coordinate for a
northwest corner of η2N

k−1 is b − δ + ε − 2k + 3, whereas the terminal point of η1
has a y-coordinate of at least b − k + 1. Since we are assuming ε ≤ k − 1, we have
ε ≤ δ(k− 1) for all δ ≥ 1. It follows that b− δ + ε− 2k+ 3 ≤ b− k+ 1 for all δ ≥ 1,
with the case of b − d + ε − 2k + 3 = b − k + 1 being impossible because the input
path (η1, η2) was assumed to be non-intersecting away from (0, 0). This implies that
η1w cannot intersect η2N

k−1 away from (0, 0) for any word w.

(a, b)

(a, b−k+1)

(a−k+1, b)

(a+δ, b−δ+ε)

(a+δ, b−δ+ε−k+1)

(a+δ, b−δ+ε−2k+3)

(a, b)

(a, b−k+1)

(a−k+1, b)

(a+δ, b−δ+ε)

(a+δ−1, b−δ+ε−k+2)

(a+δ−1, b−δ+ε−2k+4)

Figure 3: Terminal subpaths for arbitrary (γ1, γ2) ∈ Uw (left side) and arbitrary
(γ1, γ2) ∈ Vw (right side), as referenced in the proof of Theorem 2.1.

It follows that gw represents a bijection from Pk,ε
n−1,δ+j onto Uw for every word w

when ε ≤ k − 1. Since there are
(
k−1
j

)
words w with precisely j instances of E, a

total of
(
k−1
j

)
sets Uw lie in bijection with Pk,ε

n−1,δ+j for each 0 ≤ j ≤ j−1. This gives

∑
w

|Uw| =
k−1∑
j=0

(
k − 1

j

)
|Pk,ε

n−1,δ+j| =
k∑

j=1

(
k − 1

j − 1

)
|Pk,ε

n−1,δ+j−1|. (3)

For hw, we separately consider the cases of δ = 1 and δ ≥ 2. Begin by assuming
δ ≥ 2. We once again note that hw(η1, η2) = (η1w, η2ENk−2) has intersections away
from (0, 0) only when the final k− 1 steps of η1w intersect some northwest corner of
η2ENk−2. From Figure 3, since δ ≥ 2 we see that the y-coordinate of such a corner
can be at most b− δ + ε− 2k + 4. Our assumptions of ε ≤ k − 1 and δ ≤ 2 together
ensure ε ≤ k − 3 + δ and thus that b− δ + ε− 2k + 4 ≤ b− k + 1, with the case of
b− δ + ε− 2k + 4 = b− k + 1 being impossible because we’ve assumed that (η1, η2)
lacks intersections away from (0, 0). This implies that η1w cannot intersect η2ENk−2

away from (0, 0) for any word w when δ ≥ 2, and thus that hw is a bijection from
Pk,ε

n−1,δ+j−1 onto Vw for every word w when δ ≥ 2.

When δ = 1, the map hw may introduce new intersections. Fixing w, either
every image hw(η1, η2) = (η1w, η2ENk−2) will have an intersection away from (0, 0),
or every image hw(η1, η2) will lack such an intersection. That first subcase implies
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that the corresponding set Vw is empty, whereas that second subcase implies that
Vw is nonempty and in bijection with Pk,ε

n−1,δ+j−1. We only need to enumerate how
many words w fall into each subcase (for each choice of 0 ≤ j ≤ k − 1).

As seen on the right side of Figure 3, when δ = 1 the final northwest corner of
η2ENk−2 occurs at (a, b+ ε− k + 1). Fixing a word w with precisely j instances of
E, we also see that η1 terminates at (a − j, b − k + j + 1). This means that η1 can
only pass through (a, b+ ε− k + 1) if j ≤ ε. For any such j ≤ ε, there are precisely(
ε
j

)
words w in which this additional intersection occurs. As there are

(
k−1
j

)
words

w with precisely j instances of E, if ε ≤ k − 1 we know that Vw is nonempty for
precisely

(
k−1
j

)− (
ε
j

)
choices of w. Combining our results for δ ≥ 2 and δ = 1 gives

∑
w

|Vw| =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k−1∑
j=0

(
k − 1

j

)
|Pk,ε

n−1,δ+j−1| for δ ≥ 2, and

k−1∑
j=0

((
k − 1

j

)
−

(
ε

j

))
|Pk,ε

n−1,δ+j−1| for δ = 1.

(4)

Once again noting that Pk,ε
n,δ = (

⋃
w Uw) ∪ (

⋃
w Vw), for δ ≥ 2 we have

|Pk,ε
n,δ| =

∑
w

|Uw|+
∑
w

|Vw| =
k∑

j=1

(
k − 1

j − 1

)
|Pk,ε

n−1,δ+j−1|+
k−1∑
j=0

(
k − 1

j

)
|Pk,ε

n−1,δ+j−1|

=

k∑
j=0

((
k − 1

j − 1

)
+

(
k − 1

j

))
|Pk,ε

n−1,δ+j−1| =
k∑

j=0

(
k

j

)
|Pk,ε

n−1,δ+j−1|.

For δ = 1, the facts that 0 ≤ ε ≤ k − 1 and |Pk,ε
n−1,0| = 0 prompt the similar result

|Pk,ε
n,1| =

∑
w

|Uw|+
∑
w

|Vw|

=

k∑
j=1

(
k − 1

j − 1

)
|Pk,ε

n−1,j|+
k−1∑
j=0

((
k − 1

j

)
−

(
ε

j

))
|Pk,ε

n−1,j|

=

k∑
j=0

((
k − 1

j − 1

)
−
(
k − 1

j

))
|Pk,ε

n−1,j| −
k−1∑
j=0

(
ε

j

)
|Pk,ε

n−1,j|

=

k∑
j=1

(
k

j

)
|Pk,ε

n−1,j| −
ε∑

j=1

(
ε

j

)
|Pk,ε

n−1,j|.

It should be noted that the methods from Theorem 2.1 may be extended to a
somewhat broader range of parameters than ε ≤ k−1. In particular, the summation
of (3) may be shown to hold for all ε ≤ (k − 1)δ, whereas the δ ≥ 2 summation of
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(4) may be shown to hold for all ε ≤ (k − 1)(δ − 1). Sadly, developing a general
recursive relation for the full ε ≤ δ(k−1) range of Theorem 2.6 is extremely involved.
The enumerative usage of those recursions is also limited when ε > k − 1, as they
no longer qualify as the A- and Z-sequences of a proper Riordan array. As such, we
delay the ε > k − 1 case until Subsection 2.2, where generating function techniques
may be applied to directly derive closed formulas from pre-existing results for the
general case.

For each choice of k ≥ 2 and 0 ≤ ε ≤ k−1, the recursive relations of Theorem 2.1
may be used to generate an infinite lower-triangular matrix Ak,ε whose (i, j) entry is
ak,εi,j = |Pk,ε

i+1,j+1|. These Ak,ε qualify as proper Riordan arrays:

Theorem 2.2. For any k ≥ 2 and 0 ≤ ε ≤ k− 1, the integer triangle Ak,ε with (i, j)
entry |Pk,ε

i+1,j+1| is the proper Riordan array R(Ck(t)
k−ε, tCk(t)

k), where Ck(t) is the
generating function for the k-Catalan numbers.

Proof. By Theorem 2.1, the array Ak,ε has A-sequence A(t) = (1+t)k and Z-sequence

Z(t) = (1+t)k−(1+t)ε

t
. The k-Catalan relation Ck(t) = tCk(t)

k + 1 may then be used
to verify the identities of (2):

tA(h(t)) = t(1 + tCk(t)
k)k = tCk(t)

k = h(t),

d(0)

1 + tZ(h(t))
=

1

1− t (1+tCk(t)k)k−(1+tCk(t)k)ε

tCk(t)k

=
1

1− Ck(t)k−Ck(t)ε

Ck(t)k

=
Ck(t)

k

Ck(t)ε
= d(t).

Every integer triangle Ak,ε is a Fuss-Catalan triangle of the type introduced by
He and Shapiro [5], seeing as they all take the form R(C i

k, C
j
k) for some k ≥ 2 and

some i, j > 0. Many specific triangles Ak,ε also correspond to Riordan arrays that
are well-represented in the literature. The triangle A2,0 is Shapiro’s Catalan triangle,
while A2,0 and A2,1 are two of the admissible matrices discussed by Aigner [1]. More
generally, whenever ε = 0 the triangle Ak,ε is a renewal array with “identical” A- and
Z-sequences, as investigated by Cheon, Kim and Shapiro [3]. For additional results
of this type, see He and Sprugnoli [6]

In a slight deviation from He and Shapiro [5], we refer to Ak,ε as the (k, ε)-Catalan
triangle. See Figure 4 for all (k, ε)-Catalan triangles with k = 2, 3, 4.

One immediate consequence of Theorem 2.2 is a closed formula for the size of
every set Pk,ε

n,δ when 0 ≤ ε ≤ k−1. Observe that every cardinality |Pk,ε
n,δ| = kδ−ε

kn−ε

(
kn−ε
n−δ

)
from Corollary 2.3 is the Raney number Rk,kδ−ε(n − δ). As defined by Hilton and
Pedersen [8], the Raney numbers (two-parameter Fuss-Catalan numbers) are defined
to be Rk,r(n) = [tn]Ck(t)

r, with the original k-Catalan numbers corresponding to
Ck

n = Rk,1(n) = Rk,k(n− 1).

Corollary 2.3. For any k ≥ 2 and 0 ≤ ε ≤ k − 1,

|Pk,ε
n,δ| = [tn−δ]Ck(t)

kδ−ε =
kδ − ε

kn− ε

(
kn− ε

n− δ

)
.
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ε = 0 ε = 1 ε = 2 ε = 3

k = 2

1
2 1
5 4 1
14 14 6 1
42 48 27 8 1

1
1 1
2 3 1
5 9 5 1
14 28 20 7 1

k = 3

1
3 1
12 6 1
55 33 9 1
273 182 63 12 1

1
2 1
7 5 1
30 25 8 1
143 130 52 11 1

1
1 1
3 4 1
12 18 7 1
55 88 42 10 1

k = 4

1
4 1
22 8 1
140 60 12 1
969 456 114 16 1

1
3 1
15 7 1
91 49 11 1
612 357 99 15 1

1
2 1
9 6 1
52 39 10 1
340 272 85 14 1

1
1 1
4 5 1
22 30 9 1
140 200 72 13 1

Figure 4: Top five rows for all (k, ε)-Catalan triangles Ak,ε with k = 2, 3, 4.

Proof. By the definition of Ak,ε we have

ak,εi,j = [ti]Ck(t)
k−ε(tCk(t)

k)j = [ti−j]Ck(t)
k−ε+kj.

The corollary then follows from the fact that |Pk,ε
n,δ| = ak,εn−1,δ−1.

2.2 Generalized k-Path Pairs, all ε ≥ 0

If ε > k − 1, there need not be a bijection between Pk,ε
n,δ and some Raney number

Rk,r(n) = [tn]Ck(t)
r. This implies that the cardinalities |Pk,ε

n,δ| cannot be organized
into any Fuss-Catalan triangle. One may still define an infinite lower-triangular array
Ak,ε whose (i, j) entry is ak,εi,j = |Pk,ε

i+1,j+1|, but for ε > k − 1 we always have ak,ε0,0 = 0
and the resulting arrays never qualify as a proper Riordan array.

For general ε, we still have the following decomposition for |Pk,ε
n,δ|:

Proposition 2.4. Fix n ≥ 1, 1 ≤ δ ≤ n, and 0 ≤ ε ≤ (k − 1)n. For any pair of
non-negative integers ε1, ε2 such that ε = (k − 1)ε1 + ε2,

|Pk,ε
n,δ| =

δ∑
i=1

(
ε1

δ − i

)
|Pk,ε2

n−ε1,i
|.

Proof. As seen in Figure 5, for any (γ1, γ2) ∈ Pk,ε
n,δ we may divide γ2 into an initial

subpath η1 of length n− (k− 1)ε1 and a terminal subpath η2 of length (k− 1)ε1. As
the length of η1 is divisible by k − 1, it is always the case that (γ1, η1) ∈ Pk,ε2

n−ε1,i
for

some 1 ≤ i ≤ δ.

Then consider the map f : Pk,ε
n,δ → ⋃δ

i=1Pk,ε2
n−ε1,i

where f(γ1, γ2) = (γ1, η1). This

map is clearly surjective. For any 1 ≤ i ≤ δ and any (γ1, η1) ∈ Pk,ε2
n−ε1,i

, every way of
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appending precisely δ − i copies of E1Nk−2 and ε1 − δ + i copies of Nk−1 to the end
of η1 (in any order) produces an element of Pk,ε

n,δ. It follows that the inverse image

f−1(γ′
1, γ

′
2) of every (γ′

1, γ
′
2) ∈ Pk,ε2

n−ε1,i
has size

(
ε1
δ−i

)
. Ranging over 1 ≤ i ≤ δ gives

the required summation.

Figure 5: The decomposition of γ2 for some (γ1, γ2) ∈ P2,5
10,4, as in the proof to

Proposition 2.4. If k > 2, note that the initial subpath of γ2 extends beyond the
dotted diagonal line, until its length is divisible by k − 1.

The summation on the right side of Proposition 2.4 may feature fewer than δ
nonzero terms, as |P k,ε2

n−ε1,i
| = 0 when n− ε1 < i. The decomposition ε = (k−1)ε1+ ε2

also fails be be unique when ε ≥ k − 1. However, there always exists at least one
decomposition of ε in which ε2 ≤ k − 1.

When ε ≤ k − 1, this preferred decomposition of ε with ε2 ≤ k − 1 corresponds
to ε1 = 0 and reduces the summation of Proposition 2.4 to the single term |Pk,ε

n,δ|.
When ε > k − 1, choosing ε1 so that ε ≤ k − 1 allows us to apply Corollary 2.3 to
each term in the summation:

Theorem 2.5. Fix n ≥ 1, 1 ≤ δ ≤ n, and 0 ≤ ε ≤ (k − 1)n. For any pair of
non-negative integers ε1, ε2 such that ε = (k − 1)ε1 + ε2 and 0 ≤ ε2 ≤ k − 1,

|Pk,ε
n,δ| = [tn−ε1]

δ∑
i=1

(
ε1

δ − i

)
tiCk(t)

ki−ε2

=
δ∑

i=1

ki− ε2
k(n− ε1)− ε2

(
ε1

δ − i

)(
k(n− ε1)− ε2
n− ε1 − i

)
.

Beyond the ε ≤ k − 1 case of Subsection 2.1, there are several situations where
the general identity of Theorem 2.5 simplifies to give an enumeration equivalent to
Corollary 2.3.

Theorem 2.6. Fix n ≥ 1 and 0 ≤ ε ≤ (k − 1)n, and take any pair of non-negative
integers ε1, ε2 such that ε = (k− 1)ε1 + ε2 and 0 ≤ ε2 ≤ k− 1. For all δ > ε1, as well
as for all 0 ≤ ε ≤ (k − 1)δ, we have

|Pk,ε
n,δ| = [tn−δ]Ck(t)

kδ−ε =
kδ − ε

kn− ε

(
kn− ε

n− δ

)
.
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Proof. Beginning with Theorem 2.5, when δ − ε1 > 0 we may rewrite the bounds of
the summation and then perform the change of variables j = ε1 − δ + i to give

|Pk,ε
n,δ| = [tn−ε1 ]

δ∑
i=1

(
ε1

δ − i

)
tiCk(t)

ki−ε2 = [tn−ε1]

δ∑
i=δ−ε1

(
ε1

δ − i

)
tiCk(t)

ki−ε2

= [tn−ε1 ]

ε1∑
j=0

(
ε1
j

)
tj+δ−ε1Ck(t)

k(j+δ−ε1)−ε2

= [tn−ε1 ]tδ−ε1Ck(t)
kδ−kε1−ε2

ε1∑
j=0

(
ε1
j

)
(tCk(t)

k)j.

Recognizing the binomial expansion and applying the identity Ck(t) = tCk(t)
k + 1

yields

|Pk,ε
n,δ| = [tn−δ]Ck(t)

kδ−kε1−ε2(1 + tCk(t)
k)ε1

= [tn−δ]Ck(t)
kδ−kε1−ε2Ck(t)

ε1 = [tn−δ]Ck(t)
kδ−ε.

For the second range of parameters given, we separately consider ε < (k − 1)δ and
ε = (k − 1)δ. For the first subcase we always have ε < (k − 1)δ ≤ (k − 1)δ + ε2 and
ε − ε2 = (k − 1)ε1 < (k − 1)δ, which implies ε1 < δ and allows us to apply our first
result. When ε = (k − 1)δ we may choose ε1 = δ − 1 and ε2 = k − 1, which again
implies ε1 < δ.

3 Weak k-Path Pairs

In this section, we loosen our restriction that generalized k-path pairs (γ1, γ2) cannot
intersect apart from (0, 0) and merely require that γ1 stays weakly above γ2. Formally,
for any k ≥ 2 and any set of non-negative integers n, ε, δ such that 0 ≤ ε ≤ (k − 1)n

and 0 ≤ δ ≤ n, we define P̃k,ε
n,δ to be the collection of ordered pairs (γ1, γ2) of lattice

paths that satisfy all of the following:

1. Both γ1 and γ2 begin at (0, 0) and use steps from {E = (1, 0), N = (0, 1)}.
2. γ2 is composed of precisely (k − 1)n steps, the first of which is an E step.

3. γ1 is composed of precisely (k − 1)n− ε steps, the first of which is an N step.

4. γ1 stays weakly above γ2.

5. The difference between the terminal x coordinates of γ1 and γ2 is δ.

6. γ2 = E1N b1E1N b2 . . . E1N bm satisfies bi = (k−2) mod(k−1) for all i.
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We refer to any element (γ1, γ2) ∈ P̃k,ε
n,δ as a weak k-path pair of distance δ. Notice

that δ = 0 is now possible when we also have ε = 0, corresponding to the case where
γ1 and γ2 terminate at the same point. We refer to this special case of δ = ε = 0 as
a closed (weak) k-path pair. All nonempty sets P̃k,ε

n,δ fall within the ranges 0 ≤ δ ≤ n
and 0 ≤ ε ≤ (k − 1)n.

Elements of (γ1, γ2) ∈ P̃k,ε
n,δ may then be subdivided according to the number of

intersections between γ1 and γ2. We let P̃k,ε
n,δ,m denote the collection of (γ1, γ2) ∈ P̃k,ε

n,δ

where γ1 and γ2 intersect precisely m times away from (0, 0), and we define such

path pairs to be weak k-path pairs with m returns. It is easy to show that P̃k,ε
n,δ,m

is empty unless 0 ≤ m ≤ n, and that ε places further restrictions on which m are
possible. For example, m = n is only possible when ε = 0.

We henceforth call a closed k-path pair with only m = 1 return as an irre-
ducible (closed) k-path pair. Any weak k-path pair (γ1, γ2) ∈ P̃k,ε

n,δ,m with pre-
cisely m returns may be uniquely decomposed into a sequence of subpath pairs
(γ1,1, γ2,1), . . . , (γ1,m+1, γ2,m+1) such that (γ1,i, γ2,i) corresponds to an irreducible k-
path pair for each 1 ≤ i ≤ m (after translating each subpath pair so that it be-
gins at the origin). If (γ1, γ2) is a closed k-path pair, then the final subpath pair
(γ1,m+1, γ2,m+1) is empty. Otherwise, that final subpath pair corresponds to some

k-path pair (γ′
1, γ

′
2) ∈ Pk,ε

n′,δ for some n′ > 0.

To enumerate P̃k,ε
n,δ and the P̃k,ε

n,δ,m, we begin by enumerating irreducible k-path
pairs:

Proposition 3.1. Fix k ≥ 2. For any n ≥ 1,

|P̃k,0
n,0,1| = [tn−1]Ck(t)

k−1 =
k − 1

kn− 1

(
kn− 1

n− 1

)
.

Proof. For any (γ1, γ2) ∈ P̃k,0
n,0,1, observe that the final step of γ1 must be an E step.

This means that P̃k,0
n,0,1 lies in bijection with Pk,1

n,1, via the map the deletes the final
step of γ1. The result then follows from Corollary 2.3.

Observe that P̃2,0
n,0,1 is equivalent to the original notion of parallelogram polynomi-

noes with semiperimeter n. Proposition 3.1 recovers this preexisting combinatorial
interpretation of the Catalan numbers as |P̃2,0

n,0,1| = [tn−1]C(t) = Cn−1. For any

k ≥ 2, one could define the elements of P̃k,0
n,0,1 as k-parallelogram polyominoes with

semiperimeter (k − 1)n, although for k > 2 these objects do not provide a combina-
torial interpretation for the k-Catalan numbers.

The primary application of Proposition 3.1 is that it may be used to quickly
enumerate any collection P̃k,ε

n,δ,m, assuming ε and δ fall within the range proscribed
by Theorem 2.6:

Theorem 3.2. Fix n ≥ 1 and k ≥ 2. For any non-negative integers δ, ε,m such that
ε = δ = 0 or 0 ≤ ε ≤ (k − 1)δ,

|P̃k,ε
n,δ,m| = [tn−δ−m]Ck(t)

kδ−ε+(k−1)m =
kδ − ε+ (k − 1)m

kn− ε−m

(
kn− ε−m

n−m− δ

)
.
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Proof. By Proposition 3.1, for any k ≥ 2 the generating function of irreducible k-
path pairs is

∑∞
i=0 |P̃k,0

n,0,1|ti = tCk(t)
k−1. From Theorem 2.6, when 0 ≤ ε < (k − 1)δ

we also have the generating function
∑∞

i=0 |Pk,ε
n,δ|ti = tδCk(t)

kδ−ε. We treat the two
cases of the theorem statement separately.

For the ε = δ = 0 case, every element of P̃k,0
n,0,m may be uniquely decomposed into

a sequence of m non-empty irreducible k-path pairs. It follows that

∞∑
i=0

|P̃k,0
i,0,m|ti = (tCk(t)

k−1)m = tmCk(t)
(k−1)m.

In this case we then have

|P̃k,0
n,0,m| = [tn]tmCk(t)

(k−1)m = [tn−m]Ck(t)
(k−1)m.

For the 0 ≤ ε < (k−1)δ case, every element of P̃k,δ
n,ε,m may be uniquely decomposed

into a sequence of m non-empty irreducible k-path pairs and an element of Pk,ε
n′,δ for

some 0 < n′ < n−m. Here we have

∞∑
i=0

|P̃k,δ
i,ε,m|ti = (tCk(t)

k−1)m tδCk(t)
kδ−ε = tδ+mCk(t)

kδ−ε+(k−1)m.

For this second case we then have

|P̃k,δ
n,ε,m| = [tn]tδ+mCk(t)

kδ−ε+(k−1)m = [tn−δ−m]Ck(t)
kδ−ε+(k−1)m.
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