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Abstract

A labeling of the vertices of a graph by elements of any abelian group A
induces a labeling of the edges by summing the labels of their endpoints.
Hovey defined the graph G to be A-cordial if it has such a labeling where
the vertex labels and the edge labels are both evenly-distributed over
A in a technical sense. His conjecture that all trees T are A-cordial
for all cyclic groups A remains wide open, despite significant attention.
Curiously, there has been very little study of whether Hovey’s conjecture
might extend beyond the class of cyclic groups.

We initiate this study by analyzing the larger class of finite abelian
groups A such that all path graphs are A-cordial. We conjecture a com-
plete characterization of such groups, and establish this conjecture for
various infinite families of groups as well as for all groups of small order.

1 Introduction

Let A be a finite abelian group of order n. A labeling of the vertices of any graph
G by elements of A induces a labeling of the edges of G by associating to each edge
the sum of the labels on its endpoints. Hence, every such vertex labeling gives rise
to two integer partitions, each with at most n parts: λv :“ pλv

1 ě ¨ ¨ ¨ ě λv
n ě 0q

recording the number of vertices with each label and λe :“ pλe
1 ě ¨ ¨ ¨ ě λe

n ě 0q
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recording the number of edges with each label (both arranged in decreasing order).
We say a partition λ “ pλ1 ě λ2 ě ¨ ¨ ¨ q is almost rectangular if, for all i, we have
λi P tλ1, λ1 ´ 1u.

In early work, Hovey [6] introduced the following notion.

Definition 1.1. A graph G is A-cordial if there is a vertex labeling of G such that
both partitions λv, λe are almost rectangular.

Hovey’s definition subsumes other famous notions in graph labeling. For example,
the graph G is Z2-cordial if and only if it is cordial in the sense of Cahit [1], while G is
Z|EpGq|-cordial if and only if it is harmonious in the sense of Graham and Sloane [5].
(Here Zk denotes the cyclic group of order k, written additively.) For an extensive
survey of graph labeling, see [4].

Most work to date has taken the form of fixing a group A (nearly always cyclic)
and asking which graphs G are A-cordial. Results along these lines, while numerous,
are mostly piecemeal and having ad hoc proofs. Here, we consider a dual problem.

Definition 1.2. Let G be a family of graphs. We say a group A is G-cordial if
every G P G is A-cordial. We say A is weakly G-cordial if all but finitely many
G P G are A-cordial.

A major open problem is Hovey’s conjecture [6, Conjecture 1] that all trees are
A-cordial for all cyclic groups A. In other language, we have the following.

Conjecture 1.3 ([6]). Let T be the class of trees. Then Zk is T-cordial for all k.

Currently, the only nontrivial finite groups known to be T-cordial are the small
cyclic groups Z2 [1], Z3 [6], Z4 [6], Z5 [6], Z6 [3], and Z7 [2]. We wish to gain
insight into Conjecture 1.3 by considering the class of T-cordial groups more broadly.
Certainly, not all abelian groups are T-cordial, as it is easy to check that the four-
vertex path P4 is not Z2 ˆ Z2-cordial. (All group products in this paper are direct
products.) However, it is currently unknown whether any finite noncyclic group is
T-cordial; indeed, there are not even any conjectures in this direction. The results of
this paper, however, may be taken as evidence that many finite noncyclic groups are
also T-cordial. Hence, the appropriate level of generality for studying Conjecture 1.3
may be broader than the class of cyclic groups.

It seems reasonable to start this program by considering the broader family of
P-cordial groups, where P denotes the class of path graphs (i.e., trees with no vertex
of degree ą 2). Hovey [6, Theorem 2] showed that all cyclic groups are P-cordial,
whereas Z2 ˆ Z2 is not. To our knowledge, no other results about P-cordiality have
been established to date. We make the following conjecture.

Conjecture 1.4. A finite abelian group A is P-cordial if and only if it is not a
nontrivial product of copies of Z2 (equivalently, if and only if there exists a P A with
|a| ą 2).
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Our main results are evidence toward Conjecture 1.4. The following proves one
direction.

Theorem 1.5. If A “ Zm
2 is a product of copies of Z2 (m ą 1), then P2m and P2m`1

are not A-cordial (and so A is not P-cordial).

For the other direction of Conjecture 1.4, our main result is the following.

Theorem 1.6. If |A| is odd, then A is P-cordial.

It remains to understand the case of groups A that are of even order and have
an element of order greater than 2. We give some partial results in that setting. We
also verify Conjecture 1.4 for all abelian groups A with |A| ă 24.

While Z2
2 is not P-cordial, it is known to be weakly P-cordial [7, Theorem 3.4].

We show that Z3
2 is similarly weakly P-cordial, while not P-cordial. On the basis of

these examples, [7, Corollary 4.3] (showing that there are infinitely-many A-cordial
paths for each A), and Conjecture 1.4, we also expect the following to hold.

Conjecture 1.7. All finite abelian groups are weakly P-cordial.

This paper is structured as follows. In Section 2, we prove some results that hold
for all finite abelian groups A and that we will need in later sections. In particular,
Theorem 2.4 allows us to demonstrate P-cordiality of A by showing the A-cordiality
of a single path. In Section 3, we apply Theorem 2.4 to prove Theorem 1.6, showing
that all A of odd order are P-cordial. In Section 4, we study products of groups of
order two, proving Theorem 1.5 and verifying that Z3

2 is weakly P-cordial. Finally,
Section 5 is devoted to other groups of even order, including a complete analysis of
P-cordiality for all abelian groups of small order.

2 Results for general groups

Here we collect various results that hold for all finite abelian groups A. We use these
results later to establish our main results.

Lemma 2.1. Let A be any abelian group of order n. Let f, k P Zě0 be nonnegative
integers such that f ď n

2
. Then if the path Pnk`f is A-cordial, so is Pnk`f`1.

Proof. This is a generalization of [6, Lemma 3] and the proof is essentially the same,
but we include the details for completeness.

Consider an A-cordial labeling of Pnk`f with almost rectangular partitions λv, λe.
Attach a new vertex x to one of the ends of the path by a new edge y. It suffices to
exhibit an appropriate vertex label for x. There are n ´ f available vertex labels for
it that would keep λv almost rectangular.

If f “ 0, then there is a unique label for y that makes λe almost rectangular, and
we may choose the label for x accordingly.
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If f ą 0, there are only f´1 edge labels on y that would make λe no longer almost
rectangular. So we can find an appropriate label for x provided that f ´ 1 ă n ´ f ,
that is if 2f ă n ` 1.

Lemma 2.2. Suppose G is an A-cordial graph and a P A. Then for any A-cordial
labeling of G, we may add a to each vertex label to obtain another A-cordial labeling.

Proof. This is [6, Lemma 1].

Lemma 2.3. Suppose |A| “ n and let k,m P Zą0 be positive integers. If Pk and Pmn

are both A-cordial, then so is Pmn`k.

Proof. Consider A-cordial labelings of Pk and Pmn. Every element of A appears
exactly m times as a vertex label of Pmn. There is a unique element a P A that
appears m ´ 1 times as an edge label of Pmn, while all others appear exactly m
times. By Lemma 2.2, we may assume that Pmn has an endpoint labeled by the
identity element id and that Pk has an endpoint labeled a. Join the id-end of Pmn

to the a-end of Pk by a new edge (necessarily labeled a) to obtain a labeled Pmn`k.

Then we have added to Pk exactly m of each vertex label and exactly m of each
edge label. That is, for all 1 ď i ď n, we have λv

i pPmn`kq “ λv
i pPkq ` m and

λe
i pPmn`kq “ λe

i pPkq ` m. Since the labeling of Pk was A-cordial, it follows that this
labeling of Pmn`k is as well.

Theorem 2.4. Suppose |A| “ n. Then A is P-cordial if and only if Pn is A-cordial.

Proof. One implication is trivial. For the other, suppose Pn is A-cordial. Then
iteratively deleting vertices from either end of an A-cordial labeling of Pn, we see
that Pk is A-cordial for all k ă n.

Now consider any path Pm. Write m “ hn ` k for some h, k P Z and 0 ď k ă n.
Then we may construct an A-cordial labeling of Pm by gluing h A-cordial labelings
of Pn to an A-cordial labeling of Pk, as in Lemma 2.3.

The previous theorem makes it easy to demonstrate that a group A is P-cordial
because it is thereby sufficient to exhibit a single A-cordial labeling of a single graph.
For any fixed A, Theorem 2.4 indeed makes it a finite check to determine whether A
is P-cordial. In practice, however, this exhaustive check is not feasible for groups A
that are not of extremely small order.

3 Groups of odd order

In this section, we prove Theorem 1.6, showing that all groups of odd order are P-
cordial. The reader may find the technical details of the proof clarified by consulting
the example for Z3 ˆ Z3 displayed in Figure 1.

Lemma 3.1. Suppose |A| “ n and the cycle Cn is A-cordial. Then, for k odd, the
cycle Ckn is A ˆ Zk-cordial.
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Proof. Consider an A-cordial labeling of Cn and write �pvq for the label of vertex
v. Fix a cyclic orientation of Cn. Subdivide each side of Cn by inserting k ´ 1 new
vertices into each edge of Cn to obtain a cycle Ckn. Each (directed) edge q “ ÝÑxy
of Cn with endpoints x, y becomes an induced (oriented) path Pk`1 with vertices
x Ñ q1 Ñ ¨ ¨ ¨ Ñ qk´1 Ñ y. Label these vertices alternately �pxq and �pyq, so that x
is still labeled �pxq and y is still labeled �pyq. More precisely, we define �pqiq “ �pxq
if i is even and �pqiq “ �pyq if i is odd.

We claim that this process results in an A-cordial labeling of Ckn. Note that if x
has neighbors y, z in Cn, then in our Ckn the label �pxq appears on k´1

2
` 1 vertices

along the path from x to y and on k´1
2

` 1 vertices along the path from z to x, with
the vertex x being shared. Hence, exactly k vertices of Ckn are labeled �pxq. Since
we started with a labeling of Cn with every element of A appearing exactly once as a
vertex label, this means that the vertex labels of our Ckn yield an almost rectangular
partition.

All of the edges along the path from x to y in Ckn are labeled �pxq ` �pyq. Hence
the edge labels of our Ckn are the edge labels of the original Cn in the same order,
but each now repeated k times in a row. Since each element of A appeared exactly
once as an edge label of Cn, this means that the edge labels of the Ckn also give an
almost rectangular partition, so our construction is an A-cordial labeling of Ckn.

Finally, we will convert this labeling of Ckn into an A ˆ Zk-cordial labeling. For
each of the vertices x from Cn, label x by the ordered pair p�pxq, 0q P A ˆ Zk.
Along the oriented path x Ñ q1 Ñ ¨ ¨ ¨ Ñ qk´1 Ñ y, label each vertex q2i by
p�pxq, i ` k´1

2
q P A ˆ Zk and each vertex q2i`1 by p�pyq, iq P A ˆ Zk.

It is straightforward to see that each element of A ˆ Zk appears now as a vertex
label exactly once. Moreover, the second coordinates of the edge labels rotate cycli-
cally through the elements of Zk in cyclic order. Since each element of A appears
as a first coordinate on exactly k consecutive edges, this implies that each element
of A ˆ Zk also appears as an edge label exactly once, so we have constructed an
A ˆ Zk-cordial labeling of Cnk.
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Figure 1: Example of constructing a Z3 ˆZ3-cordial labeling of C9 from a Z3-cordial
labeling of C3, as described in the proof of Lemma 3.1.

Lemma 3.2. Suppose |A| “ n is odd. Then Cn is A-cordial.
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Proof. By induction on n. If A is a cyclic group, this is [6, Theorem 9]. Otherwise,
write A as B ˆ Zk for some odd k. Then |B| “ b is also odd, so by induction,
Cb is B-cordial. Therefore Lemma 3.1 gives that Ckb is B ˆ Zk-cordial, i.e., Cn is
A-cordial.

Proof of Theorem 1.6. Let |A| “ n be odd. Then by Lemma 3.2, the cycle Cn is
A-cordial. Take an A-cordial labeling of Cn. Deleting any edge yields an A-cordial
labeling of the path Pn. Since Pn is A-cordial, Theorem 2.4 then implies that A is
P-cordial, as desired.

4 Products of order-2 groups

In this section, we assume A “ Zm
2 for some m ą 1. We first prove Theorem 1.5,

showing that such an A cannot be P-cordial.

Proof of Theorem 1.5. Suppose we had an A-cordial labeling of P2m. Then each
a P A appears exactly once as a vertex label, and exactly one element of A does not
appear as an edge label. This missing element must be id, since an edge labelled id
can only come from adjacent vertices labeled a and ´a, but every element of A is its
own inverse. Therefore, the edge labels are the 2m ´ 1 nonidentity elements of A,
each appearing exactly once.

It is easy to see that the sum of all the (nonidentity) elements of A is id. Hence,
the sum of the edge labels is id. On the other hand, the edge labels come from
adding adjacent vertex labels. Thus, the sum of the edge labels is the sum of the
two leaf vertex labels plus twice the labels of all internal vertices. However, twice
any group element is the identity, so the sum of the edge labels is just the sum of the
two leaf vertex labels. Hence, the labels on the leaf vertices are each other’s inverses,
contradicting that they must be distinct. Therefore, P2m is not A-cordial.

Now, suppose we had an A-cordial labeling of P2m`1. Then each a P A appears
exactly once as an edge label. Let e be the edge labeled id, and let its endpoints be
x, y. Then the labels on x and y sum to id and hence are equal. Contract the edge
e to get a labeled P2m. It has each a P A appearing exactly once as a vertex label
and each nonidentity element appearing exactly once as an edge label, contradicting
that P2m is not A-cordial.

The special case m “ 2 was studied in [7]. By Theorem 1.5, P4 and P5 are not
Z2 ˆ Z2-cordial. However, [7, Theorem 3.4] shows that all other paths are Z2 ˆ Z2-
cordial, so that Z2 ˆZ2 is weakly P-cordial. As evidence towards Conjecture 1.7, we
here establish analogous results in the case m “ 3.

For notational convenience, let M “ Z2 ˆ Z2 ˆ Z2. We further identify the
elements of M with binary strings of length 3, added componentwise.

Proposition 4.1. The group M is weakly P-cordial. More precisely, all paths are
M-cordial except P8 and P9.
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Proof. Theorem 1.5 gives that P8 and P9 are not M-cordial.

Lemma 2.1 shows that Pk is M-cordial for k ď 5. The reader may confirm that

100 ´ 000 ´ 001 ´ 010 ´ 111 ´ 101

is an M-cordial labeling of P6 (here we record only the vertex labels), while

100 ´ 000 ´ 001 ´ 010 ´ 111 ´ 101 ´ 011

is an M-cordial labeling of P7.

Additionally,

000 ´ 111 ´ 001 ´ 010 ´ 110 ´ 011 ´ 011 ´ 100 ´ 101 ´ 111

is an M-cordial labeling of P10. Therefore, the M-cordiality of P11, P12, and P13

follows immediately by Lemma 2.1.
Further observe that the following are M-cordial labelings of P14, P15, and P16:

P14 : 000 ´ 111 ´ 001 ´ 010 ´ 110 ´ 011 ´ 011 ´ 100 ´ 101 ´ 111 ´ 001 ´ 010 ´ 110 ´ 100

P15 : 000 ´ 111 ´ 001 ´ 010 ´ 110 ´ 011 ´ 011 ´ 100 ´ 101 ´ 111 ´ 001 ´ 010 ´ 110 ´ 100 ´ 101

P16 : 000 ´ 000 ´ 111 ´ 001 ´ 010 ´ 110 ´ 011 ´ 011 ´ 100 ´ 101 ´ 111 ´ 001 ´ 010 ´ 110 ´ 100 ´ 101

Since 16 “ 2 ¨ |M |, if k “ 16m ` j for some 0 ď j ă 16 with j R t8, 9u, then
we may construct an M-cordial labeling of Pk by Lemma 2.3, gluing an M-cordial
labeling of Pj (as constructed above) to m copies of the M-cordial labeling of P16

given above. Hence, we have shown that Pk is M-cordial for all k not congruent to
8 or 9 modulo 16.

A M-cordial labeling of P24 is

000-001-101-000-111-001-010-110-011-011-100-101-111-001-010-110-100-100-011-010-111-101-110-000.

By Lemma 2.1, it then follows that P25 is also M-cordial. Using Lemma 2.3 to attach
an appropriate number of labeled copies of P16, we obtain M-cordial labelings of all
remaining paths.

5 Other groups of even order

While we know from Section 3 that all groups of odd order are P-cordial and from
Section 4 that nontrivial products of order-2 groups are not, the situation for other
groups of even order is more mysterious. Although Conjecture 1.4 predicts that
all such groups should also be P-cordial, we only establish limited progress in this
direction, as well as verifying Conjecture 1.4 for groups of small order.

Proposition 5.1. If A is an abelian group with |A| ă 24 that is not a nontrivial
direct product of groups of order 2, then A is P-cordial.
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Proof. Let n “ |A| and assume n ă 24. If A is cyclic, then we are done by [6,
Theorem 2]. If n is odd, we are done by Theorem 1.6.

Up to group isomorphism, it remains to consider the following groups A:

(a) Z2 ˆ Z4,

(b) Z2 ˆ Z6,

(c) Z2 ˆ Z8,

(d) Z4 ˆ Z4,

(e) Z3 ˆ Z6,

(f) Z2 ˆ Z10.

By Theorem 2.4, it then suffices to exhibit anA-cordial labeling of Pn for each of these
six groups. For compactness, we write ij to denote the group element pi, jq P ZaˆZb,
and record only the vertex labels. The reader may verify directly that the following
are A-cordial labelings for the corresponding groups:

(a) 00 ´ 12 ´ 10 ´ 01 ´ 02 ´ 03 ´ 11 ´ 13,

(b) 03 ´ 00 ´ 15 ´ 13 ´ 11 ´ 05 ´ 02 ´ 12 ´ 14 ´ 04 ´ 01 ´ 10,

(c) 00 ´ 14 ´ 16 ´ 07 ´ 04 ´ 15 ´ 12 ´ 13 ´ 11 ´ 02 ´ 10 ´ 06 ´ 03 ´ 05 ´ 01 ´ 17,

(d) 00 ´ 20 ´ 23 ´ 03 ´ 12 ´ 11 ´ 33 ´ 01 ´ 13 ´ 32 ´ 21 ´ 10 ´ 22 ´ 30 ´ 31 ´ 02,

(e) 00´25´21´01´02´22´12´15´04´11´24´20´10´13´05´03´23´14,

(f) 00´ 11´ 07´ 05´ 12´ 15´ 14´ 06´ 18´ 16´ 09´ 01´ 04´ 19´ 17´ 02´
10 ´ 13 ´ 03 ´ 08.

The proof of Proposition 5.1 relies on ad hoc construction of some examples of
A-cordial labelings. For even-order groups A that are generated by two elements,
the following proposition gives a uniform construction of A-cordial paths. It seems
like this construction (in combination with the lemmas of Section 2) would be useful
in a proof that such groups are at least weakly P-cordial, a step towards establishing
Conjectures 1.4 and 1.7.

Proposition 5.2. If A “ Z2 ˆ Zk and n “ |A|, then P2n is A-cordial.

Proof. If k is odd, then A is a cyclic group, so all paths are A-cordial by [6, Theo-
rem 2].

Hence assume k “ 2m is even. We will exhibit an explicit A-cordial labeling of P2n

by first building an auxiliary labeling of P2n that is not A-cordial and then slightly
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modifying this auxiliary labeling. To start, draw P2n in two rows as a bipartite graph.
The second coordinates of the top-row vertices will be 0, 1, . . . , k ´ 1, 0, 1, . . . , k ´ 1
from left to right. The second coordinates of the bottom-row vertices will also be
0, 1, . . . , k ´ 1, 0, 1, . . . , k ´ 1 from left to right. The first coordinates of the top-row
alternate between 0 and 1, starting with 1, while those of the bottom row alternate
starting with 0.

It is clear that this labeling uses each element of A as a vertex label exactly twice.
However, the labeling constructed so far is not A-cordial. The second coordinates of
the edge labels cycle through 0, 1, . . . , k ´ 1, 0, 1, . . . , k ´ 1 in order four times, while
the first coordinates of the edge labels alternate between 0 and 1. Since k is even,
this means that each pi, jq P Z2 ˆZk with i` j odd appears as a label on four edges,
while each pi, jq P Z2 ˆ Zk with i ` j even does not appear as an edge label.

The final step is to modify this labeling by swapping (the first coordinates of)
the last m labels of the top row with (the first coordinates of) the second batch of m
labels from the bottom row. This swapping is illustrated in Figure 2 for the example
A “ Z2 ˆ Z4.
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Figure 2: An example of the labeling process from the proof of Proposition 5.2, as
illustrated for A “ Z2 ˆZ4. (Note that this example is only for illustrative purposes,
as we already know from Theorem 5.1 that this A is P-cordial.) The upper graph
shows the auxiliary labeling with boxes around the vertex labels to be swapped. The
lower graph shows the A-cordial labeling obtained by swapping, with boxes around
the (vertex and edge) labels that have changed.

It is clear that this modified labeling also uses each element of A as a vertex
label exactly twice. The second coordinates of the edge labels still cycle through
0, 1, . . . , k ´ 1, 0, 1, . . . , k ´ 1 in order four times. However, the pattern of first coor-
dinates of edge labels is now more complicated.

Edge labels appear in the following sequence from left to right (we include line
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breaks that we believe help clarify the structure of the sequence):

10, 01, 12, 03, . . . , 1pk ´ 2q, 0pk ´ 1q,
00, 11, 02, 13, . . . , 0pk ´ 2q, 1pk ´ 1q,
10, 01, 12, 03, . . . , 1pk ´ 2q,
1pk ´ 1q,
00, 11, 02, 13, . . . , 0pk ´ 2q.

In particular, the first k labels are exactly the same as the second batch of k
labels and in the same order, except that all the first coordinates have been switched.
Hence, the first n edge labels consist of each element of A exactly once. Similarly,
after the first n edge labels, the next k ´ 1 labels are the same as the last k ´ 1
edge labels and in the same order, except that all the first coordinates have been
switched. Hence we see that, in total, each label appears exactly twice as an edge
label, except for the label 0pk ´ 1q, which appears exactly once. Thus, this is an
A-cordial labeling of P2n.
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