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Abstract

A 1-factorization F of a complete graph K2n is said to be G-regular,
or regular under G, if G is an automorphism group of F acting sharply
transitively on the vertex-set. The problem of determining which groups
can realize such a situation dates back to a result by Hartman and Rosa
(1985) on cyclic groups, and it is still open even though several other
classes of groups were tested in the recent past. An attempt to obtain
a fairly precise description of groups and 1-factorizations satisfying this
symmetry constraint can be done by imposing further conditions. In
this paper we prove that, regardless of the isomorphism type of G, the
existence of a G-regular 1-factorization of K2n together with a complete
set of isomorphic rainbow spanning trees which are in the orbit of a single
one is assured if and only if n ≥ 3 is an odd number. Also, when n is even,
we examine dihedral groups: for each dihedral group G of order 2n ≥ 6, it
is possible to exhibit a G-regular 1-factorization of K2n together with two
non isomorphic rainbow spanning trees whose partial orbits give rise to a
complete set. This extends some recent results obtained by Caughman et
al. (2017) and by Mazzuoccolo et al. (2019) for the class of cyclic groups.

1 Introduction

A 1-factorization of a complete graph is a partition of the edge set into perfect
matchings. Such a decomposition obviously exists only when the number of vertices
is even, say 2n. It has been known [27] that 1-factorizations of a complete graph K2n
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exist for all integers n; nevertheless, the number of non-isomorphic ones explodes
as n increases [9], and a general classification has not been possible. An attempt
can be made if one imposes additional conditions either on the 1-factorization or on
its automorphism group. For example, a precise description of the 1-factorization
and of its automorphism group was given when the group is assumed to act multi-
ply transitively on the vertex set [10]. A few years ago the following question was
addressed:

Does there exist a 1-factorization of the complete graph K2n admitting a
prescribed group G as an automorphism group acting sharply transitively
on the vertex-set of K2n?

In other words, G is assumed to be a regular permutation group on the vertex-set
of K2n, i.e., whenever u and v are vertices there is precisely one automorphism in G
mapping u to v, and also the ismorphism type of G, which necessarily has order 2n,
is specialized. We also say that the 1-factorization is regular under G, or that it is
G-regular, or simply that it is regular if we do not need to specify the isomorphism
type of G. The question above is a restricted version of problem n.4 in the list of [30]
(the word “sharply” does not appear there) and when n is odd this problem simplifies
somewhat: G must be the semi-direct product of Z2 with its normal complement and
G always realizes a 1-factorization of K2n upon which it acts sharply transitively on
vertices, see [3, Remark 1]. When n is even, the complete answer is still unknown.
Nevertheless, the answer was found for several classes of groups, see for example
[17, 7, 3, 4, 28], which, respectively, consider the class of cyclic, abelian, dihedral,
dicyclic and other nilpotent groups. In [6], the answer was found for the class of
2-groups with an elementary abelian Frattini subgroup and in [25] the first class of
G-regular 1-factorizations for a non-solvable group G was given. Within the groups
tested, the unique case in which the answer is negative is when G is cyclic and 2n is
a power of 2 greater than 4 [17].

The existence of a G-regular 1-factorization of K2n can be tested entirely in
G using the so called “starter method” for groups of even order which was first
introduced in [7] and which allows one to construct the 1-factorization starting from
G. We will describe this method in the following Subsection 1.1. In an attempt
to give a fairly precise description of G-regular 1-factorizations, further conditions
can also be requested. For example some nonexistence results were achieved by
assuming the existence of a fixed 1-factor [21, 28]; further results were obtained
when the number of fixed 1-factors is as large as possible [3], or when the 1-factors
satisfy some additional requests [5].

In the present paper we strengthen the symmetry conditions on the 1-factoriz-
ation. More precisely, we consider G-regular 1-factorizations possessing a com-
plete set of rainbow spanning trees which can be constructed via the automorphism
group G.

We recall that a rainbow spanning tree is a spanning tree sharing exactly one
edge with each 1-factor of the given 1-factorization. In other words, a 1-factorization
of K2n corresponds to a proper edge coloring of K2n with precisely 2n−1 colors: each
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color appears exactly n times and corresponds to a 1-factor. Therefore, a spanning
tree is rainbow if its edges have distinct colors. It is also usual to say that such a tree
is orthogonal to the 1-factorization. We also recall that if T is any subgraph of K2n

with exactly 2n − 1 edges, then T is a spanning tree if and only if T is a spanning
connected graph, see for instance [31, p. 68].

A set of rainbow spanning trees is said to be a complete set if the trees form a
partition of the edge set of K2n. It is easy to prove that a complete set cannot exist
in K4, so we restrict our discussion to complete sets in K2n with n ≥ 3. Also, since
each rainbow spanning tree has 2n− 1 edges, n is the number of disjoint trees in a
complete set.

In Section 2, we prove that, regardless of the isomorphism type of G, a G-regular
1-factorization of K2n together with a rainbow spanning tree whose orbit under a
subgroup of G gives rise to a complete set exists if and only if n ≥ 3 is an odd
number. It is clear that the spanning trees are pairwise isomorphic in this case. In
Section 3 we assume G to be a dihedral group. If the order of G is twice an even
number, we can exhibit two non-isomorphic rainbow spanning trees whose partial
orbits under G give rise to a complete set. This set is partitioned into two sets of
isomorphic trees, with each set having cardinality n

2
. These results extend those

obtained in [23] for the class of cyclic groups, and in [12] where the group is assumed
to be cyclic and with a 1-rotational action on the vertex set, i.e., the automorphism
group acts sharply transitively on the set of all vertices except one, which is fixed by
each element of the group.

The main interest of our paper fits in the general problem of characterizing G-
regular 1-factorizations satisfying additional properties and we continue the analysis
introduced in [23]. However, I recall that the problem of determining whether ev-
ery given 1-factorization of a complete graph possesses a complete set of rainbow
spanning trees dates back to the Brualdi and Hollingsworth conjecture [8], and to
the Constantine conjecture when the trees are asked to be pairwise isomorphic as
uncolored trees [13]. A recent asymptotic result settles both these conjectures for all
sufficiently large n [16]. Nevertheless, the solution for each given n remains nontrivial
even if one is allowed to choose the 1-factorization.

Most of the papers about these conjectures treat the general case by methods
of extremal graph theory/probabilistic methods which can be applied for every 1-
factorization of K2n. The best known results hold for large n and mainly give lower-
bounds on the number of rainbow spanning trees. Together with [16] we recall
some other important papers in this direction: [1, 15, 18, 22, 24, 26]. The Brualdi-
Hollingsworth conjecture was also extended in [20], by stating that edges of every
properly colored Kn (not necessarily colored by a 1-factorization) can be partitioned
into rainbow spanning trees. Results are, for example, contained in [2, 11, 24], and for
large n, the results of [26] improved the best known bounds for the three conjectures
in [8, 13, 20].

Some examples of 1-factorizations ofK2n satisfying the above conjectures without
imposing conditions on n are available. Constantine himself proved the existence of
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a suitable 1-factorization satisfying his conjecture for the case 2n a power of 2 or five
times a power of two [13].

Also, a first family of 1-factorizations for which the conjecture of Brualdi and
Hollingsworth can be verified for each n ≥ 3 was recently shown in [12]. In [23] a com-
plete set of rainbow spanning trees was constructed in the family of 1-factorizations
of [17] for each n ≥ 3, except when n = 2s, s ≥ 2. In the same paper a com-
plete set of isomorphic rainbow spanning trees was constructed in a suitable 1-
factorization of K2n whenever either 2n = 6 or 2n is larger than 6 and belongs
to {2sd : s ≥ 1, d odd d �= 3}.

Other examples will be constructed in Sections 2 and 3.

1.1 The starter method

Let G be a group of even order 2n. We use a multiplicative notation for G and
denote by 1G its identity, we also use 1 if the group G is clear from the context.
Let us denote by V and E the set of vertices and edges of K2n, respectively. We
identify the vertices of K2n with the group elements of G. We shall denote by [x, y]
the edge with vertices x and y. Following [7] we always consider G in its right regular
permutation representation. In other words, each group element g ∈ G is identified
with the permutation V → V , x �→ xg. This action of G on V induces actions on
the subsets of V and on sets of such subsets. Hence if g ∈ G is an arbitrary group
element and S is any subset of V then we write Sg = {xg : x ∈ S}. In particular,
if S = [x, y] is an edge, then [x, y]g = [xg, yg]. Furthermore, if U is a collection of
subsets of V , then we write Ug = {Sg : S ∈ U}. In particular, if U is a collection
of edges of K2n then Ug = {[xg, yg] : [x, y] ∈ U}. The G-orbit of an edge [x, y] has
either length 2n or n and we speak of a long orbit or a short orbit, respectively, and
we call [x, y] a long edge or a short edge, respectively. If [x, y] is a short edge, then
there is a non-trivial group element g so that [xg, yg] = [x, y]. Such a g is unique
(g = x−1y) and is an involution; we call this g the involution associated with the
short edge [x, y].

It is easy to show that a 1-factor of K2n which is fixed by G necessarily coincides
with a short G-orbit of edges.

If e is an edge, respectively if S is a set of edges, we will denote by OrbG(e),
respectively by OrbG(S), the orbit of e, respectively of the set S, under the action
of G.

If H is a subgroup of G then a system of distinct representatives for the left cosets
of H in G will be called a left transversal for H in G.

If [x, y] is an edge in K2n we define:

∂([x, y]) =

⎧⎨
⎩

{xy−1, yx−1} if [x, y] is long

{xy−1} if [x, y] is short
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φ([x, y]) =

⎧⎨
⎩

{x, y} if [x, y] is long

{x} if [x, y] is short.

Roughly speaking, we also say that the edge [x, y] has difference set ∂([x, y]), or
that {xy−1, yx−1} are the differences of [x, y].

If S is a set of edges of K2n we define:

∂S =
⋃
e∈S

∂(e) φ(S) =
⋃
e∈S

φ(e)

where, in either case, the union may contain repeated elements and so, in general,
will return a multiset.

In [7, Definition 2.1] a starter in a group G of even order is a set Σ = {S1, . . . , Sk}
of subsets of E together with subgroups H1, . . . , Hk which satisfy the following con-
ditions:

(i) ∂S1 ∪ · · · ∪ ∂Sk = G \ {1G};

(ii) for i = 1, . . . , k, the set φ(Si) is a left transversal for Hi in G;

(iii) for i = 1, . . . , k, Hi must contain the involutions associated with any short edge
in Si.

We note that G−{1G} is a set, so this definition implies that ∂([x, y]) are distinct
for all [x, y] in the multiset S1 ∪ . . . ∪ Sk. Hence it also follows Si can have no edges
in common with Sj for i �= j. Moreover, each φ(Si) is a set and then the edges of Si

are vertex disjoint.

It is proved in [7], that the existence of a starter in a finite group G of order 2n
is equivalent to the existence of a G-regular 1-factorization of K2n. Property (i) in
previous definition ensures that every edge of K2n will occur in exactly one G-orbit
of an edge from S1 ∪ . . . ∪ Sk. Properties (ii) and (iii) ensure the union of the Hi-
orbits of edges from Si will form a 1-factor. Namely, for each index i, we form a
1-factor as ∪e∈Si

OrbHi
(e), whose stabilizer in G is the subgroup Hi; the G-orbit of

this 1-factor, which has length |G : Hi| (the index of Hi in G), is then included in the
1-factorization. Observe also that if the 1-factorization includes a 1-factor Fi which
is fixed by G, then there exists a short edge e such that Fi = OrbG(e) and the set
Si = {e} is included in the starter.

2 Regular 1-factorizations and complete sets of rainbow
spanning trees in a unique orbit

Let F be a G-regular 1-factorization of K2n. We strengthen the symmetry con-
ditions on F and ask for an automorphism group G having a nontrivial subgroup
which preserves a spanning rainbow tree partition, and with trees in a unique orbit.
This last request obviously ensures the rainbow trees to be pairwise isomorphic. In
Proposition 2.1 some necessary conditions are pointed out.
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Proposition 2.1. Let F be a G-regular 1-factorization of K2n. Let T be a rainbow
spanning tree and let T = OrbS(T ) be a complete set of rainbow spanning trees with
S a (not necessarily proper) subgroup of G. The following properties hold:

• The integer n is odd;

• If G has more than one involution, then the subgroup S has index 2 in G and
for each involution j ∈ G we have Tj /∈ T ;

• If G has exactly one involution, say j, there are two possibilities: either Tj = T ,
the 1-factor F ∗ = OrbG([1, j]) is in F and OrbG(T ) = T , or Tj /∈ T and S
has index 2 in G.

Proof. Denote by H the stabilizer of T in S. The set OrbS(T ) contains n elements,
so either |S| = n and H = {1} or S = G and H has order 2. If the first case occurs,
then the integer n is odd. In fact, if S contained an involution, say j, without
loss of generality we can suppose [1, j] to be an edge of T and then Tj = T which
contradicts H = {1}. If the second case occurs with H = {1, j}, then j is the unique
involution of G and n is odd. In fact, again suppose [1, j] to be an edge of T . Since
T is connected and without cycles, [1, j] is the unique edge of T which is fixed by
j, also ∂T is a multiset covering all the elements of G \ {1}. So, if G contained an
involution j1 different from j, we should find at least two distinct edges e and e′ = ej
in T such that ∂e = ∂e′ = {j1} and at least 2n short edges with difference set {j1}
are in OrbS(T ) which is a contradiction. Denote by F ∗ the 1-factor of F containing
the edge [1, j] of T , we have F ∗ = OrbG([1, j]). In fact, if this is not the case, we have
a 1-factor F2 ∈ F , F2 �= F ∗, containing at least one short edge which is necessarily
fixed by the unique involution j. This implies F2j = F2. Let e be the edge of T ∩F2,
then ej is an edge of T ∩ F2 and it is different from e since [1, j] is the unique edge
of T which is fixed by j. This yields a contradiction. Now let Σ = {S∗, S1, . . . , St}
be a starter for F with S∗ = {[1, j]}. No Si, i = 1, . . . , t, contains short edges and

|∂Si| = |φ(Si)| = |G|
|Hi| where Hi is the subgroup of G associated with Si. We know

that Hi is the stabilizer in G of the 1-factor Fi arising from Si; this ensures that Hi

has odd order. In fact, if we suppose j ∈ Hi and we take the edge ei of T which is in
Fi, we should have eij different from ei but still in Fi ∩T : a contradiction. Let di be
the odd order ofHi. Since Σ is a starter in G we have:

∑t
i=1

2n
di

= |G\{1, j}| = 2n−2,

and then
∑t

i=1
n
di

= n−1. This ensures that n is odd. Now the second and the third
assertions listed in the statement easily follow by observing that an involution of G
fixes T if and only if OrbS(T ) = OrbG(T ).

Let G be a group of order 2n, n odd. Recall that G admits a unique subgroup H
of index 2; see [19, I 6.7, p. 93]; furthermore if j ∈ G \H is an involution, then G is
the semidirect product of H by the subgroup generated by j. When h ∈ H we have
that jhj = h−1 if and only if jh is an involution (and hj is an involution as well).
We denote by 1 the identity of G.

Let Φ = {{ai, a−1
i } | i = 1, . . . , n−1

2
} be the right patterned starter of H [14], i.e.,

Φ is a partition of the set H∗ = H \ {1} into pairs {ai, a−1
i }.
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Using the starter method, we describe a G-regular 1-factorization F of K2n which
was already obtained in [3].

Partition the elements of G \ (H ∪ {j}) into three sets: A0, A1, A2, where A0

contains all the involutions of G \ (H ∪ {j}), while jh ∈ A1 if and only if h−1j ∈ A2.

Starter in G: Σ = {S} ∪ {Sh | jh ∈ A0} ∪ {S ′
h | jh ∈ A1}.

With:

S = {[1, j], [ai, a−1
i ] | {ai, a−1

i } ∈ Φ}}, ∂S = H∗ ∪ {j}, φ(S) = H ;

Sh = {[1, jh]}, ∂Sh = {jh}, φ(Sh) = {1};
S ′

h = {[1, jh]}, ∂S ′
h = {jh, h−1j}, φ(S ′

h) = {1, jh}.
Now φ(S) and φ(S ′

h) are left transversals for {1, j} and H respectively. With
the starter above we construct the following 1-factors:

F1 = Orb{1,j}(S) = {[1, j]} ∪ {[ai, a−1
i ], [aij, a

−1
i j] | {ai, a−1

i } ∈ Φ} with F1j = F1.

F h = {[hi, jhhi] | hi ∈ H}, with jh ∈ A0. This 1-factor is fixed by G.

F ′
h = OrbH(S ′

h) = {[hi, jhhi] | hi ∈ H}, with jh ∈ A1. It is fixed by H .

The orbits in G of these 1-factors give rise to the 1-factorization. For each i ∈
{1, . . . , n−1

2
}, there exists k ∈ {1, . . . , n−1

2
} such that aij = jak which implies also

that a−1
i j = ja−1

k and then, for each h ∈ H , the 1-factor Fh = F1h can be described
as follows, and it is included in the 1-factorization:

Fh = {[h, jh]} ∪ {[aih, a−1
i h], [jaih, ja

−1
i h] | {ai, a−1

i } ∈ Φ}.

For each h ∈ H∗ let
F ∗
h = {[hi, jhhi] | hi ∈ H}.

When jh ∈ A0, we have that OrbG(F h) = F h = F ∗
h . When jh ∈ A1, we have

OrbG(F ′
h) = {F ′

h, F ′
hj} with F ′

h = F ∗
h , F

′
hj = F ∗

h1
, with h−1j = jh1, jh1 ∈ A2.

We conclude that:

F = {Fh | h ∈ H} ∪ {F ∗
h | h ∈ H∗}.

We also have F ∗
h j = F ∗

h′ with h′ = jh−1j.

If G is cyclic, the 1-factorization described above is that already described in [17].

Moreover, if H is abelian and jh is an involution for each h ∈ H , i.e., jhj = h−1

for each h ∈ H , then G is the generalized dihedral group Dih(H) [29, p. 210], and all
n− 1 of the 1-factors F ∗

h are fixed by the entire group G.

We are now able to prove the following result.

Theorem 2.2. Let G be a group of order 2n, n > 1. There exists a G-regular
1-factorization F , a rainbow spanning tree T and a subgroup H of G such that
T = OrbH(T ) is a complete set of rainbow spanning trees if and only if n is odd.
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Proof. The necessary condition on n was proved in Proposition 2.1. Therefore, it is
sufficient to show that for each fixed group G of order 2n, with n odd, a G-regular
1-factorization with the required property exists. In particular we will use the 1-
factorization F of [3] which is described above, and we use the same notation adopted
above. In particular, remember that we denoted by Φ = {{ai, a−1

i } | i = 1, . . . , n−1
2
}

the right patterned starter of H which was involved in the construction of each
1-factor Fh.

Let T be the subgraph of K2n induced by the following set of edges:

T = {[1, j], [1, a−2
i ], [j, ja2i ], [1, ja−2

i ], [ja4i , a
2
i ] | i = 1, . . . ,

n− 1

2
}.

T is a rainbow spanning tree. In fact:

[1, j] ∈ F1; and for each i = 1, . . . , n−1
2
, we have

[1, a−2
i ] ∈ Fa−1

i
(because [1, a−2

i ] = [aia
−1
i , a−1

i a−1
i ]);

[j, ja2i ] ∈ Fai (because [j, ja2i ] = [ja−1
i , jai]ai ∈ F1ai = Fai); [1, ja−2

i ] ∈ F ∗
a−2
i

;

[a2i , ja
4
i ] ∈ F ∗

a2i
(because [a2i , ja

4
i ] = [1, ja2i ]a

2
i ∈ F ∗

a2i
a2i = F ∗

a2i
).

Moreover T contains no cycle because each vertex in H∗ has degree one, and each
vertex in jH∗ is adjacent with either 1 or j and at most another vertex in H∗.

Finally, it is obvious that each Th, h ∈ H , is still rainbow and spanning.

Moreover, OrbH(T ) = {Th | h ∈ H} covers all edges of K2n exactly once. In
fact OrbH([1, j]) covers the h short edges with difference set {j}; OrbH([1, ja

−2
i ])

covers all edges of F ∗
a−2
i

; OrbH([a
2
i , ja

4
i ]) covers all edges of F ∗

a2i
; OrbH([1, a

−2
i ]) and

OrbH([j, ja
2
i ]) are disjoint and, since for each i ∈ {1, . . . , n−1

2
} there exists k ∈

{1, . . . , n−1
2
} such that {ja2i j, ja−2

i j} = {ak, a−1
k }, both these orbits cover exactly n

distinct edges with difference set {a2i , a−2
i } for each i = 1, . . . , n−1

2
, and therefore all

the 2n edges with difference set {ai, a−1
i } are covered exactly once.

A first example of this situation is given below.

Example. Let D6 be the dihedral group of order 6, i.e., the group with defining
relations 〈α, j : α3 = j2 = 1, jαj = α2〉, let C3 = {1, a, a2} be the cyclic group of
order 3 and denote by G = D6C3 the direct product of D6 and C3. The unique
subgroup of order 9 in G is H = {1, α, α2, a, a2, αa, αa2, α2a, α2a2}. Consider the
1-factorization F described above, in particular:

F = {F1, Fh, F
∗
h | h ∈ H∗} with Fh = F1h, F

∗
h = OrbH([1, h]) and

F1 = {[1, j], [a, a2], [α, α2], [αa, α2a2], [αa2, α2a],

[ja, ja2], [jα, jα2], [jαa, jα2a2], [jαa2, jα2a]}.

The rainbow tree T obtained in Theorem 2.2 is illustrated in Figure 1.
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1

a α αa αa2 a2 α2 α2a2 α2a

j

ja jα jαa jαa2 ja2 jα2 jα2a2 jα2a

Figure 1: example with G = D6C3

3 Dihedral 1-factorizations and complete sets of rainbow
spanning trees

It was proved in [23] that, when G is a cyclic group, a G-regular 1-factorization
together with a complete set of rainbow spanning trees always exists except when
the order of G is a power of 2 (the G-regular 1-factorization does not exist in this
case [17]). In this section we enlarge this result to the class of dihedral groups and
we prove the following.

Theorem 3.1. Let G be a dihedral group of order 2n ≥ 6. There exists a G-regular
1-factorization of K2n together with a complete set of rainbow spanning trees.

When n is odd, the result follows from Theorem 2.2. The trees are pairwise
isomorphic in this case, thus giving another example satisfying the Constantine con-
jecture. We consider the case n even and we exhibit a construction below.

We denote by D2n the dihedral group of order 2n. It has the following defining
relations:

D2n = 〈α, β : αn = β2 = 1, βα = αn−1β〉.

More precisely, we have D2n = {1, α, . . . , αn−1, β, βα, . . . , βαn−1} with βαi = αn−iβ,
i = 1, . . . , n− 1.

We consider the D2n-regular 1-factorizations of K2n constructed in [3] according
to whether n ≡ 0 (mod 4) or n ≡ 2 (mod 4), and we describe them in terms of
starters.

Starter in the case n ≡ 0 (mod 4):

Σ = {S, S ′, S∗} ∪ {Si | 1 ≤ i ≤ n− 1, i �= n
2
}.

With:

S = {[αi, αn−i+1] | i = 1, . . . , n
4
};

Si = {[1, βαi]}, i = 1, . . . , n− 1, i �= n
2
;

S ′ = {[1, αn
2 ]};
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S∗ = {[1, β], [αn
4 , βα

n
2
+n

4 ], [αi, αn−i] | i = 1, . . . , n
4
− 1} or S∗ = {[1, β], [α, βα3]}

according to whether n > 4 or n = 4.

Take the subgroup K = {1, αn
2 , β, βα

n
2 }. We have:

∂S = {α2t+1, 1 ≤ 2t+ 1 ≤ n− 1} and φ(S) is a left transversal for K;

∂Si = {βαi} and φ(Si) = {1}, i = 1, . . . , n− 1, i �= n
2
;

∂S ′ = {αn
2 } and φ(S ′) = {1};

∂S∗ = {α2t, 2 ≤ 2t ≤ n − 2, 2t �= n
2
} ∪ {β, βαn

2 } and φ(S∗) is a left transversal
for K.

With the starter above, we construct the following 1-factors:

F = OrbK(S), F ∗ = OrbK(S
∗), F

α
n
2
= OrbD2n(S

′),

Fβαi = OrbD2n(Si) = Orb〈α〉(Si), i = 1, . . . , n− 1, i �= n
2
.

Their orbits under D2n give rise to the 1-factorization. Namely:

The 1-factor F is fixed by K. Its orbit under D2n yields the 1-factors:

F, Fα, . . . , Fα
n
2
−1.

These 1-factors cover all the long edges with differences in the set {α2t+1, 1 ≤ 2t+1 ≤
n− 1}.
The 1-factor F ∗ is fixed by K. Its orbit under D2n yields the 1-factors:

F ∗, F ∗α, . . . , F ∗α
n
2
−1.

These 1-factors cover all the long edges with differences in the set {α2t, 2 ≤ 2t ≤
n− 2, 2t �= n

2
} (which is empty whenever n = 4), together with all short edges with

differences in the set {β, βαn
2 }.

The other 1-factors are: F
α

n
2
and Fβαi , i = 1, . . . , n − 1, i �= n

2
. All of them are

fixed by D2n and respectively cover all the short edges with differences in the set
{αn

2 } ∪ {βαi, i = 1, . . . , n− 1, i �= n
2
}.

Starter in the case n ≡ 2 (mod 4):

Σ = {S, S ′, S∗} ∪ {Si | 1 ≤ i ≤ n− 1, i �= n
2
}.

With:

S = {[αi, αn−i+1] | i = 1, . . . , n−2
4
} ∪ {[βαn+2

4 , α
n
2
+n+2

4 ]};
Si = {[1, βαi]}, i = 1, . . . , n− 1, i �= n

2
;

S ′ = {[1, αn
2 ]};

S∗ = {[1, β], [αi, αn−i] | i = 1, . . . , n−2
4
}.

Take the subgroup K = {1, αn
2 , β, βα

n
2 }. We have:

∂S = {α2t+1, 1 ≤ 2t+1 ≤ n− 1, 2t+1 �= n
2
}∪ {βαn

2 } and φ(S) is a left transversal
for K;

∂Si = {βαi} and φ(Si) = {1}, i = 1, . . . , n− 1, i �= n
2
;

∂S ′ = {αn
2 } and φ(S ′) = {1};
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∂S∗ = {α2t, 2 ≤ 2t ≤ n− 2} ∪ {β} and φ(S∗) is a left transversal for K.

With the starter above, we construct the following 1-factors:

F = OrbK(S), F ∗ = OrbK(S
∗), F

α
n
2
= OrbD2n(S

′),

Fβαi = OrbD2n(Si), i = 1, . . . , n− 1, i �= n
2
.

Their orbits under D2n give rise to the 1-factorization. Namely:

The 1-factor F is fixed by K. Its orbit under D2n yields the 1-factors:

F, Fα, . . . , Fα
n
2
−1.

These 1-factors cover all the long edges with differences in the set {α2t+1, 1 ≤ 2t+1 ≤
n− 1, 2t + 1 �= n

2
} together with all the short edges with difference βα

n
2 .

The 1-factor F ∗ is fixed by K. Its orbit under D2n yields the 1-factors:

F ∗, F ∗α, . . . , F ∗α
n
2
−1.

These 1-factors cover all the long edges with differences in the set {α2t, 2 ≤ 2t ≤
n− 2} together with all the short edges with difference β.

The other 1-factors are F
α

n
2
and Fβαi , i = 1, . . . , n − 1, i �= n

2
. All of them are

fixed by D2n and respectively cover all the short edges with differences in the set
{αn

2 } ∪ {βαi, i = 1, . . . , n− 1, i �= n
2
}.

We are now able to construct a complete set of rainbow spanning trees in both of
these two cases. We know from Theorem 2.2 that such a set cannot be obtained as
the orbit of a single tree and we use a slightly different strategy. More precisely, we
will construct two spanning rainbow trees T1 and T2 in such a way that half the orbit
of T1 together with half the orbit of T2 under the action of the group 〈α〉 form the
complete set. This set is partitioned into two isomorphic classes with n

2
trees each.

3.1 Case n ≡ 0 (mod 4)

Let F be the dihedral regular 1-factorization of K2n described above when n ≡ 0
(mod 4).

Consider the forest T ′ induced by the following set of edges:

T ′ = {[1, α4t+1], [β, βα4t+1], 0 ≤ t ≤ n−4
4
}.

We have [1, α4t+1] ∈ Fα2t and [β, βα4t+1] ∈ Fα2t+1, 0 ≤ t ≤ n−4
4
.

In fact [1, α4t+1] = [α2t+1, αn−2t]α2t ∈ Fα2t and

[β, βα4t+1] = [βαn−2t−1, βα2t]α2t+1 = [α2t+1, αn−2t]βα2t+1 ∈ Fβα2t+1 = Fα2t+1

since Fβ = F .

We conclude that T ′ is rainbow as it has exactly one edge in each 1-factor Fαi,
i = 0, . . . , n

2
− 1. It will be useful to observe that Orb〈α〉(T ′) gives a set of n disjoint

rainbow forests whose edges all together cover exactly once all the edges of the 1-
factors F , Fα, . . . , Fα

n
2
−1.



G. RINALDI /AUSTRALAS. J. COMBIN. 80 (2) (2021), 178–196 189

Consider the tree T ′′ induced by the following sets of edges according to whether
n = 4 or n > 4:

T ′′ = {[1, β], [1, βα2]}, or

T ′′ = {[1, β], [1, βα
n
2 ], [1, α2t], [βα

n
2 , βα2t], 1 ≤ t ≤ n

4
− 1}.

We have [1, β] ∈ F ∗ and [1, βα
n
2 ] = [α

n
4 , βα

n
2
+n

4 ]α
3
4
n ∈ F ∗α

3
4
n = F ∗α

n
4 since F ∗α

n
2 =

F ∗.

Moreover, if n > 4, [1, α2t] ∈ F ∗αt and [βα
n
2 , βα2t] ∈ F ∗α

n
4
+t, with 1 ≤ t ≤ n

4
−1.

In fact [1, α2t] = [αn−t, αt]αt ∈ F ∗αt and

[βα
n
2 , βα2t] = [βα

3
4
n−t, βα

n
4
+t]α−n

4
+t = [α

n
4
+tβ, α

3
4
n−tβ]α−n

4
+t

= [α
n
4
+t, α

3
4
n−t]βα−n

4
+t ∈ F ∗βα−n

4
+t = F ∗βα

n
2α

n
4
+t = F ∗α

n
4
+t

since F ∗βα
n
2 = F ∗.

We conclude that T ′′ is a rainbow tree as it has exactly one edge in each 1-factor
F ∗αi, i = 0, . . . , n

2
− 1. We can also observe that Orb〈α〉(T ′′) gives a set of n disjoint

rainbow trees whose edges all together cover exactly once all edges of the 1-factors
F ∗, F ∗α, . . . , F ∗α

n
2
−1.

Observe that T ′ ∪ T ′′ is rainbow itself. Also, T ′ and T ′′ have just 1 and β
as common vertices and the edge [1, β] of T ′′ connects the two components of T ′.
Therefore T ′ ∪ T ′′ is a rainbow tree.

Now let n = 4. Let R be the subgraph of K2n induced by the edges of T ′ ∪ T ′′

together with the edges {[βα2, α3], [α2, βα3]}. Consider the tree T1 induced by the
edges of R together with the edge [1, α2] and the tree T2 induced by the edges of Rα2

together with the edge [βα3, βα]; see Figure 2, where T , T ′ and {[βα2, α3], [α2, βα3]}
are pictured assigning a color to each of them.

Observe that [βα2, α3] ∈ Fβα3 , [α2, βα3] ∈ Fβα, [1, α
2] ∈ Fα2 ; then T1 is a rainbow

spanning tree. In the same manner one can observe that T2 is a rainbow spanning
tree itself.

T1 T2

1

α α2 α3

α2

α3 1 α

β

βα
βα2

βα3

βα2

βα3

β

βα

Figure 2: case n = 4

The set {T1, T1α, T2, T2α} is a complete set of spanning trees orthogonal to the
1-factorization F .
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Now let n > 4. The set V of vertices of K2n which do not belong to T ′ ∪ T ′′ is
the following:

V = {αn
2 } ∪ {α2t, βα2t, n

2
< 2t ≤ n− 2} ∪ {αi, βαi, i ≡ 3 (mod 4), 3 ≤ i ≤ n− 1}.

To cover V , we now construct T ′′′. Namely, let T ′′′ be the subgraph of K2n

induced by the following set of edges:

A = {[βαn−2, αi], [αn−2, βαi], 3 ≤ i ≤ n− 5, i ≡ 3 (mod 4)},
B = {[βαn−2, αn−1], [αn−2, βαn−1], [βαn−2, α

n
2 ], [αn−2, βα

n
2 ]},

C = {[βαn−2, α2t], [αn−2, βα2t], n
4
+ 1 ≤ t ≤ n

2
− 2},

where C = ∅ whenever n = 8.

Observe that A contains exactly one edge for each 1-factor Fβαr with 3 ≤ r ≤
n− 3, r odd.

In fact [βαn−2, αi] ∈ Fβαn−i−2 and n − i − 2 ≡ 3 (mod 4) varies from 3 to n − 5.
Moreover, [αn−2, βαi] ∈ Fβαi+2 and i+ 2 ≡ 1 (mod 4) varies from 5 to n− 3.

We can also observe that Orb〈α〉(A) covers exactly once all the edges in these
1-factors.

The four edges of B are respectively contained in Fβαn−1 , Fβα, Fβα
n
2 −2, Fβα

n
2 +2

and Orb〈α〉(B) covers exactly once all the edges in these 1-factors.

When n > 8, the set C contains exactly one edge in each Fβα2s , with 2 ≤ 2s ≤ n−2
and 2s /∈ {n

2
− 2, n

2
, n
2
+ 2}.

In fact [βαn−2, α2t] ∈ Fβαn−2t−2 and [αn−2, βα2t] ∈ Fβα2t+2 with n
4
+ 1 ≤ t ≤ n

2
− 2.

We also have that Orb〈α〉(C) covers exactly once all the edges in these 1-factors.

Observe that T ′′′ is rainbow and it is the disjoint union of two stars: one at vertex
βαn−2 and one at vertex αn−2. The star at vertex αn−2 is connected to T ′ ∪ T ′′ via
the edge [αn−2, βα

n
2 ]. Therefore, the graph R = T ′ ∪ T ′′ ∪ T ′′′ is a spanning forest

with two connected components: one is the star at βαn−2 and the other is the tree
induced by all edges not containing βαn−2. We can also observe that R is rainbow as
it contains exactly one edge in each 1-factor of F − {F

α
n
2
}; furthermore, Orb〈α〉(R)

covers exactly once all the edges in these 1-factors. The two connected components
of R can be joined by the edge [1, α

n
2 ] ∈ F

α
n
2
. Therefore the graph T1 = R∪{[1, αn

2 ]}
is orthogonal to F ; also it is spanning and connected and so it is a spanning tree
orthogonal to F . Observe also that Rα

n
2 contains exactly one edge in each 1-factor

of F −{F
α

n
2
} and it has two connected components: one is the star at vertex βα

n
2
−2

and the other is the tree induced by all the edges not containing this vertex. As
before, we connect the two components using the edge [βαn−2, βα

n
2
−2] ∈ F

α
n
2
and

T2 = Rα
n
2 ∪ {[βαn−2, βα

n
2
−2]} is a spanning tree orthogonal to F .

The set T = {T1, T1α, . . . , T1α
n
2
−1, T2, T2α, . . . , T2α

n
2
−1} is a complete set of span-

ning trees orthogonal to F .

For the reader’s convenience, in Figures 3 and 4 we show T1 when n = 8 and
n = 12, respectively. We picture the sets T ′, T ′′, A, B, C assigning a color to each
of them.
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T1

α α5

1

α2 α4 α3 α6 α7

βα βα5

β

βα4 βα2 βα3 βα6 βα7

Figure 3: case n = 8

T1

α α5 α9

1

α2 α4 α6 α3 α7 α8 α10 α11

βα βα5 βα9

β

βα6 βα2 βα4 βα3 βα7 βα8 βα10 βα11

Figure 4: case n = 12

3.2 Case n ≡ 2 (mod 4)

Let F be the dihedral regular 1-factorization of K2n described above when n ≡ 2
(mod 4).

Consider the tree T ′ induced by the following set of edges:

T ′ = {[1, α4t+2], [β, βαn−(4t+2)], [1, β], 0 ≤ t ≤ n−6
4
}.

We have [1, β] ∈ F ∗, and for each t, 0 ≤ t ≤ n−6
4
, we have: [1, α4t+2] ∈ F ∗α2t+1 and

[β, βαn−(4t+2)] ∈ F ∗α
n
2
−(2t+1).

In fact [1, α4t+2] = [α2t+1, αn−(2t+1)]α2t+1 ∈ F ∗α2t+1 and [β, βαn−(4t+2)] = [β, α4t+2β]
= [1, α4t+2]β and [1, α4t+2]β ∈ F ∗α2t+1β = F ∗βαn−(2t+1) = F ∗α

n
2
−(2t+1).

We conclude that T ′ is rainbow; in fact it has exactly one edge in each 1-factor
F ∗αi, 0 ≤ i ≤ n

2
− 1. It will be useful to observe that Orb〈α〉(T ′) gives a set of n

disjoint rainbow trees whose edges all together cover exactly once all the edges of
the 1-factors F ∗, F ∗α, . . . , F ∗α

n
2
−1.

Consider the forest T ′′ induced by the following sets of edges:

T ′′ = {[β, αn
2 ], [1, α2t−1], [βα

n−2
2 , βα2t−1], 1 ≤ t ≤ n−2

4
}.

We have [β, α
n
2 ] ∈ Fα

n−2
4 , and for each t, 1 ≤ t ≤ n−2

4
, we have [1, α2t−1] ∈ Fαt−1

and [βα
n−2
2 , βα2t−1] ∈ Fα

n−2
4

+t.

In fact [β, α
n
2 ] = [βα

n
2
+n+2

4 , α
n+2
4 ]α

n−2
4 ∈ Fα

n−2
4 since

[βα
n
2
+n+2

4 , α
n+2
4 ] = [βα

n+2
4 , α

n+2
4

+n
2 ]α

n
2 ∈ Fα

n
2 = F
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and [1, α2t−1] = [αt, αn−t+1]αt−1 ∈ Fαt−1. Moreover,

[βα
n−2
2 , βα2t−1] = [βα

n−2
2

+n−2
4

−t+1, βα
n−2
2

−n−2
4

+t]α−n−2
4

+t−1

and we have

[βα
n−2
2

+n−2
4

−t+1, βα
n−2
2

−n−2
4

+t] = [αn−n−2
4

+t, α1+n−2
4

−t]α
n
2 β ∈ Fα

n
2 β = Fα

n
2

which implies that [βα
n−2
2 , βα2t−1] ∈ Fα

n
2
−n−2

4
+t−1 = Fα

n−2
4

+t.

We conclude that T ′′ is rainbow; in fact it has exactly one edge in each 1-factor
Fαi, 0 ≤ i ≤ n

2
− 1. It will be useful to observe that Orb〈α〉(T ′′) gives a set of

n disjoint graphs whose edges all together cover exactly once all the edges of the
1-factors F , Fα, . . . , Fα

n
2
−1.

The graph T ′ ∪ T ′′ is rainbow and it is induced by three stars: one at vertex 1,
one at vertex β and one at vertex βα

n−2
2 . Since [1, β] ∈ T ′ ∪ T ′′, there are two

possibilities according to whether n
2
≡ 1 (mod 4) or n

2
≡ 3 (mod 4). If the first case

occurs, T ′ ∪ T ′′ is a rainbow tree because the vertex βα
n−2
2 is a vertex of both T ′

and T ′′. If the second case occur, T ′ ∪ T ′′ is a rainbow forest with two connected
components because βα

n−2
2 is not a vertex in T ′. Furthermore, the set V of vertices

of K2n which do not belong to T ′ ∪ T ′′ can be described as follows:

{βαn
2 } ∪ {α4t, βα4t−2, α

n
2
+2t, βα

n
2
+2t, 1 ≤ t ≤ n−2

4
} or

({βαn
2 } ∪ {α4t, βα4t−2, α

n
2
+2t, βα

n
2
+2t, 1 ≤ t ≤ n−2

4
}) \ {βαn−2

2 } according to

whether n
2
≡ 1 (mod 4) or n

2
≡ 3 (mod 4). To cover V , we now construct the

rainbow graph T ′′′.

Namely, let T ′′′ = A ∪ B ∪ C be the subgraph of K2n induced by the following
set of edges:

A = {[βαn−1, α4t], 1 ≤ t ≤ n−2
4
, t �= n−2

8
} ∪ {[αn−1, βα4t−2], 1 ≤ t ≤ n−2

4
}

or

A = {[βαn−1, α4t], 1 ≤ t ≤ n−2
4
} ∪ {[αn−1, βα4t−2], 1 ≤ t ≤ n−2

4
, t �= n+2

8
},

according to whether n
2
≡ 1 (mod 4) or n

2
≡ 3 (mod 4);

B = {[βαn
2
−2, α

n−2
2 ], [α, βα

n
2 ], [αn−1, βα

n
2 ]};

C = {[βαn−1, α
n
2
+2t], [αn−1, βα

n
2
+2t], 1 ≤ t ≤ n−6

4
},

where C = ∅ whenever n = 6.

Observe that A contains exactly one edge for each 1-factor Fβαr with 1 ≤ r ≤
n− 3, r odd, r �= n

2
.

We can also observe that Orb〈α〉(A) covers exactly once all the edges in these
1-factors.

The three edges of B are respectively contained in Fβαn−1 , F
βα

n
2 −1 , Fβα

n
2 +1 and

Orb〈α〉(B) covers exactly once all the edges in these 1-factors.
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When n > 6, the set C contains exactly one edge in each Fβαs, with s even,
2 ≤ s ≤ n− 2, s /∈ {n

2
− 1, n

2
, n
2
+ 1}.

We also have that Orb〈α〉(C) covers exactly once all the edges in these 1-factors.

Observe that T ′∪T ′′ and A∪C are disjoint. Furthermore, T ′∪T ′′∪B is connected,
with no cycles. The graph A ∪ C has no cycles as well. Also, if we have n = 6 then
T ′ ∪ T ′′ ∪ B and A are disjoint, while if we have n > 6 then T ′ ∪ T ′′ ∪ B and
A ∪ C just have the unique vertex αn−1 in common. We conclude that the graph
R = T ′ ∪ T ′′ ∪ T ′′′ is acyclic and it covers all the vertices of K2n. Observe that R
has two connected components: the star at βαn−1 induced by all the edges of A∪C
through βαn−1, and the tree induced by all the edges of T ′ ∪ T ′′ ∪ B together with
all the edges of A ∪ C through αn−1. Finally, R is rainbow because T ′, T ′′, A, B, C
are rainbow and do not share colors with each other. In particular, we point out
that R contains exactly one edge in each 1-factor of F − {F

α
n
2
} and Orb〈α〉(R)

covers exactly once all the edges in these 1-factors. To connect the two components
of R we can take the edge [αn−2, α

n
2
−2] ∈ F

α
n
2
, so that T1 = R ∪ {[αn−2, α

n
2
−2]}

is connected, spanning and rainbow. Therefore it is a spanning tree orthogonal
to F . Now take the graph Rα

n
2 . It contains exactly one edge in each 1-factor

of F − {F
α

n
2
} and it also has two connected components induced, respectively, by

all the edges containing the vertex βα
n
2
−1 and by all the edges not containing it.

We can take the edge [βα
n
2
−1, βαn−1] ∈ F

α
n
2
to connect these two components and

T2 = Rα
n
2 ∪ {[βαn

2
−1, βαn−1]} is a spanning tree orthogonal to F .

The set T = {T1, T1α, . . . , T1α
n
2
−1, T2, T2α, . . . , T2α

n
2
−1} is a complete set of span-

ning trees orthogonal to F .

For the reader’s convenience, in Figures 5 and 6 we show T1 when n = 6 and
n = 10, respectively. We picture the sets T ′, T ′′, A, B, C assigning a color to each
of them.

T1

βα βα2 βα4

β

α3 βα3 βα5

α2

1

α α4 α5

Figure 5: case n = 6

For each even integer n we have exhibited a D2n-regular 1-factorization of K2n

with a complete set of rainbow spanning trees. This, together with the result of
Theorem 2.2, ends the proof of Theorem 3.1.
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T1

βα βα4 βα8

β

α5 βα5 βα2 βα6 βα9 βα7

α4 α2 α6

1

α3

α

α8 α9 α7

βα3

Figure 6: case n = 10
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