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Abstract

Pattern-avoiding machines were recently introduced by Claesson, Ferrari
and the current author to gain a better understanding of the classical 2-
stacksort problem. In this paper we generalize these devices by allowing
permutations with repeated elements, also known as Cayley permuta-
tions. The main result is a description of those patterns such that the
corresponding set of sortable permutations is a class. We also show a
new involution on the set of Cayley permutations, obtained by regarding
a pattern-avoiding stack as an operator. Finally, we analyze two gener-
alizations of pop-stack sorting on Cayley permutations. In both cases we
describe sortable permutations in terms of pattern avoidance.

1 Introduction

The problem of sorting a permutation using a stack, together with its many variants,
has been widely studied in the literature. The original version was proposed by Knuth
in [22]: given an input permutation π, either push the next element of π into the
stack or pop the top element of the stack, placing it into the output. The goal is
to describe and enumerate sortable permutations. To sort a permutation means to
produce a sorted output, i.e. the identity permutation. An elegant answer can be
given in terms of pattern avoidance: a permutation is sortable if and only if it does
not contain a subsequence of three elements which is order isomorphic to 231. A set
of permutations that can be characterized in terms of pattern avoidance is called a
class and the minimal excluded permutations are its basis. The notion of pattern
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Figure 1: Sorting with one stack (on the left) and sorting with two stacks, where the
first one is σ-restricted (on the right).

avoidance turns out to be a fundamental tool to approach a great variety of problems
in combinatorics. We refer the reader to [8] for a more detailed survey on stack-sorting
disciplines, and to [9] and [21] for an overview on patterns in permutations and
words. It is easy to realize that the optimal algorithm for the classical stacksorting
problem has two key properties. First, the elements in the stack are maintained
in increasing order, reading from top to bottom. Moreover, the algorithm is right-
greedy, meaning that it always performs a push operation, unless this violates the
previous condition. Note that the expression “right-greedy” refers to the usual (and
most natural) representation of this problem, depicted in Figure 1.

Although the classical problem is rather simple, as soon as one allows several
stacks connected in series things become much harder. For example, it is known
that the permutations that can be sorted using two stacks in series form a class, but
in this case the basis is infinite [24], and still unknown. The enumeration of such
permutations is still unknown too. In the attempt of gaining a better understand-
ing of this device, some (simpler) variants have been considered. A pop-stack is a
(restricted) stack where all the elements are extracted every time a pop operation is
performed. Pop-stacks were introduced by Avis and Newborn [5], where the authors
prove that permutations sortable through a pop-stack are the so called layered per-
mutations. A permutation is layered if it avoids 231 and 312. More recently, two or
more pop-stacks in series were considered in [4, 15, 25]. In his PhD thesis [28], West
considered two passes through a classical stack, which is equivalent to performing a
right-greedy algorithm on two stacks in series. In [27], Smith considered a decreasing
stack followed by an increasing stack. This machine was then generalized in [12]
to the case of many decreasing stacks, followed by an increasing one. Recently, the
authors of [13] considered pattern-avoiding machines, an even more general device
consisting of two stacks in series with a right-greedy procedure, where a restriction
on the first stack is given in terms of pattern avoidance. More precisely, the first
stack is not allowed to contain an occurrence of a forbidden pattern σ, for a fixed σ.
West’s device is obtained by choosing σ = 21. The pattern σ = 12 corresponds to the
device analyzed in [27], but with a right-greedy (and thus less powerful) algorithm.
Pattern-avoiding machines have been discussed in [6, 7, 14, 20].

Other than imposing restrictions on devices and sorting algorithms, one can also
allow a larger set of input sequences. Since the notion of pattern itself is inherently
more general, it is natural to consider sorting procedures on bigger sets of strings [1,
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3, 19]. Here we pursue this line of research by analyzing the behaviour of pattern-
avoiding machines on permutations with repeated letters, which are known as Cayley
permutations. A more formal definition of Cayley permutation will be given in
Section 2, together with the necessary background and tools.

In Section 3 we generalize a result of [13] by determining for which patterns σ
the words that can be sorted by the σ-machine form a class. In such cases, we also
give an explicit description of the basis, which is either a singleton or consists of two
patterns.

In Section 4, we regard a σ-avoiding stack as a function Sσ that maps an input
word into the resulting output, characterizing the patterns σ that give rise to a
bijective operator. The proof of this result relies on the encoding of Sσ as a labeled
Dyck path. By composing Sσ with the reverse operator, we obtain a new involution
on the set of Cayley permutations. This involution has the nice property of preserving
the multiset of entries of a Cayley permutation. It also leads to a constructive
description of the set of sortable permutations.

In Section 5 we analyze two generalizations of pop-stack sorting on Cayley per-
mutations. We call them hare pop-stack and tortoise pop-stack, in analogy with a
paper by Defant and Kravitz [19]. In both cases, we characterize the set of sortable
permutations in terms of pattern avoidance. A simple geometrical description allows
us to enumerate the set of tortoise pop-stack sortable permutations, while the hare
case is left for a future investigation.

2 Tools and Notations

Let N∗ be the set of strings over the alphabet N = {1, 2, . . . } of positive integers. Let
x = x1 · · ·xn and p = p1 · · · pk in N

∗, with k ≤ n. The word x contains the pattern
p if there are indices i1 < i2 < · · · < ik such that xi1xi2 · · ·xik is order isomorphic
to p. Equivalently, for each pair of indices u, v, xiu < xiv if and only if pu < pv
and xiu = xiv if and only if pu = pv. In this case, we write p ≤ x and we say that
xi1xi2 · · ·xik is an occurrence of p. Otherwise, we say that x avoids the pattern p.
This notion generalizes the usual notion of pattern involvement on permutations.
For example, the string x = 142215 contains the pattern 2113, since the substring
4225 is order isomorphic to 2113. On the other hand, x avoids the pattern 1234. A
class is a set of words that is closed downwards with respect to pattern involvement.
A class is determined by the minimal set of words it avoids, which is called its basis.

Denote by C the set of strings π on N where each integer from 1 to max(π) appears
at least once. Following [23], we call these strings Cayley permutations (they are
called normalized words in [19], and sometimes also surjective words, Fubini words
or packed words). Cayley permutations, with respect to their length, are enumerated
by sequence A000670 in the OEIS [26]. For example, the only Cayley permutation of
length one is the string 1, there are three Cayley permutations of length two, namely
11, 12 and 21, and thirteen Cayley permutations of length three, which are 111, 112,
121, 211, 122, 212, 221, 123, 132, 213, 231, 312, 321. Since only the relative order
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of the elements is relevant for avoidance and containment, patterns live naturally in
the set C. More precisely, given x ∈ N

∗, an order-isomorphic string π ∈ C can be
produced by suitably rescaling the elements of x, so to remove gaps. For this reason,
and because we think that the most natural setting is the one where patterns and
words belong to the same set, in the rest of the paper we will work on C rather than
on N

∗. We denote by C(π) the set of Cayley permutations that avoid the pattern π,
for π ∈ C; for a set of patterns B = {π1, . . . , πk}, the set of Cayley permutations that
avoid all of the patterns π1, . . . , πk is denoted by C(B). The reverse of the Cayley
permutation π = π1 · · ·πk is πr = πk · · ·π1. A weak descent is a pair of consecutive
elements πi, πi+1 such that πi ≥ πi+1. If π > πi+1, the pair is a (strong) descent.
Weak ascents and (strong) ascents are defined analogously.

3 σ-machines on Cayley Permutations

The authors of [13] introduced pattern-avoiding machines on permutations. Here
we generalize these devices by allowing Cayley permutations both as inputs and as
forbidden patterns. Let σ be a Cayley permutation of length at least two. A σ-stack
is a stack that is not allowed to contain an occurrence of the pattern σ when reading
the elements from top to bottom. Before introducing σ-machines, we recall some
useful results. Classical stacksort on N

∗ has been discussed in [19]. Note that there
are two possibilities when defining the analogue of the stacksort algorithm on N

∗.
One can either allow a letter to sit on a copy of itself in the stack, or force a pop
operation if the next element of the input is equal to the top element of the stack.
Here we choose the former possibility, leaving the latter for future investigation.
This is equivalent to regarding a classical stack as a 21-avoiding stack. The following
theorem, proved in [19] for N

∗, applies, in particular, to Cayley permutations.

Theorem 3.1. Let π be a Cayley permutation. Then π is sortable using a 21-stack
if and only if π avoids 231.

The term σ-machine refers to performing a right-greedy algorithm on two stacks
in series: a σ-stack, followed by a 21-avoiding stack (see Figure 1). A Cayley permuta-
tion π is σ-sortable if the output of the σ-machine on input π is weakly increasing.
The set of σ-sortable permutations is denoted by Sort(σ). We use the notation sσ(π)
to denote the output of the σ-stack on input π. Note that, since sσ(π) is the input
of the 21-stack, Theorem 3.1 guarantees that π ∈ Sort(σ) if and only if sσ(π) avoids
231. This fact will be used repeatedly for the rest of the paper. In [13], the authors
provided a characterization of the (permutation) patterns σ such that the set of σ-
sortable permutations is a class. The main goal of this section is to extend this result
to Cayley permutations.

Remark 1. Let σ = σ1 · · ·σk be a Cayley permutation. If an input Cayley permuta-
tion π avoids σr, then the restriction of the σ-stack is never triggered and sσ(π) = πr.
Otherwise, the leftmost occurrence of σ results necessarily in an occurrence of σ̂ in
sσ(π), where σ̂ = σ2σ1σ3σ4 · · ·σk.
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From now on, we denote by σ̂ the Cayley permutation obtained from σ by inter-
changing σ1 and σ2.

Theorem 3.2. Let σ be a Cayley permutation. If σ̂ contains 231, then Sort(σ) =
C(132, σr).

Proof. We start by proving that Sort(σ) ⊆ C(132, σr). Let π ∈ Sort(σ). Equival-
ently, suppose that sσ(π) avoids 231. Suppose by contradiction that π contains σr.
Then sσ(π) contains σ̂ due to Remark 1 and σ̂ contains 231 by hypothesis, which is
impossible. Otherwise, if π avoids σr, but contains 132, then sσ(π) = πr due to the
same remark. Moreover πr contains 231 by hypothesis, again a contradiction with
π ∈ Sort(σ). This proves that Sort(σ) ⊆ C(132, σr).

Conversely, suppose that π avoids both 132 and σr. Then sσ(π) = πr, which
avoids 132r = 231 by hypothesis, therefore π is σ-sortable. This completes the
proof.

We will show that the condition of Theorem 3.2 is also necessary for Sort(σ) to
be a class except when σ = 12.

Theorem 3.3. Sort(12) = C(213).

Proof. Let π be a Cayley permutation. Suppose that the element 1 appears k times
in π and write π = A11A21 · · ·Ak1Ak+1. It is easy to see that:

s12(π) = s12(A1)s12(A2) · · · s12(Ak)s12(Ak+1)1 · · ·1.

Indeed a copy of 1 can enter the 12-stack only if the 12-stack is either empty or it
contains only other copies of 1. Finally, the element 1 cannot play the role of 2 in an
occurrence of the (forbidden) pattern 12. Therefore the presence of some copies of 1
at the bottom of the 12-stack does not affect the sorting process of the block Ai, for
each i.

Now, suppose that π contains an occurrence bac of 213. We prove that π is not
12-sortable by showing that s12(π) contains 231. We proceed by induction on the
length of π. Write π = A11A21 · · ·Ak1Ak+1 as above. Suppose that b ∈ Ai and
c ∈ Aj , for some i ≤ j (note that b, c �= 1). If i = j, then Ai contains an occurrence
bac of 213. Thus s12(Ai) contains 231 by induction, as wanted. Otherwise, let i < j.
Then b ∈ s12(Ai) and c ∈ s12(Aj) and the elements b and c, together with any copy
of 1, realize an occurrence of 231 in s12(π), as desired.

Conversely, suppose that π = π1 · · ·πn is not sortable, i.e. s12(π) contains 231.
We prove that π contains 213. Let bca be an occurrence of 231 in s12(π). Note that
b has to precede c in π. This is due to the fact that a non-inversion in the output
necessarily comes from a non-inversion in the input, since the stack is 12-avoiding.
However, b is pushed out before c enters. Denote with x the next element of the
input when b is extracted. Then we have x < b and also x �= c, since c > b. Finally,
the triple bxc forms an occurrence of 213 in π, as desired.
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σ α /∈ Sort(σ) β ≥ α, β ∈ Sort(σ)

11 132 3132
21 3241 35241
231 1324 361425

Figure 2: The case-by-case analysis of Theorem 3.4.

Theorem 3.4. Let σ be a Cayley permutation and suppose σ �= 12. If σ̂ avoids 231,
then Sort(σ) is not a class.

Proof. Let σ = σ1 · · ·σk, with k ≥ 2. We show that there are two Cayley permuta-
tions α, β such that α is contained in β, α is not σ-sortable and β is σ-sortable. This
proves that Sort(σ) is not closed downwards, as desired. Figure 2 shows an example
of such α and β for patterns σ of length two and for σ = 231. Now, suppose that
σ has length at least three and σ �= 231. Then the Cayley permutation α = 132 is
not σ-sortable. Indeed, sσ(α) = αr = 231, since α avoids σr. Next we define the
permutation β according to the following case-by-case analysis.

• Suppose that σ1 is the strict minimum of σ, i.e. σ1 = 1 and σi ≥ 2 for each
i ≥ 2. Define:

β = σ′
k · · ·σ′

31σ
′
2σ

′
1,

where σ′
i = σi + 1 for each i. Note that β is a Cayley permutation and 1σ′

2σ
′
1

is an occurrence of 132 in β. We prove that β is σ-sortable by showing that
sσ(β) avoids 231. The action of the σ-stack on input β is depicted in Figure 3.
The first k − 1 elements of β are pushed into the σ-stack, since σ has length
k. Then the σ-stack contains 1σ′

3 · · ·σ′
k, reading from top to bottom, and the

next element of the input is σ′
2. Note that σ′

2 > 1, whereas σ1 < σ2, therefore
σ′
21σ

′
3 · · ·σ′

k is not an occurrence of σ and σ′
2 is pushed. The next element of the

input is now σ′
1. Here σ′

1σ
′
2σ

′
3 · · ·σ′

k is an occurrence of σ, thus we have to pop
σ′
2 before pushing σ′

1. After the pop operation, the σ-stack contains 1σ′
3 · · ·σ′

k.
Again σ′

1 > 1, whereas σ1 < σ2, therefore σ′
1 is pushed. The resulting string is:

sσ(β) = σ′
2σ

′
11σ

′
3σ

′
4 · · ·σ′

k.

We wish to show that sσ(β) avoids 231. Note that σ′
2σ

′
1σ

′
3σ

′
4 · · ·σ′

k � σ̂ avoids
231 by hypothesis. Moreover, the element 1 cannot be part of an occurrence
of 231, because σ′

2 > σ′
1 and 1 is strictly less than the other elements of β.

Therefore sσ(β) avoids 231, as desired.

• Otherwise, suppose that σ1 is not the strict minimum of σ, i.e. either σ1 �= 1
or σi = 1 for some i ≥ 2. Define:

β = σ′′
k · · ·σ′′

21σ
′′
12,
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Figure 3: The action of the σ-stack on input β described in the proof of Theorem 3.4.

where σ′′
i = σi + 2 for each i. Note that β is a Cayley permutation and 1σ′′

22
is an occurrence of 132 in β. Consider the action of the σ-stack on β. Again
the first k − 1 elements of β are pushed into the σ-stack. Then the σ-stack
contains σ′′

2 · · ·σ′′
k , reading from top to bottom, and the next element of the

input is 1. Note that 1σ′′
2 · · ·σ′′

k is not an occurrence of σ. Indeed 1 < σ′′
i for

each i, while σ1 is not the strict minimum of σ by hypothesis. Therefore 1
enters the σ-stack. The next element of the input is then σ′′

1 , which realizes an
occurrence of σ together with σ′′

2 · · ·σ′′
k . Thus 1 and σ′′

2 are extracted before σ′′
1

is pushed. Finally, the last element of the input is 2. Again 2 can be pushed
into the σ-stack because 2 is strictly smaller than every element in the σ-stack,
whereas σ1 is not the strict minimum of σ by hypothesis. The resulting string
is:

sσ(β) = 1σ′′
22σ

′′
1σ

′′
3 · · ·σ′′

k .

Note that σ′′
2σ

′′
1σ

′′
3 · · ·σ′′

k � σ̂ avoids 231 by hypothesis. Finally, it is easy to
realize that the elements 1 and 2 cannot be part of an occurrence of 231,
similarly to the previous case. This completes the proof.

Corollary 3.5. Let σ be a Cayley permutation of length three or more. Then the
set of σ-sortable permutations Sort(σ) is not a class if and only if σ̂ avoids 231. If
σ̂ contains 231, then Sort(σ) = C(132, σr).

We end this section by analyzing the 21-machine. The 11-machine will be dis-
cussed in Section 4, thus completing the analysis of the σ-machines on Cayley per-
mutations for patterns σ of length two. The classical permutation analogue of the
21-machine is exactly the (well known) case of the West 2-stack sortable permuta-
tions [29]. In this case, although sortable permutations do not form a class, it is
possible to describe them efficiently in terms of avoidance of barred patterns.
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Theorem 3.6. [29] A permutation π is not 21-sortable if and only if π contains
2341 or π contains an occurrence of the barred pattern 35̄241, i.e. an occurrence
3241 which is not part of an occurrence of 35241.

The previous theorem can be reformulated in terms of a more general notion of
pattern, which will be useful later when dealing with Cayley permutations. A mesh
pattern [11] of length k is a pair (τ, A), where τ is a permutation of length k and
A ⊆ [0, k]× [0, k] is a set of pairs of integers. The elements of A identify the lower left
corners of shaded squares in the plot of τ (see Figure 4). An occurrence of the mesh
pattern (τ, A) in the permutation π is then an occurrence of the classical pattern τ
in π such that no other elements of π are placed into a shaded square of A.

W = Z =

Figure 4: On the left, the barred pattern 35̄241, which is equivalent to the mesh
pattern W = (3241, {(1, 4)}). The shaded box keeps into account the case of an
occurrence of 3241 that is part of a 35241. On the right, the Cayley-mesh pattern
Z. The additional shaded region in Z keeps into account the case of an occurrence
of 3241 that is part of an occurrence of 34241.

Note that the barred pattern 35̄241 is equivalent to the mesh pattern W depicted
in Figure 4. Now, in order to prove an analogous characterization for the 21-machine
on Cayley permutations, we need to adapt the definition of mesh pattern to strings
that may contain repeated elements. In other words, we allow the shading of regions
that correspond to repeated elements. Instead of giving a formal definition, we refer
to the example illustrated in Figure 4. We will use the term Cayley-mesh pattern to
denote mesh patterns on Cayley permutations.

Lemma 3.7. Let π = π1 · · ·πn be a Cayley permutation. Suppose that πi < πj, for
some i < j. Then πi precedes πj in s21(π).

Proof. This follows from the definition of 21-stack.

Theorem 3.8. A Cayley permutation π is not 21-sortable if and only if π contains
2341 or π contains the Cayley-mesh pattern Z depicted in Figure 4. In particular,
Sort(21) is not a class. For example, the 21-sortable Cayley permutation 34241
contains the non-sortable pattern 3241.

Proof. We can basically repeat the argument used by West for classical permutations.
The only difference is the additional shaded box, which corresponds to an occurrence
of 3241 that is part of an occurrence of 34241. We sketch the proof anyway for
completeness.
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Let π be a Cayley permutation and suppose that π is 21-sortable. Suppose by
contradiction that π contains an occurrence bcda of 2341 and consider the action of
the 21-stack on π. By Lemma 3.7, b is extracted from the 21-stack before c enters.
Similarly, c is extracted before d enters. Thus s21(π) contains the occurrence bca
of 231, contradicting the assumption that π is sortable. Otherwise, suppose that π
contains an occurrence cbda of 3241. We show that there is an element x between
c and b in π such that x ≥ d. If x < c for each x in between c and b, then b is
pushed into the 21-stack before c is popped. This results in the occurrence bca of
231 in s21(π), a contradiction with π 21-sortable. Otherwise, suppose there is at
least one element x between c and b in π, with x ≥ c. If x = c, we can repeat the
same argument with xbda instead of cbda. If c < x < d, then cxda � 2341, which is
impossible due to what was said in the above case. Therefore it has to be x ≥ d, as
desired.

Conversely, suppose that π is not 21-sortable. Equivalently, let bca be an oc-
currence of 231 in s21(π). We show that either π contains 2341 or π contains an
occurrence cbda of 3241 such that x < d for each x between c and b in π. Observe
that a follows c and b in π due to Lemma 3.7. Suppose that b comes before c in π.
Note that c is extracted from the 21-stack before a enters. Let d be the next element
of the input when c is extracted. Then d > c and bcda is an occurrence of 2341, as
wanted. Otherwise, suppose that b follows c in π, and thus π contains cba. Since c
is not extracted before b enters, it has to be x ≤ c for each x between c and b in π.
Moreover, c is extracted before a enters. When c is extracted, the next element d
of the input is such that d > c. This results in an occurrence cbda of 3241 with the
desired propriety.

Open Problem 1. Enumerate the set of 21-sortable Cayley permutations. The
initial terms of the sequence are 1, 3, 13, 73, 483, 3547, 27939, 231395 (not in [26]).

Notice that, using the language of [19], a Cayley permutation π is 21-sortable if
and only if hare(hare(π)) is weakly increasing (see also Section 5).

4 σ-stacks as Operators

In this section we regard σ-stacks as operators. Let σ be a Cayley permutation and
define the map Sσ : C 	→ C by Sσ(π) = sσ(π), for each π ∈ C. We are interested
in the behavior of the map Sσ. This line of inquiry for stacksort operators is not
new in the literature. More generally, suppose one is to perform a deterministic
sorting procedure. Then it is natural to consider the map S that associates to an
input string π the (uniquely determined) output of the sorting process. Some of the
arising problems are the following.

• Determine the fertility of a string, which is the number of its pre-images un-
der S. Fertilty under classical stacksort has been recently investigated by
Defant [16, 17, 18].
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• Determine the image of S, i.e. the strings with positive fertility. These are
often called sorted permutations [10].

We start by discussing the case σ = 11. Here we provide a useful decomposition
that allows us to determine explicitly the image Sσ(π) of any input Cayley permuta-
tion π. From now on, we denote by R the reverse operator, i.e. R(π) = πr, for each
π ∈ C.

Lemma 4.1. Let σ = 11 and let π = π1 · · ·πn be a Cayley permutation. Suppose
that π contains k + 1 occurrences π1,π

(1)
1 ,. . . ,π(k)

1 of π1, for some k ≥ 0. Write
π = π1B1π

(1)
1 B2 · · ·π(k)

1 Bk. Then

S11(π) = S11(B1)π1S11(B2)π
(1)
1 · · · S11(Bk)π

(k)
1 .

Proof. Consider the action of the 11-stack on input π. Since x �= σ1 for each x ∈ B1,
the sorting process of B1 is not affected by the presence of σ1 at the bottom of the
11-stack. Then, when the next element of the input is the second occurrence σ

(1)
1 of

σ1, the 11-stack is emptied, since σ1σ
(1)
1 is an occurrence of the forbidden 11. The

first elements of S11(π) are thus S11(B1)σ1. Finally, σ(1)
1 is pushed into the (empty)

11-stack and the same argument can be repeated.

Theorem 4.2. Let σ = 11. Then (R ◦ S11) is an involution on C. Moreover, S11

is a length-preserving bijection on C. Therefore, the number of 11-sortable Cayley
permutations of length n is equal to the number of 231-avoiding Cayley permutations
of length n.

Proof. We proceed by induction on the length of the input permutation. Let π =
π1 · · ·πn be a Cayley permutation of length n. The case n = 1 is trivial. If n ≥ 2,
write π = π1B1π

(1)
1 B2 · · ·π(k)

1 Bk as in the previous lemma. Then, using the same
lemma and the inductive hypothesis:

[
R ◦ S11

]2
(π)

=
[
R ◦ S11

]2 (
π1B1π

(1)
1 B2 · · ·π(k)

1 Bk

)
=
[
R ◦ S11 ◦ R

] (
S11(B1)π1S11(B2)π

(1)
1 · · · S11(Bk)π

(k)
1

)
=
[
R ◦ S11

] (
π
(k)
1 R(S11(Bk)) · · ·π(1)

1 R(S11(B2))π1R(S11(B1))
)

= R
(
S11(R(S11(Bk)))π

(k)
1 · · · S11(R(S11(B2)))π

(1)
1 S11(R(S11(B1)))π1

)
= π1

[
R ◦ S11

]2
(B1)π

(1)
1

[
R ◦ S11

]2
(B2) · · ·π(k)

1

[
R ◦ S11

]2
(Bk)

= π1B1π
(1)
1 B2 · · ·π(k)

1 Bk

= π.

Therefore (R◦S11)2(π) = π, as desired. Finally, the reverse map R is bijective, thus
S11 is a bijection on C with inverse R ◦ S11 ◦ R.
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πi

πi+j

πi+j+l

π1

πi+1 πi+1 πi+j+1

Figure 5: On the left, the Dyck path UUUUDDDUDD which encodes S11(42132).
On the right, the (prefix of the) path Pσ(π) mentioned in the proof of Corollary 4.5.
Dotted lines connect matching steps, which have the same label.

Theorem 4.2 provides a constructive description of the set Sort(11). Indeed, since
Sort(11) = R ◦ S11 ◦ R(C(231)), every 11-sortable permutation π is obtained from a
231-avoiding Cayley permutation by applying R ◦ S11 ◦ R. Next we generalize the
above result by providing a characterization of all patterns σ such that Sσ is bijective
on C. The main tool is an encoding of the action of Sσ as a Dyck path.

A Dyck path is a path in the discrete plane Z × Z starting at the origin, ending
on the x-axis, never falling below the x-axis and using two kinds of steps (of length
1), namely up steps U = (+1,+1) and down steps D = (+1,−1). The height of a step
is its final ordinate. For each up step U, there is a unique matching step D defined
as the first D step after U with height one less than U. The length of a Dyck path
is the total number of its steps. A valley of a Dyck path is an occurrence of two
consecutive steps DU. An example of Dyck path is illustrated in Figure 5. It is well
known that Dyck paths, according to the semilength, are enumerated by Catalan
numbers (sequence A000108 in [26]). A labeled Dyck path is a Dyck path where
each step has a positive integer label. In this paper we consider labeled Dyck paths
where the label of each up step is the same as the label of its matching down step.
Therefore we can represent a labeled Dyck path P as a pair P = (P, π), where P
is the underlying Dyck path and π is the string obtained by reading the labels of
the up steps from left to right. Given an unlabeled Dyck path P of length 2n, the
reverse path R(P ) of P is obtained by taking the symmetric path with respect to
the vertical line x = n.

Now let σ be a Cayley permutation and suppose we are applying Sσ to the input
Cayley permutation π, i.e. we are sorting π using a σ-stack. Then define a labeled
Dyck path Pσ(π) as follows:

• Insert an up step U labeled a whenever the algorithm pushes an element a into
the σ-stack.

• Insert a down step D labeled a whenever the algorithm pops an element a from
the σ-stack.

Equivalently, define Pσ(π) as the unlabeled Dyck path obtained by recording the
push operations of the σ-stack with U and the pop operations with D. Then Pσ(π) =
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(Pσ(π), π). Note that Pσ(π) is a Dyck path. Indeed the number of push and pop
operations performed when processing π is the same, therefore the number of U steps
matches the number of D steps (and thus the path ends on the x-axis). Moreover,
the path cannot go below the x-axis, since this would correspond to performing a
pop operation when the σ-stack is empty, which is not possible. An example of this
construction, when σ = 11, is depicted in Figure 5. Some basic properties of Pσ(π)
are listed in the following lemma, whose straightforward proof is omitted.

Lemma 4.3. Let σ be a Cayley permutation. Let π = π1 · · ·πn be a Cayley permuta-
tion of length n and let Pσ(π) = (Pσ(π), π). Then:

1. The input π is obtained by reading the labels of the up steps of Pσ(π) from left
to right. The output sσ(π) is obtained by reading the labels of the down steps
from left to right.

2. The height of each up (respectively down) step of Pσ(π) is equal to the number
of elements contained in the σ-stack after having performed the corresponding
push (respectively pop) operation.

3. The σ-stack is emptied by a pop operation if and only if the corresponding D

step of Pσ(π) is a return on the x-axis. In other words, the decomposition of π
considered in Lemma 4.1 corresponds to the decomposition of Pσ(π) obtained
by considering the returns on the x-axis.

4. The labels of the down steps are uniquely determined by the labels of the up
steps. Conversely, the labels of the down steps uniquely determine the labels of
the up steps. More precisely, matching steps have the same label. Indeed the
element pushed into the σ-stack by an up step is then popped by the matching
down step.

5. Let DU be a valley in Pσ(π). Let a be the label of D and b the label of U. Then
b plays the role of σ1 in an occurrence of σ that triggers the restriction of the
σ-stack, whereas a plays the role of σ2 in such an occurrence. Moreover the
number of valleys of Pσ(π) is equal to the number of elements of π that trigger
the restriction of the σ-stack.

6. If σ1 = σ2, then, for each valley DU, the labels of D and U are the same.

Theorem 4.4. Let σ = σ1 · · ·σk be a Cayley permutation. Let π = π1 · · ·πn be
a Cayley permutation and let γ = R(Sσ(π)). Consider the two labeled Dyck paths
Pσ(π) = (Pσ(π), π) and Pσ(γ) = (Pσ(γ), γ).

1. If σ1 = σ2, then Pσ(π) = R(Pσ(γ)).

2. If Pσ(π) = R(Pσ(γ)), then (R ◦ Sσ)2(π) = π.

Proof. 1. Suppose that σ1 = σ2. We proceed by induction on the number of valleys
of Pσ(π). If Pσ(π) has zero valleys, then π avoids R(σ) by item 5 of Lemma 4.3.
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Therefore Sσ(π) = R(π) and γ = R2(π) = π. Since Pσ(π) = UnDn is a pyramid, and
each pyramid is equal to its reverse, the thesis follows immediately.

Now suppose that Pσ(π) has at least one valley. Let Pσ(π) = p1 · · ·p2n and
write Pσ(π) = UiUjDjUlDQ, where the steps pi+2j and pi+2j+1 form the leftmost valley
and Q = pi+2j+l+2 · · · pn is the remaining suffix of Pσ(π) (see Figure 5). Note that
the label of both pi+2j and pi+2j+1 is equal to πi+1 because of items 4, 5 and 6 of
Lemma 4.3. Item 5 also implies that pi+2j+1 plays the role of σ1 in an occurrence
of σ that triggers the restriction of the σ-stack. More precisely, immediately after
the push of πi+j (i.e. after the up step pi+j in Pσ(π)), πi+j+1 is the next element of
the input. Since the next segment of the path is Dj, j pop operations are performed
before pushing πi+j+1. This means that the element πi+1, corresponding to the last
down step, plays the role of σ2 in an occurrence of σ, while πi+j+1 plays the role of
σ1. Moreover there are k− 2 elements in the σ-stack that play the role of σ3, . . . , σk.
Since the elements in the σ-stack correspond to the labels of the initial prefix Ui,
π1 · · ·πi contains an occurrence of σk · · ·σ3 (claim I). Then, after j pop operations
are performed, the σ-stack contains πi · · ·π1, reading from top to bottom, and the
elements πi+j+1, πi+j+2, . . . , πi+j+l are pushed (claim II).

Now, write:

π = π1 · · ·πi︸ ︷︷ ︸
A

πi + 1 · · ·πi+j︸ ︷︷ ︸
B

πi+j+1 · · ·πi+j+l︸ ︷︷ ︸
C

πi+j+l+1 · · ·πn︸ ︷︷ ︸
D

,

where the elements of A correspond to the initial prefix Ui of Pσ(π), B corresponds
to Uj, C to Ul and D to the remaining up steps. Consider the string ACD =
π1 · · ·πiπi+j+1 · · ·πn obtained by removing the segment B = πi+1 · · ·πi+j from π. Let
π̃ be the only Cayley permutation that is order isomorphic to ACD (i.e. obtained by
suitably rescaling the elements of ACD, if necessary). Note that Pσ(π̃) is obtained
from Pσ(π) by cutting out the pyramid UjDj , which corresponds to the removed
segment B. This is because the elements contained in the σ-stack after having
pushed πi are exactly the same as the elements contained in the σ-stack after having
pushed πi+j+1, thus we can safely cut out the pyramid UjDj without affecting the
sorting procedure. Therefore:

Sσ(π) = R(B)Sσ(π̃) and γ = R(Sσ(π)) = R(Sσ(π̃))B.

Now, since Pσ(π̃) has one valley less than Pσ(π), by inductive hypothesis Pσ(π̃) =
R(Pσ(γ̃)), where γ̃ = R(Sσ(π̃)). The only difference bewteen Pσ(π) and Pσ(π̃) is
the removed pyramid UjDj . We wish to show that Pσ(γ) is obtained from Pσ(γ̃) by
reinserting the same pyramid UjDj in the same place, from which the thesis follows.

We have γ = R(Sσ(π̃))B and γ̃ = R(Sσ(π̃)). Consider the last push performed by
the σ-stack when processing γ̃, which corresponds to the last up step of Pσ(γ̃). Notice
that, since Pσ(π̃) = R(Pσ(γ̃)), this is also the first down step of Pσ(π̃), and thus the
first pop performed when processing π̃. Therefore the elements contained in the σ-
stack after the last push performed while processing γ̃ are πi+j+l · · ·πi+j+1πi · · ·π1,
reading from top to bottom. If we sort γ instead of γ̃, we have to process the



G. CERBAI /AUSTRALAS. J. COMBIN. 80 (3) (2021), 322–341 335

additional segment B. Now, the first element of B is πi+1. Since the same happened
when sorting π (see claim I), πi+1 realizes an occurrence of σ together with πi+j+1

(which plays the role of σ2) and k−2 other elements in π1 · · ·πi. The only difference
is that, contrary to what happened when sorting π, the roles of πi+1 and πi+j+1 are
interchanged: here the hypothesis σ1 = σ2 is relevant. As a result, before pushing the
first element πi+1 of B, we have to pop each element of the σ-stack up to πi+j+1, πi+j+1

included. After that, the σ-stack contains πi · · ·π1, reading from top to bottom.
Therefore we can push πi+1 = πi+j+1 and the remaining elements of B because of
claim II. This means that Pσ(γ) is obtained by inserting a pyramid UjDj immediately
before the last i down steps of Pσ(γ̃), as desired.

2. By hypothesis, Pσ(γ) = R(Pσ(π)), therefore the word w obtained by reading
the labels of the down steps of Pσ(γ) (from left to right) is w = R(π). By definition
of Pσ(γ), we also have w = Sσ(γ). Thus:

R(π) = Sσ(γ) = Sσ(R(Sσ(π)))

and the thesis follows by applying the reverse operator to both sides of the equality.

Corollary 4.5. Let σ = σ1 · · ·σk ∈ C. Then Sσ is bijective if and only if σ1 = σ2.
In this case, Sσ is a bijection on C that preserves the multiset of entries of a Cayley
permutation and R ◦ Sσ is an involution on the set C.

Proof. Suppose that σ1 �= σ2. Then σ̂ �= σ, thus also R(σ) �= R(σ̂). Finally,
Sσ(R(σ)) = σ̂ = Sσ((R(σ̂))), therefore Sσ is not injective.

Conversely, suppose that σ1 = σ2. By Theorem 4.4, we have that (R ◦ Sσ)2 is
the identity on C, therefore R ◦ Sσ is bijective. Finally, since the reverse map R is
bijective, Sσ is a bijection too, as desired.

5 Pop-stack on Cayley permutations

This section is devoted to the study of pop-stack sorting on Cayley permutations.
Recall from Section 1 that a pop-stack is a stack where all the elements are extracted
every time a pop operation is performed. In analogy with [19], we introduce the hare
and tortoise variants of a pop-stack, according to whether or not a letter is allowed
to sit on a copy of itself.

A hare pop-stack is a 21-pop-stack, i.e. a 21-stack that is emptied every time a
pop operation is performed. A Cayley permutation π is hare pop-stack sortable if π
is sortable using a right-greedy algorithm on a hare pop-stack.

A tortoise pop-stack is a {21, 11}-pop-stack, i.e. a {21, 11}-stack that is emptied
every time a pop operation is performed. A Cayley permutation π is tortoise pop-
stack sortable if π is sortable using a right-greedy algorithm on a tortoise pop-stack.

Denote by HPS(π) and T PS(π) the output of a hare pop-stack and, respect-
ively, a tortoise pop-stack, on input π. Recall that, since we are allowing repeated
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elements, to sort a Cayley permutation means to produce a weakly increasing Cayley
permutation (and not necessarily the identity permutation as in the classical case).
Equivalently, the output of either a hare or tortoise pop-stack is not sorted if and
only if it contains a strong descent. We shall provide a characterization of hare and
tortoise pop-stack sortable permutations in terms of forbidden patterns, starting with
hare pop-stack. The next lemma is a straightforward consequence of the definition
of hare pop-stack.

Lemma 5.1. Let π be a Cayley permutation. Write π = B1B2 · · ·Bk, where each
block Bt is maximally weakly decreasing (i.e. the last element of each block Bt forms
a strong ascent together with the first element of the next block Bt+1). Then:

HPS(x) = R(B1) · · ·R(Bk).

Theorem 5.2. Let π be a Cayley permutation. Then π is hare pop-stack sortable if
and only if π avoids 231, 312 and 2121.

Proof. Suppose that π is hare pop-stack sortable. Observe that hare pop-stack sort-
able Cayley permutations are a subset of 21-sortable Cayley permutations. Thus π
avoids 231 due to Theorem 3.1. Now suppose by contradiction that π contains an
occurrence cab of 312. Then, when b enters the hare pop-stack, a has been already
extracted. Otherwise HPS(π) would not be weakly increasing, contradicting the
hypothesis. Therefore also c has been extracted and thus b < c, which again contra-
dicts the fact that π is hare pop-stack sortable. Similarly, suppose that π contains
an occurrence bab′a′ of 2121. Then a, and thus also b, must have been extracted
before b′ enters the stack, since b′ > a. Therefore b is extracted before a′ enters the
hare pop-stack, which is impossible because a′ < b.

Conversely suppose that π is not hare pop-stack sortable. We wish to show that
π contains an occurrence of either 231, 312 or 2121. Write π = B1B2 · · ·Bk as in
Lemma 5.1. Then HPS(π) = BR

1 · · ·BR
k and HPS(π) contains at least one strict

descent. Let a > b the leftmost strict descent in HPS(π). Due to Lemma 5.1, it
must be a ∈ Bi and b ∈ Bi+1, for some i. The same result implies that a is the first
element of Bi and b is the last element of Bi+1. Now, denote by u the last element
of Bi and by v the first element of Bi+1, as illustrated in Figure 6. We have a ≥ u,
v ≥ b and v > u. Consider the following case-by-case analysis.

• If Bi is a singleton, then u = a > b and a = u < v, therefore b �= v and avb is
an occurrence of 231 in π.

• If Bi+1 is a singleton, then b = v > u and v = b < a, therefore a �= u and auv
is an occurrence of 312 in π.

• Finally, suppose that both Bi and Bi+1 are not singletons and consider the four
elements auvb in π. If a > v, then auv is an occurrence of 312. If a < v, then
avb is an occurrence of 231. Otherwise, suppose that a = v (and so a = v > u).
Then auvb is an occurrence of 2121, if u = b; aub is an occurrence of 231, if
u > b; and aub is an occurrence of 312, if u < b.
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π = · · ·︸︷︷︸
B1

| · · · | a · · ·u︸ ︷︷ ︸
Bi

| v · · · b︸ ︷︷ ︸
Bi+1

| · · · | · · ·︸︷︷︸
Bk

H/T PS(π) = · · ·︸︷︷︸
B1

| · · · | u · · ·a︸ ︷︷ ︸
Bi

| b · · · v︸ ︷︷ ︸
Bi+1

| · · · | · · ·︸︷︷︸
Bk

Figure 6: The decomposition of π used in the proofs of Theorem 5.2 and Theorem 5.4.

Next we consider tortoise pop-stack.

Lemma 5.3. Let π be a Cayley permutation. Write π = B1B2 · · ·Bk, where each
block Bt is maximally strictly decreasing (i.e. the last element of each block Bt forms
a weak ascent together with the first element of the next block Bt+1). Then:

T PS(x) = R(B1) · · ·R(Bk).

Theorem 5.4. Let π be a Cayley permutation. Then π is tortoise pop-stack sortable
if and only if π avoids 231, 312, 221 and 211.

Proof. The proof is similar to that of Theorem 5.2. It is not difficult to show that
if π contains an occurrence of either 231, 312, 221 or 211, then π is not tortoise
pop-stack sortable. We leave the details to the reader.

Conversely, suppose that π is not tortoise pop-stack sortable. Then T PS(π) =
R(B1) · · ·R(Bk) and T PS(π) contains at least one strict descent a > b. Suppose
a, b is the leftmost strict descent in T PS(π). Again it has to be a ∈ Bi and b ∈ Bi+1

for some i, due to Lemma 5.3. Denote with u the last element of Bi and with v
the first element of Bi+1. Notice that if a and u are distinct, then a > u; similarly,
v > b if v and b are distinct. Moreover, we have u ≤ v by Lemma 5.3 (see Figure 6).
Suppose that Bi is a singleton and thus a = u. Then v �= b, since v ≥ a, whereas
b < a. Now, if a < v, then avb is an occurrence of 231. Otherwise, if a = v, then
avb is an occurrence of 221. Otherwise, suppose that Bi is not a singleton and thus
a �= u. If a > v, then auv is an occurrence of either 312, if u < v, or 211, if u = v. If
a < v, then v �= b, since v > a and b < a, and avb is an occurrence of 231. Finally,
suppose that a = v. Note that again v �= b, since v = a and b < a. Therefore, if
b = u, then aub is an occurrence of 211. If b < u, then uvb is an occurrence of either
231, if u < v, or 221, if u = v. Instead, if b > u, then aub is an occurrence of 312.

Let us now enumerate tortoise pop-stack sortable Cayley permutations. First
a geometrical description. Write again π = B1B2 · · ·Bk, where each block Bi is
maximally strictly decreasing. Denote by mi the first element of Bi and let Bi =
miAi, where Ai contains the remaining elements of Bi. Suppose that π is tortoise
pop-stack sortable. Then:
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1. mi ≤ mi+1 for each i. Otherwise, suppose by contradiction that mi > mi+1.
Let x the last element of Bi. Then x ≤ mi+1, therefore x �= mi and mixmi+1

is an occurrence of 312, contradicting Theorem 5.4.

2. Ai < Ai+1 for each i. In other words, x < y for each x ∈ Ai and y ∈ Ai+1.
Otherwise, if x = y, then mixy is an occurrence of 211, against Theorem 5.4.
Instead, if x > y, then xmi+1y is an occurrence of 231, which is impossible due
to the same result.

3. y ≥ mi for each y ∈ Ai+1. Otherwise mimi+1y is an occurrence of either 231,
if mi < mi+1, or 221, if mi = mi+1. In both cases this is impossible due to
Theorem 5.4.

Denote by fn,k the number of tortoise pop-stack sortable Cayley permutations
of length n and with k maximally strictly decreasing blocks. As a consequence of
what was said above, each of these Cayley permutations is determined uniquely by
choosing:

• The length of each block, which can be done in
(
n−1
k−1

)
distinct ways.

• Whether the last element of a block is equal to or greater than the first element
of the previous block. Equivalently, if �i is the last element of the block Bi,
whether �i+1 = mi or �i+1 = mi + 1, for each i ≥ 2.

Therefore fn,k =
(
n−1
k−1

)
2k−1.

Corollary 5.5. For each n ≥ 1, there are 3n−1 tortoise pop-stack sortable permuta-
tions of length n.

Proof. Let fn be the number of tortoise pop-stack sortable permutations of length n.
We have:

3n−1 = (2 + 1)n−1 =
n−1∑
j=0

(
n− 1

j

)
2j =

n∑
k=1

(
n− 1

k − 1

)
2k−1 =

n∑
k=1

fn,k = fn.

The enumeration of hare pop-stack sortable Cayley permutations, or equivalently
the set of Cayley permutations avoiding 231, 312 and 2121, is rather more complic-
ated, thus we leave it for a future work.

Open Problem 2. Enumerate the hare pop-stack sortable Cayley permutations.
The sequence starts 1, 3, 11, 41, 151, 553 and it does not match any sequence in the
OEIS [26].
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The authors of [2] studied pop-stacked permutations, that is the image of the
deterministic pop-stack operator on classical permutations. They show a structural
characterization of such permutations, as well as a proof that the generating function
is rational when the number of runs is fixed. Some algorithmic and asymptotic
aspects of pop-stacked permutations are also considered. It would thus be interesting
to study the analogues of their results for hare pop-stack and tortoise pop-stack on
Cayley permutations.
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