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Abstract

A dominating set in a graph G = (V,E) is a set S ⊆ V such that every
vertex not in S is adjacent to at least one vertex in S. A coalition in
a graph G consists of two disjoint sets V1, V2 ⊂ V neither of which is a
dominating set but whose union V1 ∪ V2 is a dominating set. A vertex
partition π = {V1, V2, . . . , Vk} such that every set Vi is either a dominating
set consisting of a single vertex, or is not a dominating set but forms a
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coalition with another set Vj which is not a dominating set, is called a
coalition partition. The maximum order of a coalition partition is called
the coalition number of G. In this paper we obtain a tight upper bound
on the coalition number of any graph G in terms of the maximum degree
of G. We also give a tight upper bound on the coalition number in terms
of both maximum degree and minimum degree of G.

1 Introduction

The term coalition is used to describe a situation in which two or more parties ne-
gotiate and reach an agreement on a temporary course of action that is viewed as
mutually beneficial, a common example arising in parliamentary systems of govern-
ment, when in a general election no political party achieves a majority. Although
parliamentary coalitions typically involve agreements between more than two politi-
cal parties, the graph theory model presented in this paper represents situations in
which coalitions are formed by only two groups.

We will need the following definitions. Given a graph G = (V,E), with vertex
set V of order n = |V |, the open neighborhood of a vertex v ∈ V is the set N(v) =
{u | uv ∈ E}, and its closed neighborhood is N [v] = N(v)∪{v}. Each vertex u ∈ N(v)
is called a neighbor of v, and |N(v)| is called the degree of v, denoted deg(v). We
let δ(G) and Δ(G) denote the minimum and maximum degree, respectively, over all
degrees of vertices in G. For a set S of vertices, we denote the subgraph induced by
S by G[S]. A set S ⊆ V is a dominating set of a graph G if every vertex in V − S
has at least one neighbhor in S. A set S ⊆ V is a vertex cover of a graph G if every
edge in E(G) is incident to at least one vertex of S. The minimum cardinality of
any vertex cover of G is the vertex cover number, denoted by β(G). For an integer
k, we use the standard notation i ∈ [k] to mean that i is an integer and 1 ≤ i ≤ k.

We denote the family of paths, cycles, and complete graphs of order n by Pn,
Cn, and Kn, respectively, and the complete bipartite graph having r vertices in one
partite set and s vertices in the other by Kr,s. The union G ∪ H of two disjoint
graphs G and H is the disconnected graph with components G and H . Let G − e
denote the graph obtained by removing an arbitrary edge from G.

In a graph G of order n, a vertex of degree n− 1 is called a full vertex. A subset
Vi is called a singleton set if |Vi| = 1. Note that any full vertex forms a singleton
dominating set.

The concept of coalitions in graphs was introduced by the authors in 2020 [3] as
follows.

Definition 1 A coalition in a graphG consists of two disjoint sets of vertices V1, V2 ⊂
V , neither of which is a dominating set but whose union V1 ∪V2 is a dominating set.
We say that the sets V1 and V2 form a coalition and are coalition partners.

Definition 2 A coalition partition, henceforth called a c-partition, in a graph G is a
vertex partition π = {V1, V2, . . . , Vk} such that every set Vi of π is either a singleton
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dominating set or forms a coalition with another set Vj in π. The coalition number
C(G) equals the maximum order k of a c-partition of G, and a c-partition of G having
order C(G) is called a C(G)-partition.

Definition 3 Let G be a graph of order n with vertex set V = {v1, v2, . . . , vn}. The
singleton partition, denoted π1, of G is the partition of V into n singleton sets, that
is, π1 = {{v1}, {v2}, . . . , {vn}}.

Note that if G has no full vertices, then no set Vi in a c-partition is a dominating
set, and, hence, must form a coalition with another set Vj in the partition.

Coalition graphs were defined in [1, 3] as follows.

Definition 4 Given a c-partition π = {V1, V2, . . . , Vk} of order k of a graph G =
(V,E), the coalition graph CG(G, π) is the graph whose k vertices correspond one-
to-one with the sets of π, and two vertices Vi and Vj are adjacent in CG(G, π) if and
only if their corresponding sets Vi and Vj form a coalition in G.

Note that in Definition 4, we abuse notation slightly by letting Vi represent both
a set in π and a vertex in CG(G, π). For simplicity, we will continue this throughout
the paper, depending on context to make it clear. Note also that for any graph G and
a C(G)-partition π, there will be a corresponding coalition graph CG(G, π) having
C(G) vertices.

A few examples will illustrate these definitions. Consider first the path P6 =
(v1, v2, v3, v4, v5, v6). The partition π = {{v1, v6}, {v2}, {v3}, {v4}, {v5}} is a c-parti-
tion of P6. No set of π is a dominating set, but {v2} and {v5} form a coalition;
{v1, v6} and {v3} form a coalition; and {v1, v6} and {v4} form a coalition. Thus,
every set forms a coalition with at least one other set. From this it follows that the
coalition number of the path P6, satisfies C(P6) ≥ 5.

To see that C(P6) = 5, we note that the only partition of V (P6) of larger order is
the singleton partition π1 = {{v1}, {v2}, {v3}, {v4}, {v5} {v6}}. Since no dominating
set of P6 contains v1 and one other vertex, the set {v1} does not form a coalition with
any other set in π1, and therefore the singleton partition π1 of P6 is not a c-partition.
Hence, C(P6) = 5 and π = {{v1, v6}, {v2}, {v3}, {v4}, {v5}} is a C(P6)-partition.

Consider next the cycle C6. The following partitions are c-partitions of C6 of
orders 2, 3, 4, 5, and 6:

π2 = {{v1, v2, v3}, {v4, v5, v6}},
π3 = {{v1, v2}, {v3, v5}, {v4, v6}},
π4 = {{v1}, {v2}, {v3, v5}, {v4, v6}},
π5 = {{v1}, {v2}, {v3}, {v4}, {v5, v6}},
π6 = {{v1}, {v2}, {v3}, {v4}, {v5} {v6}}.
Note as well that these five c-partitions of C6 result in the following coalition

graphs:
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CG(C6, π2) 	 K2,
CG(C6, π3) 	 K3,
CG(C6, π4) 	 K4 − e,
CG(C6, π5) 	 K2 ∪ P3,
CG(C6, π6) 	 3K2.

In [3] the authors show that every graph G has a c-partition. Hence, we have the
following straightforward bounds on the coalition number.

Corollary 1.1 If G is a graph of order n, then 1 ≤ C(G) ≤ n.

It is easy to see that the trivial graph K1 is the only graph which attains the lower
bound of Corollary 1.1, while the complete graphs Kn and the complete bipartite
graphs Kr,s, with 2 ≤ r ≤ s, among other graphs, attain the upper bound.

In Section 2 we provide a tight upper bound on C(G) for all graphs G in terms of
maximum degree Δ(G), and construct families of graphs achieving this upper bound.
In Section 3, we give an improved upper bound on C(G) for some graphs in terms of
minimum and maximum degree of G. We also construct a family of graphs achieving
this bound.

We will use the following known results.

Lemma 1.1 ([2]) For any graph G with c-partition π,

Δ(CG(G, π)) ≤ Δ(G) + 1.

Lemma 1.2 ([4]) For any graph G with c-partition π, the vertex cover number

β(CG(G, π)) ≤ δ(G) + 1.

2 Upper Bound in Terms of Maximum Degree

In this section, we give an upper bound on C(G) for any graph G in terms of the
maximum degree Δ(G) and give a construction of graphs attaining the bound.

2.1 Upper Bound

We are now ready to present our main result.

Theorem 2.1 For any graph G, C(G) ≤ (Δ(G) + 3)2/4.

Proof. The theorem obviously holds for any graph G of order n with a full vertex,
since C(G) ≤ n < (n+ 2)2/4 = (Δ(G) + 3)2/4. So we can assume that G is a graph
with no full vertices.

Let π = {V1, V2, . . . , Vk} be a C(G)-partition for G, and let H = CG(G, π) be
the coalition graph of G and π. Then H has order k = C(G). Since G has no full
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vertices, every set in π is in a coalition with another set in π, and so H has no isolated
vertices. In order to obtain an upper bound on C(G) = k, we obtain a bound on the
order k of H .

Let S be a minimum vertex cover for H , that is, |S| = β(H). Let S denote the
set V (H) − S, and let NS(v) = NH(v) ∩ S. Note that the set S is an independent
set in H .

If |S| = 1, then every edge of H is incident to the only vertex, say Vi, of S. Since
H has no isolated vertices, Vi is a full vertex ofH . Thus, k = 1+|NH(Vi)| ≤ 1+Δ(H).
By Lemma 1.1, k ≤ 1+Δ(H) ≤ 1+ (Δ(G) + 1) = Δ(G) + 2, and the theorem holds
since C(G) = k ≤ Δ(G) + 2 < (Δ(G) + 3)2/4.

Assume next that |S| = 2, and let S = {Vi, Vj}. If ViVj �∈ E(H), then the set
Vi∪Vj is not a dominating set of G. Thus, there exists a vertex u in G not dominated
by Vi ∪ Vj. Since S is a vertex cover of H , every vertex in S is adjacent to at least
one of Vi and Vj in H , that is, their corresponding sets must form a coalition with
Vi or Vj in π. The only sets of π that can form a coalition with Vi or Vj in G must
contain at least one member of NG[u]. Since |NG[u]| ≤ Δ(G) + 1, it follows that
k ≤ 2 + (Δ(G) + 1) = Δ(G) + 3, and Δ(G) + 3 ≤ (Δ(G) + 3)2/4, as desired. If
ViVj ∈ E(H), then it follows that k ≤ 2 + 2(Δ(H)− 1) = 2Δ(H). By Lemma 1.1,
C(G) = k ≤ 2Δ(H) ≤ 2(Δ(G) + 1) = 2Δ(G) + 2 ≤ (Δ(G) + 3)2/4. Thus, the
theorem holds if |S| = 2.

Henceforth, we may assume that |S| ≥ 3. By Lemma 1.2, |S| ≤ δ(G) + 1 ≤
Δ(G) + 1. Among all vertices in S, let Vi be one having the maximum number of
neighbors in S, that is, |NS(Vi)| is maximized. Let |NS(Vi)| = m.

Recall that no set of π dominates G. Let u be a vertex in G that is not dominated
by the set Vi. Let U be the subset of π whose sets contain members of NG[u]. Note
that every coalition of π must include a member of U to dominate u in G. As before,
abusing notation slightly, we use U to refer to the collection of sets of π in G and
to the set of their corresponding vertices in H . Notice that the sets corresponding
to the m vertices in NS(Vi) must be in U , since each of these sets forms a coalition
with Vi in G. Since |NG[u]| ≤ Δ(G) + 1, there are at most Δ(G) + 1−m other sets
in U .

By our choice of u, each vertex in S ∩ U has at most m neighbors in S. Since
S is a vertex cover of H , we deduce that the vertices in S in H are the m vertices
in NS(Vi), along with at most Δ(G) + 1 − m − |S ∩ U | other vertices in U ∩ S
and at most m · |S ∩ U | vertices that are adjacent to vertices in S ∩ U . Thus,
|S| ≤ m+Δ(G) + 1−m− |S ∩U |+m · |S ∩U | = Δ(G) + 1+ (m− 1)|S ∩U |. Since
|S| ≤ Δ(G) + 1, we have k = |S|+ |S| ≤ (Δ(G) + 1)+Δ(G) + 1+ (m− 1)|S ∩U | =
2Δ(G) + 2 + (m− 1)|S ∩ U |.

Recall that |S ∩ U | ≤ Δ(G) + 1 − m. If |S ∩ U | < Δ(G) + 1 − m, then k ≤
2Δ(G) + 2 + (m − 1)(Δ(G) − m) = Δ(G) + 2 + m(Δ(G) + 1) −m2. This value is
maximized when m = (Δ(G) + 1)/2, and so k ≤ (Δ(G) + 3)2/4. Hence, the result
holds for |S ∩ U | < Δ(G) + 1−m.

Henceforth, we may assume that |S ∩ U | = Δ(G) + 1 −m. Let Δ = Δ(G). We



T.W. HAYNES ET AL. /AUSTRALAS. J. COMBIN. 80 (3) (2021), 442–453 447

prove two claims.

Claim 1 If there exist two vertices in S ∩ U , say V1 and V2, such that |(NS(V1) ∪
NS(V2)| ≤ m, then k < (Δ + 3)2/4.

Proof. Suppose that there exist two vertices in S ∩ U , say V1 and V2, such that
|(NS(V1) ∪NS(V2)| ≤ m. Then the vertices in S in H are the m vertices in NS(Vi),
the vertices adjacent to V1 or V2, and the vertices adjacent to the vertices in (S∩U)−
{V1, V2}. Since |S∩U | = Δ+1−m and each vertex in S∩U has at most m neighbors
in S, it follows that |S| ≤ m+m+m|(S ∩U)−{V1, V2}| = 2m+m(Δ+1−m− 2).
Thus, k = |S| + |S| ≤ (Δ + 1) + 2m +m(Δ −m − 1) ≤ Δ + 1 +m +mΔ −m2 =
Δ + 1 + m(Δ + 1) − m2. This value is maximized when m = (Δ + 1)/2, and so
k ≤ (Δ + 1)(Δ + 5)/4 < (Δ + 3)2/4, as desired. (�)

Hence, we may assume every pair of vertices in S∩U have greater than m vertices
in the union of their neighborhoods in S in H , else the result holds by Claim 1.

Claim 2 If every vertex in S ∩ U has fewer than m neighbors in S − NS(Vi), then
k ≤ (Δ + 3)2/4.

Proof. Suppose that every vertex in S∩U has fewer than m neighbors in S−NS(Vi).
Then the vertices of S are the m vertices of NS(Vi) and at most (m − 1)|S ∩ U |
vertices adjacent to the vertices of S ∩ U . Since |S ∩ U | = Δ + 1 − m, we have
k = |S|+ |S| ≤ (Δ + 1) +m+ (m− 1)|S ∩ U | = Δ+ 1 +m+ (m− 1)(Δ + 1−m).
This value is maximized when m = (Δ + 3)/2, and so k ≤ (Δ + 3)2/4. (�)

Henceforth, we may assume that there is at least one vertex, say Vj, in S ∩ U
with m neighbors in S−NS(Vi), else the result holds by Claim 2. Note that Vj �= Vi.
Further, NG[u] ∩ Vj �= ∅ in G, since Vj ∈ S ∩ U in H .

Since the set Vj does not dominate G, there is a vertex x of G that is not dom-
inated by Vj in G. Let X be the subset of π whose sets contain members of NG[x].
Again, we use X to refer to the collection of sets of π in G and to the set of their
corresponding vertices in H .

Note that Vj could have been chosen instead of Vi, so the arguments that hold
for Vi also hold for Vj. In particular, we may assume that |X ∩ S| = Δ+ 1−m and
that the vertices of S ∩X are precisely the m vertices adjacent to Vj . Furthermore,
since Vi and Vj have no common neighbors in S, none of the m vertices in NS(Vi)
are in X. Since vertex Vr ∈ NS(Vi) in H represents a coalition partner of the set Vi

in G and no such set Vr dominates x in G, we deduce that Vi ∈ X ∩ S.

If there is a vertex Vp ∈ (S − (U ∪ {Vi}), then Vp must have a neighbor in S,
otherwise S − {Vp} is a vertex cover of H with cardinality less than |S| = β(H),
a contradiction. Moreover, every neighbor of Vp in H must be in U since Vp �∈ U .
Thus, NS(Vp) ⊆ NS(Vi), implying that Vp ∈ X and |(NS(Vp) ∪ NS(Vi)| ≤ m. Now
suppose we had chosen Vj instead of Vi. Then Claim 1 implies that every two vertices



T.W. HAYNES ET AL. /AUSTRALAS. J. COMBIN. 80 (3) (2021), 442–453 448

in S ∩X must have more than m vertices of S in the union of their neighborhoods.
But Vi and Vp are in S ∩X and |(NS(Vp) ∪NS(Vi)| ≤ m, a contradiction.

Thus, no such vertex Vp exists. Hence, S−(U∪{Vi}) = ∅, and so |S| = |S∩U |+1.
Now the vertices of S are the m vertices of NS(Vi) and at most m|S ∩ U | vertices
adjacent to the vertices of S∩U . Thus, k = |S|+ |S| ≤ |S∩U |+1+m+m|S ∩U | =
(Δ+1−m)+1+m+m(Δ+1−m) = Δ+2+m(Δ+1−m) = Δ+2+m(Δ+1)−m2.
This value is maximized when m = (Δ + 1)/2, and so k ≤ (Δ + 3)2/4, completing
the proof. �

The upper bound of Theorem 2.1 is sharp. For example, a graphG with Δ(G) = 3
and C(G) = 9 = (Δ(G) + 3)2/4 is illustrated in Figure 1, where a C(G)-partition is
given by π = {V1, V2, . . . , V9}, where Vi is the set of vertices labeled i for i ∈ [9]. In
the next section, we construct graphs G achieving this tight bound for all Δ(G) ≥ 0.
An open problem is to characterize the graphs attaining the bound of Theorem 2.1.
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Figure 1: C(G) = 9

2.2 Graphs Achieving the Upper Bound

In this section, we construct families of graphs achieving the upper bound of Theo-
rem 2.1.

Theorem 2.2 For every non-negative integer Δ, there exists a graph G with Δ(G) =

Δ, for which C(G) = (Δ+2)(Δ+4)
4

if Δ is even, and C(G) = (Δ+3)2

4
if Δ is odd.

Proof. For every non-negative integer Δ, we construct a graph G for which Δ(G) =

Δ and C(G) = (Δ+2)(Δ+4)
4

if Δ is even, and C(G) = (Δ+3)2

4
if Δ is odd.

Assume first that Δ is even. If Δ = 0, then the empty graph K2 with its singleton
c-partition has C(G) = 2 = (Δ+2)(Δ+4)

4
. And the singleton c-partition for the cycle

C6 shows that there is a graph with Δ = 2 and C(G) = 6 = (Δ+2)(Δ+4)
4

.

For even Δ ≥ 4, we the build a Δ-regular graph G with a labeling of the vertices
of G that produces a c-partition π and the desired coalition number.



T.W. HAYNES ET AL. /AUSTRALAS. J. COMBIN. 80 (3) (2021), 442–453 449

Let p = (Δ + 2)/2. To build G, begin with two groups of p complete graphs Kp.
Thus, we start with (2p)Kp. To aid in our discussion, we refer to the ith clique in a
group for i ∈ [p], that is, we associate a unique label from 1 to p for each complete
graph in Group 1 and similarly for the p graphs in Group 2. For each of the cliques
in Group 1, label its vertices a unique number from [p], that is, the vertices of each
Kp in Group 1 are labeled from 1 to p. For Clique i in Group 2, label its vertices
from ip+1, ip+2, . . . , ip+ p. It follows that every vertex in Group 2 has a different
label from p+ 1 to p2 + p. Finally, we add edges to finish building G as follows:

For each Clique i in Group 2 and each vertex v labeled ip + j in Clique i, add
edges from v to every vertex, except the vertex labeled i, in Clique j of Group 1.
Then G is a Δ-regular graph. Figure 2 illustrates the construction for Δ = 4.
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Figure 2: Δ = 4 and C(G) = 12

Define partition π = {V1, V2, . . . , Vk}, where Vi is the set of vertices labeled i in
G. We note that every vertex in the cliques of Group 2 is in a singleton set of π.
Note also that π has order p2 + p = (Δ+2

2
)2 + Δ+2

2
= (Δ+2)(Δ+4)

4
.

To see that π is a c-partition of G, note that no Vs ∈ π dominates G. We need
to show that every Vs ∈ π forms a coalition with another set of π. If Vs = {v}
is a singleton set containing a vertex from a clique of Group 2, then s = ip + j,
where the vertex v is in Clique i of Group 2. Thus, Vs forms a coalition with Vi in
π, and the result holds for all s, where p + 1 ≤ s ≤ p2 + p. Moreover, since there
exists an s = ip + j for all i ∈ [p], we have that each Vi forms a coalition with a

set in π. Hence, π is a c-coalition of G, implying that C(G) ≥ k = (Δ+2)(Δ+4)
4

. By

Theorem 2.1, C(G) ≤ (Δ+3)2

4
, and so C(G) = (Δ+2)(Δ+4)

4
.

Next assume that Δ is odd. The graph G = 2K2 has Δ = 1 and C(G) = 4 =
(Δ+3)2

4
.
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For odd Δ ≥ 3, we the build a graph G with Δ(G) = Δ and give a labeling of
the vertices of G that produces a c-partition π and the desired coalition number as
follows.

Let p = (Δ + 3)/2, q = (Δ + 1)/2, and r = (Δ + 5)/2. To build G, begin with
two groups, such that Group 1 is the union of r complete graphs Kp, and Group 2
is the union p complete graphs Kq. As before, we refer to the ith clique, associating
a unique label i from 1 to r with each Kp in Group 1 and associating a unique label
from 1 to p with each Kq in Group 2. For each of the r cliques in Group 1, label
its vertices a unique number from [p]. In other words, the vertices of each Kp in
Group 1 are labeled from 1 to p. For the pq vertices in Group 2, give each vertex a
different label from p+ 1 to p+ pq.

Finally, we add edges to finish building G as follows: for each vertex v in Clique i,
for i ∈ [p], of Group 2, add edges from v to p − 1 vertices in Group 1, such that
each of these p − 1 neighbors of v has a different label from {1, 2, . . . , p} − {i} and
no vertex of Group 1 is adjacent to more than Δ − p + 1 vertices of Group 2. Now
each vertex of Group 2 has degree q − 1 + p− 1 = q + p− 2 = Δ = Δ(G), and each
vertex of Group 1 has degree at most p− 1+Δ− p+1 = Δ. Figure 3 illustrates the
construction for Δ = 5.
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Figure 3: Δ = 5 and C(G) = 16

Define partition π = {V1, V2, . . . , Vk}, where Vi is the set of vertices labeled i in
G. We note that π has order p+ pq = (Δ + 3)/2 + (Δ + 3)(Δ + 1)/2 = (Δ + 3)2/4,
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and that every vertex in a clique of Group 2 is in a singleton set of π.

It is straightforward to see that no Vs ∈ π dominates G. We need to show that
every Vs ∈ π forms a coalition with another set of π. If Vs = {v} is a singleton set
containing a vertex from Clique i, for i ∈ [p], of Group 2, then Vs forms a coalition
with Vi in π. Thus, every singleton set Vs containing a vertex from Group 2 is in
a coalition, and also every Vi, for i ∈ [p], is in a coalition with a singleton set of π.
Hence, π is a c-coalition of G, implying that C(G) ≥ (Δ + 3)2/4. By Theorem 2.1,
C(G) = (Δ + 3)2/4. �

3 Upper Bound in Terms of Minimum and Maximum De-

gree

In this section, we give an upper bound on C(G) for some graphs G in terms of
the minimum degree δ(G) and maximum degree Δ(G). We also construct graphs
attaining this bound.

Theorem 3.1 If G is a graph with no full vertices and δ(G) < Δ(G)/2, then

C(G) ≤ (δ(G) + 1)(Δ(G)− δ(G) + 2).

Proof. Let π = {V1, V2, . . . , Vk} be a c-partition for G, where k = C(G), and let
H = CG(G, π). Then H has order k. Since G has no full vertices, every set in π
forms a coalition with another set in π, and so H has no isolated vertices. In order
to obtain an upper bound on C(G) = k, we obtain a bound on the order k of H .

Let S be a minimum vertex cover for H , that is, |S| = β(H). By Lemma 1.2,
|S| = β(H) ≤ δ(G)+1. Let S denote the set V (H)−S, and let NS(v) = NH(v)∩S.
Let Vi be a vertex in S that is adjacent to the maximum number of vertices in S.

If |NS(Vi)| ≤ Δ(G)− δ(G)+1, then k = |S|+ |S| ≤ |S|+ |S|(Δ(G)− δ(G)+1) ≤
(δ(G)+1)+ (δ(G)+1)(Δ(G)− δ(G)+1) = (δ(G)+1)(Δ(G)− δ(G)+2), as desired.

Thus, we may assume that |NS(Vi)| > Δ(G) − δ(G) + 1, that is, |NS(Vi)| =
Δ(G)− δ(G) + 1 + q, for some q ≥ 1.

Recall that no set of π dominates G. Let u be a vertex in G that is not dominated
by the set Vi. Let U be the subset of π whose sets contain vertices in NG[u]. Note
that NS(Vi) ⊆ U in H . Since |U | ≤ |NG[u]| ≤ Δ(G) + 1, there are at most (Δ(G) +
1)− (Δ(G)− δ(G) + 1 + q) = δ(G)− q vertices in U −NS(Vi) in H .

Since every edge in H must be incident to a vertex in U and S is a vertex cover,
it follows that k = |S|+ |S| ≤ (δ(G) + 1)+ (Δ(G)− δ(G) + 1+ q) + |S ∩U |(Δ(G)−
δ(G)+1+ q) ≤ (δ(G)+1)+(Δ(G)−δ(G)+1+ q)+(δ(G)−q)(Δ(G)−δ(G)+1+ q).
Simplifying, we have

k ≤ (δ(G) + 1)(Δ(G)− δ(G) + 2)− q(Δ(G)− 2δ(G) + q).

Since Δ(G) > 2δ(G), k < (δ(G) + 1)(Δ(G)− δ(G) + 2), proving the theorem. �
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To see that the upper bound of Theorem 3.1 is sharp, we construct graphs G
with Δ(G) = Δ and δ(G) = δ, such that δ < Δ/2, attaining the bound as follows:

Let m = Δ − δ + 1. Begin with two groups, such that Group 1 is the union of
δ+1 complete graphs Kδ+1, and Group 2 is the union of δ+1 complete graphs Km.
As before, we refer to the ith clique in each group for i ∈ [δ + 1]. For each of the
cliques in Group 1, label its vertices from 1 to δ + 1. Label every vertex in Group 2
a different label from δ + 2 to (δ + 1)(m+ 1).

Finally, we add edges to finish building G as follows: for each vertex v in Clique i,
for i ∈ [δ + 1], of Group 2, add edges from v to δ vertices in Clique i in Group 1,
such that none of the δ vertices have label i. Note that every vertex in Group 2
has maximum degree Δ(G), while the vertex labeled i in Clique i of Group 2 has
degree δ(G). An argument similar to the proof of Theorem 2.2 shows that C(G) =
(δ(G) + 1)(Δ(G) − δ(G) + 2). Figure 4 illustrates the construction for Δ = 5 and
δ = 2.

15
14
13
12

11
10
9
8

7
6
5
4

3
2
1

3
2
1

3
2
1

Figure 4: δ = 2, Δ = 5, and C(G) = 15

We conclude this section with a corollary to Theorem 3.1. The coalition number
of paths Pn is given in [3] as follows.

Theorem 3.2 For the path Pn,

C(Pn) =

⎧⎪⎪⎨
⎪⎪⎩

n if n ≤ 4
4 if n = 5
5 if 6 ≤ n ≤ 9
6 if n ≥ 10.

Corollary 3.1 For any tree T , C(T ) ≤ 2Δ(T ) + 2.

Proof. If T is the trivial graph K1, then C(T ) = 1 < 2 = 2Δ(T ) + 2. If T 	 K2,
then C(T ) = 2 < 4 = 2Δ(T ) + 2. If T is a star having order at least three, then
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C(T ) = 3 < 2Δ(T ) + 2. Thus, we may assume that T is not a star, T has order at
least 3, and Δ(T ) ≥ 2. If Δ(T ) = 2, then T is a path and the result follows from
Theorem 3.2 since C(T ) ≤ 6 = 2Δ(T ) + 2.

If Δ(T ) ≥ 3, then 1 = δ(T ) < Δ(T )/2 and the result follows from Theorem 3.1.
�

Corollary 3.1 is sharp for paths Pn, for n ≥ 10.

We conclude this section with two open problems:

1. Characterize the graphs attaining the bound of Theorem 3.1.

2. Characterize the trees attaining the bound of Corollary 3.1.
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