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Abstract

We consider properly edge 3-colored cellularly embedded cubic graphs
and their dual Grünbaum-colored triangulations. The collection of edges
of a single color induces a matching in the cubic graph and, in the dual
triangulation, a color-induced subgraph (CISG). We examine the struc-
ture of CISGs that correspond to Hamilton cycles in embedded cubic
graphs. Unsurprisingly, the CISG structure depends on the embedding
surface. For all surfaces, we characterize CISG structure in triangulations
when the dual cubic graph has a Hamilton cycle. Conversely, for the pro-
jective plane and the torus, we give conditions on CISGs that reveal that
a Hamilton cycle must exist in the dual cubic graph.

1 Introduction and summary

We begin with the basics. A Hamilton cycle of a graph is a cycle that includes all
vertices of the graph. A cubic graph is 3-regular and a proper edge 3-coloring assigns
three colors to edges such that no two incident edges receive the same color. Any
Hamilton cycle of a cubic graph can be edge 2-colored, leaving the remaining edges
to be assigned a third color.

A graph G is cellularly embedded on a surface S when S \ G is a collection of
topological disks, each of which defines a face of the embedding. Associated to
a cellularly embedded graph G is its topological dual G∗, which is another graph
embedded on S such that each vertex of G∗ corresponds to a face of G embedded on
S, and an edge joins two vertices of G∗ exactly when the two corresponding faces of
G embedded on S share an edge. (A multiple edge of G∗ corresponds to two faces of
G that meet at more than one edge.) Note that the topological dual of a topological
dual is the original embedding.
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The topological dual of an embedded cubic graph is a triangulation, and the
topological dual of a proper edge 3-coloring is a Grünbaum coloring, where each
triangle’s edges use all three colors.

Note that while every embedded cubic graph is dual to a triangulation, not ev-
ery cubic graph has a proper edge 3-coloring, from which it follows that not every
embedded triangulation has a Grünbaum coloring. We will only consider embedded
cubic graphs for which there exists a proper edge 3-coloring and, likewise, Grünbaum-
colored triangulations dual to those embedded cubic graphs. This is a reasonable re-
striction because while there are infinite families of embedded triangulations without
Grünbaum colorings on orientable surfaces of genus at least five [6] and nonorientable
surfaces of genus at least two ([3], [8]), there are more classes of triangulations that
have Grünbaum colorings: most toroidal triangulations [1], all even-degree triangu-
lations of sufficiently low genus or high representativity [7], and projective-planar
triangulations with all but two (adjacent) vertices of even degree [5].

Usually an induced subgraph of a graph G results from selecting a subset U of
vertices and including all edges of G that connect vertices of U . A color-induced
subgraph (or CISG) is induced by edges of a single color in a Grünbaum coloring;
this includes vertices of G incident to any edge of a given color. For convenience in
notation, we refer to a properly edge 3-colored cubic graph cellularly embedded on
a surface S as C, and refer to its dual Grünbaum colored triangulation as T . If C
has a Hamilton cycle, we denote it as H . We label the edge colors of both C and T
as c1, c2, and c3, so that a generic pair of colors will be ci, cj and a generic color will
be ck, with i, j, k ∈ {1, 2, 3}. A CISG of T induced by the edges of color ci will be
denoted Gi.

Our results are as follows. In Section 2 we show that certain CISG structures
on projective planar and toroidal triangulations indicate the presence of Hamilton
cycles in the dual cubic graphs. Conversely, in Section 3, given the existence of a
Hamilton cycle of a cubic graph on any surface, we derive the structure of a CISG in
the corresponding triangulation. We finish in Section 4 with corollaries for low-genus
surfaces, extensions to theorems from Section 2, and examples showing that CISG
structure is not enough to determine existence of a Hamilton cycle for higher-genus
surfaces.

2 CISG structures implying the existence of Hamilton cycles

We identify CISG structures on the plane, projective plane, and torus that imply
the existence of a Hamilton cycle in the dual cubic graph. Note that every planar
triangulation has a Grünbaum coloring, and every planar cubic graph has a proper
edge 3-coloring, by the Four Color Theorem, Tait’s Theorem, and duality.

Theorem 2.1. For a planar cubic graph C and dual triangulation T , there exists a
ci-cj Hamilton cycle H in C if and only if Gk in T forms two trees.

For a given planar triangulation, there are generally multiple Grünbaum colorings,
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often all Kempe equivalent. Thus, even if a particular Grünbaum coloring does not
have a two-trees CISG, there may still be a Hamilton cycle in the underlying dual
cubic graph (associated to a different edge coloring that does have a two-trees CISG).

Although Theorem 2.1 follows from a result in [11], we present a proof that builds
intuition for later theorems. The following proof is similar in structure to that of
Lemma 5 of [2].

Proof of Theorem 2.1. First assume that C has a Hamilton cycle H . The interior of
H is a disk subdivided by a matching, all edges of which have color ck. Thus Gk,
the dual of the interior embedding, is a tree: Note that contraction of an edge in Gk

corresponds to deletion of the corresponding ck edge in C. This edge of C separated
two faces of the embedding, so its removal reduces the number of vertices of Gk by
one. Because every ck edge of C is incident on both ends to the exterior of the disk
bounded by H , no ck edge of C can be monofacial (even after all other ck edges are
deleted) and therefore by induction Gk can be contracted to a single point (dual to
an empty disk). This means it is acyclic and connected, and thus a tree. See Figure 1
for examples of this process. Likewise, the exterior of H is a disk subdivided by a

Figure 1: At left, a purple-orange cycle with an interior teal-colored matching and
dual teal-colored CISG component; at right, the contraction of a tree edge and
corresponding deletion of a matching edge.

ck-colored matching, and so its dual is also a tree. Therefore the ck CISG consists of
two trees.

Now for the converse: We know the ci, cj edges in C form a collection of disjoint
cycles {Zt}. Suppose that Gk is two trees, but C does not have a Hamilton cycle.
The collection {Zt} must contain more than one cycle, and elements of the collection
are joined by ck edges in C. Now we have cases depending on the planar embedding
of C.
Case 1: Some Zr lie(s) inside some Zs. Consider the ck edges singly incident to the
exterior of Zr and inside of Zs. (See Figure 2(left) for an example.) The correspond-
ing ck edges in T form a cycle homotopic to Zr. This contradicts the fact that Gk is
acyclic.
Case 2: No Zr lies inside any Zs. Consider the ck edges singly incident to and outside
of one of the Zs ∈ {Zt}. The corresponding ck edges in T form a cycle homotopic
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Figure 2: At left, the component of a teal-colored CISG corresponding to two Zr

inside some Zs; at right, the component of a teal-colored CISG corresponding to a
collection of {Zt}, none of which lies inside any other.

to Zs. (See Figure 2(right) for an example.) This contradicts the fact that Gk is
acyclic.

We now move on to the case of the projective plane.

Theorem 2.2. If the ck CISG of a Grünbaum coloring of a projective-planar trian-
gulation T is a spanning tree, then C has a ci-cj Hamilton cycle.

Proof. Suppose not. That is, suppose Gk is a spanning tree but C has multiple
(disjoint) ci-cj cycles. At most one such cycle can be noncontractible, as any two
noncontractible loops on a projective plane must intersect. Thus at least one ci-cj
cycle Zt must be contractible, which means it bounds a disk and thus is a Jordan
curve. All ck edges inside Zt are separated from the ck edges outside Zt, which means
that in T the dual ck edges—the ck CISG—must have at least two components. This
is a contradiction to Gk’s connectedness.

Finally, we give a criterion for the torus.

Theorem 2.3. If the ck-induced subgraph of a toroidal triangulation T is connected
and spans T , then there exists a ci-cj Hamilton cycle in C.

Note that it is possible to have a connected ck CISG in T corresponding to two
(or more) ci-cj cycles in C, at least one of which surrounds an isolated vertex of
T . Figure 3 shows such a toroidal triangulation with two connected non-spanning
CISGs.

Proof of Theorem 2.3. Suppose that Gk is connected and that the set {Zr} of disjoint
ci-cj cycles in C has at least two elements. The Zr are connected by ck edges. There
are two possibilities:
Case 1: At least one of the Zr is contractible. Here, the Jordan Curve Theorem
applies and one of the Zr cycles has an interior separated from its exterior. Thus Gk
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Figure 3: The fourth partial Grünbaum coloring of the (5, 4) embedding of K6 on
the torus (see [1]), completed to a Grünbaum colored triangulation; the CISGs are
displayed separately. Isolated vertices (that are not part of the CISGs) are shown in
grey.

must have at least two components, which contradicts the fact that Gk is connected.
Case 2: None of the Zr are contractible. Any two disjoint noncontractible ci-cj cycles
on the torus are homotopically equivalent, and thus their removal separates the torus
into two disjoint annuli. There must be edges of Gk in each of these annuli (or else
T is not cellularly embedded) with no vertices of T on the boundary, and thus Gk

must have multiple components—again, a contradiction.

3 The structure of CISGs in the presence of a Hamilton

cycle

Shelton and Gottlieb [4] prove that on the sphere, a Grünbaum coloring of a triangu-
lation has all CISGs connected if and only if the triangulation has all vertices of even
degree. They also give an example of an even triangulation on the torus for which
there exists a Grünbaum coloring such that one of the CISGs has two components.
Interestingly, in their example G1 is a cycle, and the c2, c3 edges in C form a Hamil-
ton cycle H2,3; the same is true for G2 and H1,3. (G3 is a pair of cycles and the c2, c2
edges do not form a Hamilton cycle.) Both H2,3 and H1,3 are noncontractible. This,
together with Theorem 2.1, suggests that there is a relationship between the form of
Gi and whether Hj,k is contractible. The focus of this section is on discerning that
relationship.

Lemma 3.1 (with Mike Albertson and Ruth Haas). If there exists a contractible
ci-cj Hamilton cycle Hi,j in C on the surface S, then the ck-induced subgraph of T
consists of two components, at least one of which is a tree.

Proof. First note that a contractible cycle is also a surface-separating cycle, so that
the interior of the cycle is a disk. Because Hi,j is contractible, we may use the Jordan
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Curve theorem to note that the interior of Hi,j corresponds to a tree component of
Gk by the same reasoning as in the start of the proof of Theorem 2.1. Let the tree
component of Gk be R. Now suppose that Gk \ R, the remainder of Gk, is not
connected. Note that all edges external to Hi,j are of color ck, and that each vertex
of Gk \ R corresponds to a face in C. Traveling around the outside of Hi,j from
face to face, we must find some face of C that shares ck edges with two different
components of Gk \R. But this is a contradiction, as all ck edges of a given face are
part of the same component of Gk.

We can make stronger statements.

Theorem 3.2. If there exists a contractible ci-cj Hamilton cycle Hi,j in C on the
surface S, then the ck-induced subgraph of T consists of two components; one is a
tree and the other is contractible to a bouquet of loops of the same cardinality of a
minimal set of generators for π1(S).

To provide some intuition for this theorem, we give an example on the torus.

Example 3.3. Figure 4 shows a cubic graph embedded on the torus with a con-
tractible Hamilton cycle. The two-component teal CISG is also shown in bold. Ob-

Figure 4: A cubic graph embedded on the torus with a contractible Hamilton cycle
in bold, and the two-component teal CISG in bold. At right, the component not
interior to the Hamilton cycle is shown separately.

serve that the component outside the disk of the Hamilton cycle contains two cycles,
each of which is parallel to a pair of polygon edges. Viewed in the plane, it is clear
that this component is contractible to a bouquet of two loops.

Theorem 3.4. If there exists a noncontractible and non-surface-separating ci-cj
Hamilton cycle Hi,j in C on the surface S, then the ck-induced subgraph of T is
connected and contractible to a bouquet of loops, one fewer in number than the car-
dinality of a minimal set of generators for π1(S).
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Again, we provide some intuition via an example on the torus.

Example 3.5. Figure 5 shows the cubic graph dual to a Grünbaum colored triangu-
lation of the torus (a completion to a triangulation of the fourth partial Grünbaum
coloring of the (5, 4) embedding of K6; see [1]). The purple-orange Hamilton cycle
is shown in bold, as is the corresponding teal CISG. Despite the seeming complexity

Figure 5: A cubic graph on the torus with noncontractible Hamilton cycle in bold
and corresponding CISG in bold.

of the Hamilton cycle, slicing along it leaves a (weirdly shaped) cylinder. The teal
CISG has a single cycle that wraps once around this cylinder and tree appendages
that reach into pockets on the boundaries of the cylinder. See Figure 6.

Figure 6: A cut-and-paste redrawing of Figure 5.

Theorem 3.6. If there exists a noncontractible surface-separating ci-cj Hamilton
cycle Hi,j in C on the surface S, then the ck-induced subgraph of T consists of two
components, each contractible to a bouquet of loops that together have the cardinality
of a minimal set of generators for π1(S).
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Here, the simplest example is on the Klein bottle.

Example 3.7. Figure 7 shows the cubic graph dual to a partial Grünbaum coloring
of the embedding of C3+C5 on the Klein bottle (see [1]), completed to a Grünbaum
colored triangulation. The purple-orange Hamilton cycle is shown in bold, as is
the corresponding two-component teal CISG. It is not immediately obvious that the

Figure 7: A cubic graph on the Klein bottle with surface-separating Hamilton cycle
in bold and corresponding two-component CISG in bold.

Hamilton cycle is surface-separating, but using the polygon representation, cutting
along the Hamilton cycle, and carefully pasting the results will reveal that this is
the case; see Figure 8. It is easier to see that the corresponding CISG is the union
of a 3-cycle and a 5-cycle. The Hamilton cycle separates the Klein bottle into two
Möbius bands, and each teal CISG component wraps around one of those Möbius
bands.

Figure 8: A cut-and-paste redrawing of Figure 7 that shows the Hamilton cycle is
surface-separating.
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Before proceeding with proofs of Theorems 3.2–3.6, we need two facts:

Theorem 3.8 (well known; see e.g. [10], Ch. 2). Two compact topological surfaces
are homeomorphic if and only if they have the same Euler characteristics, number of
boundary curves, and orientability type (orientable or nonorientable).

In particular, knowing both χ(S) and the number of boundary curves of a surface
S, there are at most two possibilities for the topological type of S, each of which
has the same number of generators for the fundamental group π1(S). Note that
given a normal-form polygonal representation of S, we can choose a base point on
the interior of the polygon and construct a bouquet of loops, each of which passes
through one of the marked polygon edges, that forms a generating set for π1(S).

Lemma 3.9. Given any simple noncontractible (and non-surface-separating) loop
on a surface S without boundary, cutting along that loop produces a surface S ′ with
boundary and χ(S ′) = χ(S).

Proof. Consider a triangulation of S and a simple noncontractible non-surface-sep-
arating loop γ. This triangulation can be refined such that edges and vertices of the
refined triangulation T ′ cover γ. Note that χ(S) = v(T ′) − e(T ′) + f(T ′) and that
there are exactly k vertices and k edges of T ′ on γ. Cutting along γ to obtain S ′, we
see that χ(S ′) = (v(T ′) + k)− (e(T ′) + k) + f(T ′) = χ(S).

Observation. In the orientable case, cutting along a noncontractible loop γ adds
two boundary components while the number of handles goes down by one. In the
nonorientable case, there are two possibilities; cutting along a 2-sided noncontractible
loop adds two boundary components and reduces the number of handles by one, and
cutting along a 1-sided noncontractible loop adds one boundary component while
removing a crosscap. Thus in all cases π1(S

′) has one less generator than π1(S).
Recall that if S is orientable, so is S ′. In contrast, if S is nonorientable then S ′ may be
either orientable or nonorientable. Using the normal-form polygonal representation,
a nonorientable surface has (up to homotopy/homeomorphism) one 1-sided loop, so
for S nonorientable, if γ is 1-sided then S ′ is orientable and vice-versa.

Proof of Theorem 3.2. Suppose there is a contractible Hamilton cycle Hi,j in C em-
bedded on S, with the disc bounded by Hi,j denoted D. First, we note that by
Lemma 3.1 there are exactly two components of the ck CISG, one of which is a tree.
Consider the non-tree component N of the ck CISG. Its dual matching M in C is
embedded on S ′ = S \ D. The edges of M define faces of S ′, where each face is
bounded by edges from M alternating with sequences of edges (boundary segments)
from Hi,j. Every edge in M is either incident to two different Hi,j boundary seg-
ments, or is incident to one Hi,j boundary segment twice. Note that those faces of M
on S ′ that have a single boundary segment from M (and a single boundary segment
from Hi,j) correspond to leaves in N .

An edge of N corresponding to a non-monofacial edge of M can be contracted
without changing the topological structure of N , and the corresponding edge in M
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can be deleted. Repeating and completing this process leaves a bouquet of loops
B that is topologically equivalent to N . None of these loops is contractible, as
otherwise some edge of M would have an endpoint not on Hi,j. On a reduced
polygon representation of S ′, there is a one-to-one correspondence between loops of
B and pairs of arrowed polygon edges: Every pair of arrowed polygon edges must
have a loop crossing it, or else there is a noncontractible path within the face of C
corresponding to the single vertex of B. This is not possible because every face of C
was a disk before edge-deletions, and no monofacial edges were deleted. Moreover,
no pair of arrowed polygon edges has two loops crossing it, as this would form a
2-sided face and therefore some edge of M would have an endpoint not on Hi,j.

Therefore there are the same number of loops as generators of π1(S
′). Because S

was a surface without boundary and removing a disk is equivalent to adding a single
puncture, π1(S

′) ∼= π1(S) and so they have the same number of generators.

Proof of Theorem 3.4. Suppose there is a noncontractible and non-surface-separ-
ating Hamilton cycle Hi,j in C embedded on S. By cutting along Hi,j, consider
Gk embedded on S ′ = S \Hi,j, a surface with boundary consisting of edges of Hi,j.

We claim that Gk has only one component. Otherwise, we proceed similarly to
the proof of Lemma 3.1; there must be some face of C that shares ck edges with two
different components of Gk, which is again a contradiction.

Next, we claim that Gk is contractible to a bouquet of loops B; as in Theorem 3.2,
we successively contract edges of Gk corresponding to non-monofacial edges of M .
Also following the proof of Theorem 3.2 we claim that none of the resulting loops
is contractible and that there is a one-to-one correspondence between loops of B
and pairs of arrowed polygon edges. Again, there are the same number of loops as
generators of π1(S

′).

By Lemma 3.9, S ′ is a surface with χ(S ′) = χ(S) and either one (if Hi,j is
nonorientable) or two (if Hi,j is orientable) boundaries. Now by Theorem 3.8, we
know the topological type of S ′ because we know χ(S ′), the number of boundaries,
and the orientability type. By the observation following Lemma 3.9, the genus goes
down by one from S to S ′, so we know that π1(S) has one more generator than π1(S

′)
has.

Proof of Theorem 3.6. Suppose there is a noncontractible surface-separating Hamil-
ton cycle Hi,j in C embedded on S. Here we note that Gk has exactly two compo-
nents. There are at least two components because each edge in Gk is in one of the
two surfaces S1, S2 joined by the surface-separating loop Hi,j. Each of these surfaces
is topologically equivalent to some surface minus a disk, with χ(S1) +χ(S2) = χ(S).
(Recall that each of S1, S2 has a boundary.) Moreover, in terms of the polygon
representation, cutting along a surface-separating loop simply produces two smaller
polygons (each with a boundary), so the number of generators of π1(S) is the sum
of the numbers of generators of π1(S1) and π1(S2).

By applying the proof of Theorem 3.2 to S1, S2, the result follows.
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4 Consequences and counterexamples

We first state explicitly the consequences of Theorems 3.2–3.6 for low-genus surfaces.
In this section, we use the phrase edge-contractible to a cycle to describe a subgraph
that after a sequence of edge contractions can be simplified to a cycle, to distinguish
this from the term contractible, used here to indicate a curve that is homotopically
trivial.

Note that by Lemma 3.9 and Theorem 3.8, cutting along any noncontractible
simple loop on the torus leaves a cylinder. (There are no noncontractible surface-
separating loops on the torus.)

Corollary 4.1. Suppose that C is embedded on the torus with Hamilton cycle Hi,j.

• If Hi,j is contractible, then Gk, the ck CISG of T , consists of two components,
one a tree and the other contractible to a bouquet of two loops.

• If Hi,j is noncontractible, then Gk is edge-contractible to a cycle.

Removing a disk from the projective plane leaves a Möbius band; because any
noncontractible simple loop on the projective plane P is homotopic to the generator
of π1(P ), cutting along such a loop leaves a disk. (There are no noncontractible
surface-separating loops on the projective plane.)

Corollary 4.2. Suppose that C is embedded on the projective plane with Hamilton
cycle Hi,j.

• If Hi,j is contractible, then Gk, the ck CISG of T , consists of two components,
one a tree and the other edge-contractible to a cycle.

• If Hi,j is noncontractible, then Gk consists of a single tree.

The Klein bottle is the connected sum of two projective planes, so cutting along
a noncontractible surface-separating loop produces two Möbius bands. On the other
hand, cutting along a noncontractible non-surface-separating loop may result (de-
pending on the choice of loop) in either a Möbius band or a cylinder.

Corollary 4.3. Suppose that C is embedded on the Klein bottle with Hamilton cycle
Hi,j.

• If Hi,j is contractible, then Gk, the ck CISG of T , consists of two components,
one a tree and the other contractible to a bouquet of two loops.

• If Hi,j is noncontractible and non-surface-separating, then Gk is edge-contract-
ible to a cycle.

• If Hi,j is noncontractible and surface-separating, then Gk consists of two com-
ponents, each edge-contractible to a cycle.
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Figure 9: A cubic graph on the torus that gives a counterexample to the converse of
Lemma 3.1.

Example 4.4. Unsurprisingly, the converse of Lemma 3.1 does not hold; Figure 9
shows a cubic graph on the torus where Gk has two components, one of which is a
tree, and there are two ci-cj cycles.

On the other hand, we can use Lemma 3.1 to strengthen Theorem 2.3.

Corollary 4.5. If the ck-induced subgraph of a toroidal triangulation T is connected
and spans T , then the associated ci-cj Hamilton cycle in C is not contractible.

However, Theorem 2.3 does not extend to the 2-holed torus, nor does the converse
of Corollary 4.3 hold. In general, the appropriate converses of Theorems 3.2–3.6 do
not hold, as seen in the following example.

Example 4.6. There exist triangulations of the 2-holed torus with

• a ck-CISG that includes all vertices and has two components, one a tree and
one contractible to a bouquet of four loops, but the ci-cj edges of the dual cubic
graph form two cycles (see Figure 10);

• a connected ck-CISG that includes all vertices, and in particular is contractible
to a bouquet of three loops, but the ci-cj edges of the dual cubic graph form
two cycles (see Figure 11); and

• a ck-CISG that includes all vertices and has two components, each contractible
to a bouquet of two loops, but the ci-cj edges of the dual cubic graph form two
cycles (see Figure 12);

and triangulations of the Klein bottle with

• a ck-CISG that includes all vertices and has two components, one a tree and
one contractible to a bouquet of two loops, but the ci-cj edges of the dual cubic
graph form two cycles (see Figure 10);
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Figure 10: A triangulation of the two-holed torus (left) and a triangulation of the
Klein bottle (right) that each shows a counterexample to an appropriate converse of
Theorem 3.2.

• a connected ck-CISG that includes all vertices, and in particular is edge-
contractible to a cycle, but the ci-cj edges of the dual cubic graph form two
cycles (see Figure 11); and

• a ck-CISG that includes all vertices and has two components, each edge-
contractible to a cycle, but the ci-cj edges of the dual cubic graph form two
cycles (see Figure 12).

Finally, part of the proof of Theorem 2.1 extends to other surfaces.

Corollary 4.7. If there exists a contractible path enclosing a collection {Zt} of con-
tractible ci-cj cycles in C then there is a ck cycle in T .

We can also observe that in this situation there may also be a noncontractible ck
cycle in T between two noncontractible Zt.

5 Conclusion and further work

In this paper, we have given conditions (for some surfaces) on CISG structure that
mean the dual cubic graph must have a Hamilton cycle, and analyzed the CISG
structure that results from the existence of a Hamilton cycle on any surface. Some
of our results can be seen as specializations of results in [9]; however, our proofs are
substantively different. In particular, [9] proves theorems of the form “A k-regular
graph embedded on a surface has a Hamilton cycle if and only if the corresponding
CISG complement has [a given form] and the corresponding CISGs form a facial
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Figure 11: A triangulation of the two-holed torus (left) and a triangulation of the
Klein bottle (right) that each shows a counterexample to an appropriate converse of
Theorem 3.4.

Figure 12: A triangulation of the two-holed torus (left) and a triangulation of the
Klein bottle (right) that each shows a counterexample to an appropriate converse of
Theorem 3.6.

Hamilton cycle.” That is, these results achieve the combination of necessity and
sufficiency by adding a substantial restriction.

A clear direction for further work is the question: Are there other conditions
we could impose in addition to the prescribed CISG structure in order to force a
Hamilton cycle? That is, what would it take to rule out our counterexamples to
Theorems 3.2–3.6?
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