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Abstract

In this paper, we study the flip graph on the perfect matchings of a
complete graph of even order. We investigate its combinatorial and spec-
tral properties including connections to the signed reversal graph and we
improve a previous upper bound on its chromatic number.

1 Introduction

Our graph theory notation is standard (see [3] for example). When G is a graph of
even order 2n, let M(G) be the graph whose vertices are the perfect matchings of G,
and where two perfect matchings are adjacent if their symmetric difference is a cycle
of length 4. This is called the flip graph of the set of matchings, because adjacent
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perfect matchings in M(G) are related by a flip move, which replaces an independent
pair of edges in a perfect matching with one of the two different independent pairs
of edges on the same four vertices.

In this paper, we will be interested in the graph M(K2n), where K2n is the
complete graph on 2n vertices. It is not hard to see that M(K2n) is a connected
n(n − 1)-regular graph on (2n − 1)!! =

∏n
j=1(2j − 1) vertices. We can understand

the adjacency relation of this graph in terms of certain integer partitions. If M
and M ′ are two perfect matchings in K2n, then the multigraph union M ∪M ′ is a
disjoint union of cycles (where length 2 cycles arise from edges in both M and M ′).
The lengths 2λ1 � · · · � 2λk of these cycles form a partition of 2n. In this case
λ1 � · · · � λk is a partition of n which is usually written as (λ1, . . . , λk) � n. We
call (λ1, . . . , λk) the partition type of the pair (M,M ′). So the matchings M and M ′

are adjacent in M(K2n) if the partition type of (M,M ′) is (2, 1n−2).
The spectral and combinatorial properties of the graph M(K2n) have been inves-

tigated by various authors. Diaconis and Holmes [6] studied the connection between
M(K2n) and phylogenetic trees. Using the theory of Gelfand pairs and representa-
tion theory of the symmetric group, Diaconis and Holmes [7] determined the spectra
of these graphs and showed that the mixing time of a random walk on M(K2n)

exhibits cut-off phenomenon at n log(n)
2

steps. The graph M(K2n) is part of the per-
fect matching association scheme whose graphs correspond to the integer partitions
(λ1, . . . , λk) � n. This association scheme has interesting properties (see Godsil and
Meagher [13, Chapter 15] and Srinivasan [31]) and has been studied in the context
of Erdös-Ko-Rado theorems for matchings (see Godsil and Meagher [12], Lindzey
[22, 23, 24] or Ku and Wong [21]). Jennings [19] studied geodesics in the graph
M(K2n) and showed that the distance between two perfect matchings M1 and M2

equals n − c(M1,M2), where c(M1,M2) equals the number of components in the
graph M1 ∪M2. Using this result, Jennings proved that M(K2n) has diameter n− 1
and obtained a formula for the number of geodesics between any two perfect match-
ings. In particular, Jennings showed that the number of geodesics between any two
vertices at distance n − 1 equals nn−2. Hernando, Hurtado and Noy [15] studied a
geometric version of the graph M(K2n) in which the vertex set consists of the perfect
matchings on the nodes of a convex 2n-gon whose edges are straight lines and do
not cross. For n � 2, they observed that the number of vertices of this graph equals

the Catalan number Cn =
(2nn )
n+1

and proved that this graph is bipartite of diameter
n− 1 with minimum degree and connectivity also equal to n− 1. These authors also
studied whether or not these graphs contain Hamiltonian paths or cycles.

We use χ(G) to denote the chromatic number of a graph G. Fabila-Monroy,
Flores-Penaloza, Huemer, Hurtado, Urrutia and Wood [9] observed that χ(M(Kn,n))
= 2 and using this result, proved that

χ(M(K2n)) � 4n− 4. (1)

In [9], these authors also made the following conjecture.
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Conjecture 1.1 (Fabila-Monroy, Flores-Penaloza, Huemer, Hurtado, Urrutia and
Wood [9]). For n � 2,

χ(M(K2n)) = n+ 1. (2)

These authors confirmed their conjecture for n ∈ {2, 3, 4} with the aid of a
computer. We confirm these results by theoretical means in Section 4, and with
extensive computation, we find a proper 6-coloring of the graph M(K10) and a
proper 7-coloring of the graph M(K12)

1. We also obtain the following theoretical
improvement of (1) in Section 4.

Theorem 1.2. Let n � 3. If q is the smallest prime power such that q � 2n + 1,
then

χ(M(K2n)) � q.

In Section 3, we investigate the structure of the graph M(K2n). Given a perfect
matching M of K2n, we show that the graph induced by the perfect matchings at
distance n − 1 from M is isomorphic to the signed reversal graph SRn−1 on n − 1
symbols. This graph has been well studied in discrete mathematics and molecular
biology [1, 14] and is related to pancake graphs [10], burnt pancake graphs [2] and
reversal graphs [5].

For a positive integer k, let Sk denote the set of permutations of the set {1, . . . , k},
where a permutation σ ∈ Sk is represented by the tuple (σ(1), σ(2), . . . , σ(k)). A
signed permutation of degree k is a k-tuple (σ1, . . . , σk) of integers such that the
k-tuple (|σ1|, . . . , |σk|) of absolute values is a permutation in Sk. In other words, a
signed permutation is obtained from a permutation by negating some entries of the
corresponding tuple. Let S±

k denote the set of all signed permutations of degree k.
The signed reversal graph SRk is the graph whose vertices are the signed permutations
of degree k where (σ1, . . . , σk) is adjacent to (τ1, . . . , τk) if there exist 1 � i � j � k
such that

(τ1, . . . , τi−1, τi, . . . , τj , τj+1, . . . , τk) = (σ1, . . . , σi−1,−σj , . . . ,−σi, σj+1, . . . , σk). (3)

For example, when k = 5, the vertex (2,−3, 1, 4,−5) is adjacent to (−2,−3, 1, 4,
−5) (take i = j = 1 in (3)) and also to (2,−3, 1, 5,−4) (take i = 4, j = 5).
For simplicity of notation, we will denote the sign of each entry as an exponent so
(2,−3, 1, 4,−5) is the same as (2+, 3−, 1+, 4+, 5−) or just 2+3−1+4+5−. The graph
SRk has 2k · k! vertices and is regular of valency

(
k+1
2

)
. In Section 3, we describe the

connections between the flip graph M(K2n) and the signed reversal graph SRn−1. In
particular, we show that M(K2n) has an equitable partition in which the subgraph
induced by each cell is the disjoint union of isomorphic signed reversal graphs or the
disjoint union of isomorphic Cartesian products of signed reversal graphs. We use
this partition to show that χ(M(K2n)) � χ(SRn−1) + χ(SRn−2). In Section 5, we
determine some of the eigenvalues of the signed reversal graphs. We finish the paper
with some open problems in Section 6.

1These colorings were obtained by computer and are available online at
https://github.com/tanzkfp/FlipGraphsOnPerfectMatchings
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2 The eigenvalues of M(K2n)

Let M be a perfect matching ofK2n. The subgroup of the symmetric group S2n fixing
M is denoted by Hn and is known as the hyperoctahedral group of degree n. It is
isomorphic to the wreath product S2 � Sn and has order 2n · n!. The graph M(K2n)
can be identified with the quotient S2n/Hn and is a part of the perfect matching
association scheme (see Godsil and Meagher [13, Section 15.4]). This is useful due
to the decomposition of L(M(K2n)) = {f : V (M(K2n)) → C} into irreducible
representations.

Theorem 2.1 (see Saxl [30] or Thrall [32]). If M(K2n) = S2n/Hn, then

L(M(K2n)) ∼=
⊕
λ�n

S2λ, (4)

where the direct sum is over all partitions λ of n, 2λ = (2λ1, 2λ2, · · · , 2λk) and S2λ

is the associated irreducible representation of the symmetric group S2n.

This theorem has been used to obtain the spectrum of the graph M(K2n).

Theorem 2.2 (see Diaconis-Holmes [7] or Chapter 7 in MacDonald [26]). The graph
M(K2n) has an eigenvalue βλ for each partition λ = (λ1, λ2, . . . , λk) of n, given by

βλ =
k∑

j=1

λj(λj − j). (5)

The multiplicity of βλ is determined by the partition μ = 2λ, and is given by

mult(βλ) =
(2n)!∏

(i,j)∈μ h(i, j)
,

with the product being over the cells of the Young diagram for μ, and the hook length
h(i, j) = μi + μ′

j − i− j + 1, where μ′ is the transposed diagram.

Note that different partitions λmay give the same eigenvalue βλ and in such situa-
tions, the multiplicity of that eigenvalue would be the sum of the given multiplicities,
taken over all the λ that produce that eigenvalue.

The smallest eigenvalue can be determined easily.

Corollary 2.3. The smallest eigenvalue of the graph M(K2n) is −(
n
2

)
.

Proof. Since the eigenvalues βλ described by (5) are increasing with respect to the
majorization order on partitions (see [4, p.382] for a proof) the smallest eigenvalue
corresponds to the partition (1n) and equals

β(1n) =
n∑

j=1

1(1− j) = −
(
n

2

)
.
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If G is an undirected non-empty graph whose adjacency matrix eigenvalues are
θ1 � . . . � θmin, then Hoffman [16] (see also [3, Theorem 3.6.2]) proved that

χ(G) � 1 +
θ1

|θmin| . (6)

Applying this bound for M(K2n), we get that χ(M(K2n)) � 1 + n(n−1)

(n2)
= 3. This

is certainly true, although not as strong as a bound as we were hoping for. This
lower bound can be also deduced combinatorially since the subgraph induced by the
neighborhood of any vertex of M(K2n) is a perfect matching with

(
n
2

)
edges. Note

that this is worse than the lower bound

χ(M(K2n)) � χ(M(K8)) = 5,

for any n � 4, which is obtained from the observation that χ(M(K2n)) is non-
decreasing with n (as M(K2n−2) is an induced subgraph of M(K2n)).

The Lovász theta function of the complement of a graph H provides a stronger
lower bound for the chromatic number of H than Hoffman’s ratio bound (6) (see [25,
Theorem 6] and the Sandwich theorem [20]). Our computations for small values of
n seem to indicate that this lower bound also equals 3 for M(K2n).

3 Some structural properties of M(K2n)

In this section, we investigate the structure of M(K2n) and explain the connec-
tion with signed reversal graphs. This will be useful in providing upper bounds
for the chromatic number of M(K2n) for small n. We label the vertices of K2n by
0+, 0−, 1+, 1−, . . . , (n− 1)+, (n− 1)−, and distinguish a particular perfect matching,
namely

M0 = {0+, 0−}, . . . , {(n− 1)+, (n− 1)−},
as the identity perfect matching.

If M is an arbitrary perfect matching of K2n then the multigraph union M0 ∪M
is the disjoint union of cycles of even lengths, say 2λ1 � 2λ2 � . . . � 2λk (for some
k), whose lengths add up to 2n. Dividing by 2 yields a partition (λ1, · · · , λk) � n,
which we call the type of the matching M . Note that (1n) is the type of the identity
perfect matching.

In this multigraph M0 ∪ M color the edges from the identity matching in red,
and those from the matching M in blue. Now consider a walk starting from 0+

and alternating blue and red edges until the walk returns to 0+, noting down the
sequence formed by the vertices at the beginning of each blue edge (other than the
first). If there are cycles that have not yet been traversed, repeat this process by
starting with the next smallest unused positive number. We note that by fixing the
start point of each cycle, this representation is unique. Examples of labels and types
for two matchings are shown in Figure 1 and 2.

Given a graph H = (V,E), a partition V = X1 ∪ · · · ∪ Xt of its vertex set is
called equitable if there exist non-negative integers bi,j for 1 � i, j � t such that
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0+

1+

2+ 2−

1−

0−

Figure 1: Label (1−2+)
Type (3)

0+

1+

2+ 2−

1−

0−

Figure 2: Label ()(2+)
Type (2, 1)

for any 1 � i, j � t and for any vertex x ∈ Xi, the number of neighbors of x
that are contained in Xj equals bi,j. The t × t matrix B = (bi,j)1�i,j�t is called the
quotient matrix of the partition. In general, B is not symmetric, but it is always
diagonalizable, and its spectrum is contained in the spectrum of the adjacency matrix
of H (see [3, Section 2.3] or [11, Chapter 5] for example). It is well-known that if Γ
is a group of automorphisms of H , then the orbits of Γ form an equitable partition
of V (H) (see [11, p.76]).

Proposition 3.1. The partition of the vertices of M(K2n) according to their type is
equitable.

Proof. The subgroup of S2n fixing the identity perfect matching is a subgroup of the
automorphism group of M(K2n). The partition of the matchings according to their
types is the partition of the vertex set of M(K2n) into the orbits of this subgroup
(see also [4, Chapter 11]) which is equitable by the previous paragraph.

Proposition 3.2. If M is a perfect matching of K2n with type (λ1, . . . , λk) and M ′

is a neighbor of M , then the type of M ′ is one of the following:

1. (λ1, . . . , λk),

2. (μ1, . . . , μk−1) which is obtained from (λ1, . . . , λk) by combining two parts λi

and λj into one part λi + λj and leaving the remaining parts unchanged,

3. (ν1, . . . , νk, νk+1) which is obtained from (λ1, . . . , λk) by breaking one part λ�

into two smaller parts λ′
� and λ′′

� and leaving the remaining parts unchanged.

Proof. The multigraph M0 ∪M is a disjoint union of even cycles. When two edges
from M are flipped to form M ′ then the number of cycles of M0 ∪M ′ either stays
the same, increases by one (if a cycle breaks into two), or decreases by one (if two
cycles are merged). These three possibilities give the three possible types of M ′ listed
above.

Proposition 3.3. The subgraph of M(K2n) induced by the vertices with type (n) is
isomorphic to the signed reversal graph SRn−1.
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Proof. Let H be the subgraph of M(K2n) induced by the vertices of type (n). Con-
sider a vertex/matching M in H . Its union with the identity perfect matching must
be a Hamiltonian cycle of K2n of the form:

0−0+αε1
1 α

ε1
1 α

ε2
2 α

ε2
2 · · ·αεn−1

n−1 α
εn−1

n−1 ,

where (α1, . . . , αn−1) is a permutation of the set {1, . . . , n−1}, ε1, . . . , εn−1 ∈ {+,−},
where we use the notations + = − and − = +. The label of M is αε1

1 . . . α
εn−1

n−1 . We
claim that the correspondence between the vertex set of H and the vertex set of
SRn−1 given by the label function is a graph isomorphism. To see this, consider a
vertex M ′ of H that is adjacent to M . Assume that M ′ is obtained by flipping two
edges of M , say αεi

i α
εi+1

i+1 and α
εj
j α

εj+1

j+1 for some 1 � i < j � n. Then the label of M ′

is
αε1
1 · · ·αεi

i α
εj
j · · ·αεi+1

i+1 α
εj+1

j+1 · · ·αεn−1

n−1 .

This shows that edges of H are mapped to edges in SRn−1 by the label function. It
is not hard to see that this correspondence also maps non-edges to non-edges and is
actually an isomorphism.

Let G = (V,E) and H = (W,F ) be two graphs. The Cartesian or box product
G �H has vertex set V ×W where (g1, h1) ∼ (g2, h2) if g1 ∼ g2 in G and h1 = h2,
or if g1 = g2 and h1 ∼ h2 in H . This definition can be extended by associativity to
the Cartesian product of more than two graphs. The following result is well known
(see Sabidussi [29, Lemma 2.6] for k = 2).

Proposition 3.4. If H1, . . . , Hk are graphs, then

χ(H1 � · · ·�Hk) = max
j:1�j�k

χ(Hj). (7)

For the following proposition, we extend the definition of SRn to n = 0 by defining
the signed reversal graph SR0 to be the graph with one vertex and no edges. Note
that SR1 is isomorphic to the complete graph K2 and SR2 is isomorphic to the
3-dimensional cube as shown in Figure 3.

1+2−

1+2+

1−2+

1−2−

2+1−

2−1−

2−1+

2+1+

•

•
•

•
•

•
•

•

Figure 3: The signed reversal graph SR2

Denote by Mλ the subgraph of M(K2n) induced by the vertices of type λ =
(λ1, . . . , λk).
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Proposition 3.5. Each connected component of the subgraph of M(K2n) induced by
the vertices with type (λ1, . . . , λk) is isomorphic to the graph SRλ1−1 � · · ·� SRλk−1.

Proof. Given a perfect matching M , let πM denote the set partition of V (K2n) in-
duced by the cycles of M ∪M0.

If M and M ′ are related by a flip-move and they both have the same type, then
πM = πM ′ , because the two edges to be flipped must both be chosen from the same
cycle of M ∪M0. In particular, if πM 	= πM ′ then the two matchings are not in the
same connected component of Mλ.

Now, for any fixed set partition π of V (K2n) with cells of size 2λ1, 2λ2, . . ., 2λk

consider all the perfect matchings M in Mλ such that πM = π. Then arguments
similar to Proposition 3.2 and Proposition 3.3 show that subgraph of Mλ induced
by these vertices is isomorphic to SRλ1−1 � · · ·� SRλk−1.

The next result is an immediate corollary of Proposition 3.4.

Corollary 3.6. If λ = (λ1, . . . , λk), then the chromatic number of the subgraph Mλ

is χ(SRλ1−1).

Proposition 3.7. Let n � 3 be an integer. Then χ(M(K2n)) � χ(SRn−1) +
χ(SRn−2).

Proof. Consider the partition of the vertices ofM(K2n) according to their type. Now
form a coarser partition V1, V2, . . ., Vn where

V� =
⋃
|λ|=�

Mλ.

In other words, V� contains all the perfect matchings M such that M ∪ M0 has �
cycles. A perfect matching in V� has neighbours only in V�−1, V� and V�+1. Now the
subgraph induced by V1 is isomorphic to SRn−1 and so (obviously) can be colored in
χ(SRn−1) colors. Every connected component of the subgraph induced by V2 has the
form SRt−1 � SRn−t−1 for some 1 � t � n− 1 and so can be colored with χ(SRn−2)
colors, with these colors chosen to be distinct from the colors used on V1. The “odd
layers” V3, V5, V7, . . . can be colored using colors from those used to color V1 and the
“even layers” V4, V6, V8, . . . can be colored using colors from those used to color V2.
In total, at most χ(SRn−1) + χ(SRn−2) colors are required.

We conclude this section with an observation regarding the structure of the signed
reversal graph SRk for k � 2. Let π = (π1, . . . , πk) be a permutation in Sk, and
denote by Vπ the set of 2k signed permutations of the form (πε1

1 , . . . , πεk
k ), where

ε1, . . . , εk ∈ {+,−}. A vertex of SRk lying in Vπ is adjacent to exactly k other
vertices in Vπ, namely the k signed permutations obtained by changing the sign in
exactly one coordinate. If π′ is a permutation obtained from π by substring reversal,
then each vertex of Vπ is adjacent to a unique vertex in Vπ′. In this case, there is a
matching between Vπ and Vπ′. The reversal graph Rk is the graph with vertex set Sk,
where two permutations are adjacent if they are substring reversals of each other.
See Section 5 and Chung and Tobin [5] for more details on these graphs.
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Proposition 3.8. Let k � 2 be an integer. The partition of the signed reversal
graph SRk into cells {Vπ : π ∈ Sk} is an equitable partition with quotient matrix
kIk! + A(Rk).

Proof. Note that the subgraph of SRk induced by Vπ is isomorphic to the k-dimen-
sional cube for any π ∈ Sk. For any permutations π 	= π′ ∈ Sk, each vertex in Vπ has
exactly one neighbor in Vπ′ if π and π′ are adjacent in the reversal graph Rk and no
neighbors, otherwise.

4 Chromatic numbers

In this section we consider bounds on the chromatic number of M(K2n). In order to
apply Proposition 3.7 we need to know the chromatic number of the signed reversal
graph SRn, and so we start there.

123

213

231

321

312

132

12

23

31

12

23

31

Figure 4: Equitable partition (left) and a proper 3-coloring (right) of SR3

4.1 The chromatic number of SRn

As SR1 is a single edge, and SR2 is the cube, these graphs both have chromatic
number 2. The graph SR3 has an equitable partition into 3! = 6 cells of the form Vπ

for π ∈ S3, where the graph induced on each cell is the 3-cube. The first diagram
of Figure 4 shows how the cells are connected, with blue edges indicating two cells
connected by a matching induced by a substring reversal of length 2 and red edges
indicating cells connected by a substring reversal of length 3 (i.e., just reversing the
entire permutation). As each cell induces a cube, which is bipartite, we intend to
find a coloring that uses just two colors on each cell. Between cells Vπ and Vπ′ there
are either no edges, or a matching induced by the same signed substring reversal on
every element of Vπ. Each cell contains a unique (unsigned) permutation and so we
can specify the coloring of a cell by the two colors used on the subgraph induced by
Vπ with the convention that we use the first color on the vertex of Vπ that has + on
all its entries. The right-hand diagram of Figure 4 describes a coloring of the cells Vπ.
The label 12 on V123 indicates that the 3-dimensional cube induced by V123 is colored
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n 1 2 3 4 5 6

χ(SRn) 2 2 3 4 4 � 5

Table 1: Chromatic number of SRn for n � 6

with colors 1 and 2, with vertex 1+2+3+ colored 1. The neighborhood of 1+2+3+

consists of three vertices in V123 (each of them colored 2), the vertex 1+3−2− in V132

(which has color 3), the vertex 2−1−3+ in V213 (which is colored 2) and 3−2−1− in
V321 (which has color 2). One can verify that this is a proper 3-coloring, and hence
χ(SR3) � 3. The graph SR3 contains a cycle on 7 vertices:

1+2+3+ ∼ 1+2+3− ∼ 1+2−3− ∼ 1−2−3− ∼ 2+1+3− ∼ 2+3+1− ∼ 3−2−1− ∼ 1+2+3+,

and therefore χ(SR3) = 3.
A similar approach can be used to exhibit a 4-colouring of SR4. Figure 5 shows

the equitable partition of SR4 into 24 cells, with each cell containing 16 vertices
inducing a 4-cube. In this diagram, blue edges indicate that two cells are joined by a
matching induced by a substring reversal of length 2, and the red edges indicate cells
connected by a matching induced by a substring reversal of length 3. The diagram
shows the cells in “layers” so that blue edges connect cells in adjacent layers, while
the red edges connect cells that are either one or three layers apart. Hence by using
colors {1, 2} for each cell in the odd layers and {3, 4} for each cell in even layers, all of
the edges within the cells are properly colored and all the blue and red matchings are
properly colored. This only leaves the matchings between cells related by a substring
reversal of length 4 (i.e., the entire permutation is reversed). The colors chosen for
each cell shown in Figure 5 ensure that the matching between, say, V2341 and V1432 is
properly colored, and similarly for all the other pairs of cells related by full reversals.
Unfortunately, we are not aware of a theoretical way to prove that χ(SR4) > 3 and
we rely on the computer for this part.

For SR5, we can no longer describe the coloring “by hand”, but by assuming that
the cube induced by each cell Vπ is colored using only two colors, it is easily within
computer range to verify that SR5 has a 4-coloring. For completeness, we present
such a coloring in the Appendix. For SR6 we can find a 5-coloring by computer, but
cannot even rule out the existence of a 4-coloring.

4.2 The chromatic number of M(K2n)

For n = 2, the graph M(K4) is isomorphic to the complete graph on 3 vertices which
has chromatic number 3. For n = 3, the graph M(K6) is the unique strongly regular
graph with parameters (15, 6, 1, 3). This is the Kneser graph K(6, 2) which is well-
known to have chromatic number 4. (This is also a consequence of Proposition 3.7.)
For n = 4, the graph M(K8) has 105 vertices, is 12-regular. By Proposition 3.7 it
has chromatic number number at most χ(SR2)+χ(SR3) = 5 and in fact its chromatic
number is equal to 5. For n = 5, the graph M(K10) is a 20-regular graph on 945
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1234

2134 12431324

134221433124 14232314

2341 41231432 321431422413
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Figure 5: The equitable partition and a 4-coloring for SR4

vertices. Figure 6 shows its equitable partition into types and gives the number of
neighbors of a vertex of one cell in each adjacent cell.

By computation we have found both a proper 6-coloring of M(K10) and a proper
7-coloring of M(K12), thus providing supporting evidence for the conjecture of
Fabila-Monroy et al. [9] that χ(M(K2n)) = n + 1. In Table 2, we list the best
lower and upper bounds for M(K2n) for 2 � n � 11. Note that the upper bounds
M(K10) � 6 and M(K12) � 7 come from our computations and the upper bound
M(K14) � 9 comes from using Proposition 3.7 and Table 1.

For larger values of n, the best we can do is Theorem 1.2, which we now prove:

Proof of Theorem 1.2. Let q be the smallest prime power such that q � 2n+1, and let
σ : V (K2n) → GF(q) be an arbitrary injective function. Then define a coloring of the
flip graph as follows: if X is a perfect matching with edges {x1, x2}, . . . , {x2n−1, x2n},
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Figure 6: Equitable partition of M(K10) into types

then color it with the color

f(X) := σ(x1)σ(x2) + σ(x3)σ(x4) + · · ·+ σ(x2n−1)σ(x2n).

Now we show that this coloring is a proper coloring. So let Y be a matching with
edges {y1, y2}, . . . , {y2n−1, y2n} that is adjacent to X. Without loss of generality we
may assume that {x2i−1, x2i} = {y2i−1, y2i} for any i � 3. If {y1, y2} = {x1, x3} and
{y3, y4} = {x2, x4}, then

f(Y )− f(X) = σ(x1)σ(x3) + σ(x2)σ(x4)− σ(x1)σ(x2)− σ(x3)σ(x4)

= (σ(x1)− σ(x4)) (σ(x3)− σ(x2)).

If {y1, y2} = {x1, x4} and {y3, y4} = {x2, x3}, then
f(Y )− f(X) = σ(x1)σ(x4) + σ(x2)σ(x3)− σ(x1)σ(x2)− σ(x3)σ(x4)

= (σ(x1)− σ(x3)) (σ(x4)− σ(x2)) .

As σ is injective, the final value in each case is the product of non-zero values and
so f(Y ) 	= f(X). Thus, we have a proper coloring of M(K2n) with q colors and
therefore, χ(M(K2n)) � q.

Nagura [27] proved that for any m � 25, there is at least one prime between
m and 1.2m. This means that for n � 12, there is a prime between 2n + 1 and
1.2(2n+1) = 2.4n+1.2 < 4n− 4 and hence, our previous result improves the upper
bound of 4n− 4 from [9]. It is straightforward to check it is also an improvement for
3 � n � 11 as seen in Table 2.

Dusart [8] proved that for m sufficiently large, there is a prime between m and
m

(
1 + 1

lnm

)
and therefore

χ(M(K2n)) � (2n+ 1)

(
1 +

1

ln3(2n+ 1)

)
= (2n+ 1)(1 + o(1)),

for n sufficiently large.
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n 2 3 4 5 6 7 8 9 10 11

4n− 4 4 8 12 16 20 24 28 32 36 40
Th 1.2 5 7 9 11 13 16 17 19 23 23
Upper 3 4 5 6 7 9 ? ? ? ?
Lower 3 4 5 5 5 5 5 5 5 5

Table 2: Bounds on chromatic number of M(K2n)

5 Spectral properties of the signed reversal graph

For n � 1, let X = Xn denote the n × n matrix whose (i, j)-th entry equals
min(i, j, n − i + 1, n − j + 1). For a real number x, let D be the unique diago-
nal matrix such that each row of D +X sums to x. Chung and Tobin [5, Lemma 9]

proved that the eigenvalues of D+X are μk = x−
k
2
�n+2

(�k
2
�

2

)
for 1 � k � n. Using

this result, these authors showed that the second largest eigenvalue of the reversal
graph Rn is

(
n
2

) − n (with the largest eigenvalue being
(
n
2

)
). In this section, we use

two equitable partitions of the signed reversal graph SRn to determine part of its
spectrum.

Proposition 5.1. The spectrum of SRn contains the following eigenvalues:

1. the eigenvalues of D′ + X and D′ − X, where X is the Chung-Tobin matrix
from above and D′ is the diagonal degree matrix that makes each row sum of
D′ +X equal to

(
n+1
2

)
.

2. μ+ n, where μ is an eigenvalue of the reversal graph Rn.

Proof. For 1 � j � n, let Uj(+) = {σ : σj = n+} and Uj(−) = {σ : σj = n−}. We
claim that the partition of the vertex set of SRn into the 2n sets U1(+), . . . , Un(+),
U1(−), . . . , Un(−) is an equitable partition whose quotient matrix is

[
D′ X
X D′

]
, (8)

where X = Xn is the Chung-Tobin matrix from the previous paragraph and D′ is
the unique diagonal matrix such that D′ +X has each row sum

(
n+1
2

)
.

To see this, note that for any 1 � i 	= j � n, there are no edges between Ui(+)
and Uj(+) because moving n+ from position i to position j 	= i would require n+ to
change its sign. By a similar argument, we deduce that there are no edges between
Ui(−) and Uj(−).

When i < j, for each vertex u in Ui(+) the number of neighbors of u that are
contained in Uj(−) equals min(i, n− j + 1). This follows because the only substring
reversals that move the n+ at index i to the n− at index j must reverse the substring
from index i − x to j + x for some x � 0. As 1 � i − x and j + x � n, there are
just min(i, n − j + 1) choices for x. As i < j, it follows that min(i, n − j + 1) =
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min(i, j, n − j + 1, n− i + 1) as required. Exactly the same argument applies when
counting the number of neighbors of a vertex in Ui(−) that are contained in Uj(+).
Next let u be a vertex in Ui(+), and consider the number of neighbors of u in Ui(−).
These neighbors arise from u by reversing a substring centered at position i, and
there are min(i, n− i+1) such substrings. Since the graph SRn is regular of valency(
n+1
2

)
we will get the entries on the diagonal such that each row sums to

(
n+1
2

)
.

From Chung and Tobin [5], we get the eigenvalues of D′ +X as
(
n+1
2

)− 
k
2
�n +

2
(�k

2
�

2

)
for 1 � k � n. If w is an eigenvector of D′ +X with such eigenvalue μ, then[

w
w

]
is an eigenvector of

[
D′ X
X D′

]
with eigenvalue μ. By a similar argument, we

can show that if u is an eigenvector of D′ − X with eigenvalue θ, then

[
u
−u

]
is an

eigenvector of

[
D′ X
X D′

]
with eigenvalue θ. This determines 2n eigenvalues of the

graph SRn.
Another observation regarding the spectrum of SRn follows from Proposition 3.8

and says that spectrum of SRn contains numbers of the form μ + n, where μ is an
eigenvalue of the reversal graph Rn.

Note that there is significant overlap between the two multisets of eigenvalues
above. For example,

(
n
2

)
appears in both. We can observe this by noting that

ei − en+1−i, 1 � i � 
n
2
� are eigenvectors of both D′ +X and D′ −X, since they are

orthogonal to X, and D is persymmetric (i.e., symmetric about the principal back
diagonal). The corresponding eigenvalues are the first 
n

2
� diagonal entries of D′ and

each of them (except the largest) is an eigenvalue of both D′ +X and D′ −X.

6 Open Problems

In this paper, we studied the flip graph M(K2n) and the signed reversal graph SRn.
We improved some previous upper bounds for the chromatic number of M(K2n) and
investigated the partition of its vertex set into signed reversal graphs and Cartesian
products of signed reversal graphs. We also determined some properties of the signed
reversal graphs such as part of their spectrum and some of their chromatic numbers
for small order. There are several problems that are still open and we list them here.

1. Conjecture 1.1 is still open and it seems that its most difficult part is showing
that

χ(M(K2n)) � n+ 1.

This is open even for n = 5. Proving that χ(M(K2n)) is strictly increasing
with n would imply the above inequality.

2. A related open problem is investigating the independence number α(M(K2n))
of the flip graph M(K2n). Our computations show that α(M(K8)) = 28 and
α(M(K10)) � 208. Using Hoffman’s ratio bound, one can get the general, but

weak bound of α(M(K2n)) � (2n−1)!!
3

for any n � 2.
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3. The second largest eigenvalue of a regular graph is related to its connectivity
and expansion properties and has been determined for various nice regular
graphs including several Cayley graphs of the symmetric group (see [5, 17] for
example). Proposition 5.1 implies that

(
n
2

)
is an eigenvalue of SRn and our

computations for n � 5 suggest the following conjecture.

Conjecture 6.1. For n � 2,
(
n
2

)
is the second largest eigenvalue of the signed

reversal graph SRn.

4. Our computational results determining (or bounding) the chromatic number of
SRn for small n are shown in Table 1. What is the behavior of this chromatic
number as n increases?

Appendix A χ(SR5) � 4

We list below the 4-coloring of SR5 obtained from our code. For a permutation
π = (π1 . . . πk) ∈ Sk we denote by π1 . . . π

0
k (or π1 . . . π

1
k) the subset of vertices of SR5

whose underlying permutation is (π1 . . . πk) that have an even (or odd) number of
+s. Equivalently, these are the color classes of the k-dimensional cube induced in
SRk by Vπ.

Color 0: [521430, 123450, 432510, 423150, 345210, 134520, 132540, 354120, 214350,
254130, 245310, 421530, 541230, 452130, 514320, 352140, 315240, 342150, 312450,
325410, 153240, 542310, 512340, 412350, 234510, 143250, 534210, 124530, 524131,
415231, 514231, 321541, 543121, 513421, 245131, 134251, 351421, 231451, 523141,
431251, 125341, 145321, 243511, 215431, 253411, 453211, 341521, 421351, 135241,
451321, 251341, 142351, 235141, 435121, 413521, 213541, 342511, 352411]

Color 1: [542131, 241530, 145231, 451230, 123540, 512431, 543211, 534121, 412531,
513241, 425131, 324150, 153420, 132451, 321451, 315420, 314250, 541320, 413250,
532141, 423511, 235410, 154321, 341251, 251430, 435210, 152341, 452311, 143520,
312541, 521340, 234151, 351241, 523411, 125431, 432151, 254311, 213450, 314521,
214531, 325140, 243150, 524310, 345120, 531240, 135421, 425310, 231540, 431520,
124351, 532410, 215340, 415320, 253140, 453120, 152430, 142530, 354211]

Color 2: [154230, 523140, 425130, 512430, 142531, 542311, 541231, 415230, 452131,
512341, 152431, 542130, 521431, 254131, 125340, 354121, 513240, 215430, 314251,
324510, 153421, 142350, 315421, 241531, 134250, 231450, 431250, 453210, 412351,
123451, 143251, 432511, 132541, 345211, 423510, 243151, 253410, 352141, 354210,
321540, 351240, 145320, 214351, 234511, 134521, 325411, 514321, 341520, 534211,
543120, 324151, 241350, 135420, 531241, 215341, 415321, 253141, 453121, 425311,
451320, 251340, 531420]

Color 3: [245130, 324511, 451231, 514230, 154231, 154320, 325141, 124531, 532140,
523410, 125430, 251431, 214530, 412530, 513420, 342510, 432150, 524130, 153241,
124350, 312451, 314520, 345121, 541321, 543210, 352410, 351420, 421531, 315241,
341250, 132450, 413251, 532411, 152340, 234150, 342151, 143521, 521341, 423151,
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534120, 312540, 524311, 213451, 235411, 145230, 452310, 123541, 321450, 243510,
435211, 254310, 531421, 245311, 241351, 135240, 421350, 235140, 435120, 213540,
413520, 231541, 431521]

Acknowledgments

We are very grateful to the anonymous referees, Ferdinand Ihringer, Nathan Lindzey,
Chia-an Liu, Jack Koolen and Josh Tobin for their comments and suggestions.

References

[1] A. Bergeron, A very elementary presentation of the Hannenhalli-Pevzner theory,
Discrete Appl. Math. 146 (2) (2005), 134–145.

[2] M. Blum and D. Cohen, On the problem of sorting burnt pancakes, Discrete
Applied Math. 61 (1995), 105–120.

[3] A. E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer Universitext
2012.

[4] T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Harmonic Analysis on Fi-
nite Groups: Representation Theory, Gelfand Pairs and Markov Chains, Cam-
bridge Studies in Advanced Mathematics 108 (2008).

[5] F. Chung and J. Tobin, The spectral gap of graphs arising from substring re-
versals, Electron J. Combin. 23 (3) (2017), #P3.4, 18pp.

[6] P. Diaconis and S. Holmes, Matchings and phylogenetic trees, Proc. Natl. Acad.
Sci. USA 95 (25) (1998), 14600–14602.

[7] P. Diaconis and S. Holmes, Random walks on trees and matchings, Electron. J.
Probab. 7 (6) (2002), 17 pp.

[8] P. Dusart, Explicit estimates of some functions over primes, The Ramanujan
Journal 45 (2016), 227–251.

[9] R. Fabila-Monroy, D. Flores-Penaloza, C. Huemer, F. Hurtado, J. Urrutia and
D.R. Wood, On the chromatic number of some flip graphs, Discrete Math.
Theor. Comput. Sci. 11 (2009), 47–56.

[10] W.H. Gates and C.H. Papadimitriou, Bounds for sorting by prefix reversal,
Discrete Math. 27 (1) (1979), 47–57.

[11] C. Godsil, Algebraic Combinatorics, Chapman and Hall Mathematics Series,
Chapman & Hall, New York, 1993.
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