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Abstract

For a graph G = (V, E) embedded in the projective plane, let F(G)
denote the set of faces of G. Then G is called a C),-face-magic projective
graph if there exists a bijection f: V(G) — {1,2,...,|V(G)|} such that
for any F' € F(G) with F' = C,,, the sum of all the vertex labels around
C,, is a constant S. We consider the m x n grid graph, denoted by P, ,,
embedded in the projective plane in the natural way. We show that for
m,n = 2, P, admits a Cy-face-magic labeling if and only if m and n
have the same parity.

Let m > 3 and n > 3 be odd integers. We show that the Cy-face-magic
value of a Cy-face-magic labeling on P, ,, is either 2mn 4 1, 2mn + 2, or
2mn + 3. In this paper, we characterize the Cy-face-magic labelings on
P with Cy-face-magic value 2mn + 2.

1 Introduction

Graph labelings were formally introduced in the 1970s by Kotzig and Rosa [15].
Graph labelings have been applied to graph decomposition problems, radar pulse
code designs, X-ray crystallography and communication network models. The in-
terested reader should consult Gallian’s comprehensive dynamic survey on graph
labelings [11] for further information.

We refer the reader to Chartrand, Lesniak and Zhang [5] for concepts and no-
tation not explicitly defined in this paper. The graphs in this paper are connected
multigraphs. The concept of a Cj-face-magic labeling was first applied to planar
graphs. For a planar or projective graph G = (V, E) embedded in the plane or pro-
jective plane, let F(G) denote the set of faces of G. Then, G is called a C),-face-magic
planar or projective graph if there exists a bijection f : V(G) — {1,2,...,|V(G)|}
such that for any F' € F(G) with F' = (), the sum of all the vertex labels around
C, is a constant S. Here, the constant S is called a C),-face-magic value of G. More
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generally, Cy-face-magic planar graph labelings are a special case of (a, b, c)-magic
labeling introduced by Lih [16]. For assorted values of a,b and ¢, Baca and others
1,2, 3,12, 13, 14, 16] have analyzed the problem for various classes of graphs. Wang
[17] showed that the toroidal grid graph C,, x C,, has an antimagic labeling for all
integers m,n > 3. Recall that a graph with g edges is called antimagic if its edges can
be labeled with 1,2, ..., ¢ without repetition such that the sums of the labels of the
edges incident to each vertex are distinct. Butt et al. [4] investigated face antimagic
labelings on toroidal and Klein bottle grid graphs. Here, a face antimagic labeling
on a toroidal or Klein bottle grid graph is a labeling of the vertices, edges and faces
of an m x n toroidal grid graph C,, x C,, or an m x n Klein bottle grid graph X,, ,, by
the consecutive integers from 1 up to |V(C,, x Cp)| + |E(Cy, x Cp)| + |F(C x C)|
or |[V(Kmn)| + |[E(Kpn)| + |F(Kimn)|, respectively, in such a way that the label of
a 4-sided face and the labels of the vertices and edges surrounding that face all to-
gether add up to a weight of that face. These face-weights then form an arithmetic
progression with common difference d.

Curran, Low and Locke [6, 7] investigated Cy-face-magic labelings on an m x n
toroidal grid graph C,, x C,. They showed that C,, x C,, admits a C,-face-magic
labeling if and only if either m = 2, or n = 2, or both m and n are even. Curran, Low
and Locke [8] also examined Cj-face-magic labelings on an m x n Klein bottle grid
graph. They showed that an m x n Klein bottle grid graph admits a Cj-face-magic
labeling if and only if n is even. In this paper, we consider Cy-face-magic labelings on
an m X n projective grid graph. We show, in Theorem 2.7, that an m x n projective
grid graph admits a C)-face-magic labeling if and only if both m and n have the
same parity. Also, when m and n are even, then the Cy-face-magic value must be
2mn—+2. Furthermore, when m and n are odd, then the Cy-face-magic value is either
2mn + 1, 2mn + 2, or 2mn + 3.

In this paper, we investigate the Cy-face-magic labelings on P, , with Cy-face-
magic value 2mn + 2 when m and n are odd. We show that a C-face-magic labeling
X ={z;;:(i,5) € V(Pmn)} with Cy-face-magic value 2mn + 2 is centrally balanced
in the sense that

Tij+ Tmiiint1—j =mn+1  forall (i,7) € V(Prn).

Because of this additional structure on X, we are able to characterize and count
these C-face-magic labelings on P, ,,. Further, we pose an open problem related to
Cy-face-magic labelings on P, , when m and n are even.

2 Preliminaries

Definition 2.1. For a graph G = (V, E) embedded on the projective plane or plane
or torus or Klein bottle, let F(G) denote the set of faces of G. Then G is called a
C,-face-magic projective or planar or toroidal or Klein bottle graph if there exists a
bijection f : V(G) — {1,2,...,|V(G)|} such that for any F' € F(G) with F = C,,,
the sum of all the vertex labels around C), is a constant S. We call S the C,,-face-
magic value.
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Figure 1: 5 x 5 projective grid graph Ps 5.

Definition 2.2. Let m and n be integers such that m,n > 2. The m x n projective
grid graph, denoted by P,, ,,, is the graph whose vertex set is

V (Pan) ={(i,5) : 1 <i <m, 1< j <nj
and whose edge set consists of the following edges:

e there is an edge from (i,7) to (i,j+ 1), for I<i<mand 1 <j<n—1,

(
e there is an edge from (i,n) to (m+ 1 —1,1), for 1 <7 < m,
e there is an edge from (4,j) to (i + 1,7), for I<i<m—1and 1 <j < n and
(

e there is an edge from (m,j) to (1,n+ 1 —j), for 1 < j < n.

The graph P,,, has a natural embedding on the projective plane. This graph is
a multigraph since there are double edges on the vertex sets {(1,1),(m,n)} and

{(m, 1), (1,n)}.

Example 2.3. The 5 x 5 projective grid graph P55 is illustrated in Figure 1. Due
to the orientation of the vertices in P, ,, we refer to the vertices {(7,7) : 1 < j < n}
as column i of V(P,,,) and {(4,7) : 1 <i < m} as row j of V(P,,,).

Lemma 2.4. Let m and n be integers such that m,n > 2. Suppose that P, is a
Cy-face-magic projective graph. Then m and n have the same parity.

Proof. For the purposes of contradiction, we assume that m > 2 is even and n > 3 is
odd. Let ng be the positive integer such that n = 2ng+1. Let {z;; : (7,7) € V(Ppn)}
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be a Cy-face-magic labeling on P, , Let a = 21, + 21,0,+1. When we set the two
Cy-face sums given below equal to each other

Tij + Tijar + Tigrg + Tivr 541 = 5 = iy + Tigrgon + Tigoj + Tiga i,
we obtain
Tij + Tij41 = Tit2,j + Tit2j41-
Thus
T1,ng + T1ng+1 = Tm—1,n0 + Tm—1,no+1-

When we set the two Cy-face sums given below equal to each other

Tm—1,n + Tm—1,n0+1 + Tm,no + Tm,no+1 = S = Tm,ng + Tm,no+1 + L1,no+1 + T1,n0+25

we obtain
Tm-1,mn0 T Tm—1n0+1 = Tlno+1 T T1ng+2-
Thus
T1no T T1no+1 = T1mng+1 T T1ng42
which, in turn, yields z; ,, = 1 yy+2. This is a contradiction. U

Lemma 2.5. Suppose m > 2 and n > 2 are even integers. Let {x;; : (i,7) €
V(Pmn)} be a Cy-face-magic labeling on Py, ,, with Cy-face-magic value S. Then
S =2mn + 2.

Proof. Let mqg and ng be positive integers such that m = 2mg and n = 2ng. Consider
the sum

mo o

imnS = monoS = Z 2(162@;1,2]'71 + Toi—1,25 + Taij—1 + T2i2;)
i=1 j=1
= (Z k‘) = L(mn)(mn + 1).
k=1
Thus S = 2mn + 2. O

Lemma 2.6. Let m > 3 and n > 3 be odd integers. Let {z;; : (i,j) € V(Pp.n)} be
a Cy-face-magic labeling on P, , with Cy-face-magic value S. Let Dy = 211 + Ty,
and Dy = x, 1 + 21, be the face sums of the two digons constructed from the pair

of wvertices at opposite corners of Py,. Recall that a digon is a two-sided polygon.
Then either

1. S=2mn+1 and D, = Dy =

][OV

mn + 5
2. S=2mn+2 and Dy = Dy = mn +1, or

3.5 =2mn+3 and D; = Dy = =mn + .

[N
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Proof. We first observe that, for 1 < j <n — 1, we have

T1j + T1j41 + Tmpgi—j + Tmn—j = S = T1j41 + T1j2 + Tmn—j + Tmn—j—1.

Thus, for 1 < j<n—1,

T1j T Tmpnti—j = T15+2 T Tmn—j-1-

Hence, for 1 < j < (n—1)/2, we have

1,2j—1 T Tmmnt+2-2j = T1,2j+1 + Tmn—2j-

Thus
Dy =10+ Tpmp = T10 + Ti1 = Do.
Hence,
2Dy = 210 + Ty + T+ T 1
Therefore,
m—1n—1
2Dy + (mn —1)S = (i + Tit1j + Tige1 + Tit1,541)
i=1 j=1
m—1
+ (Tim + Tit1in + Tm—in + Tmt1-i1)
i=1
n—1
+ (Tpmj + T 1 + T1n—j + T1pr1—j)
j=1
+ (T11 + T + Ting + T10)
= 4(2 k> (2mn)(mn + 1).
Thus
(mn —1)S = 2m?n* + 2mn — 2D.
Since
10 < 2D < 4mn — 6,
we have
2m?*n? — 2mn + 6 < (mn — 1)S < 2m?n® + 2mn — 10.
Thus
6 6
2mn + <S<2mn+4— .
mn—1 mn — 1

Since m > 3 and n > 3, we have
2mn +1 <S5 < 2mn + 3.

We observe that
Dy = Dy = m*n* + mn — —(mn—l)S

For S = 2mn + 1, we have Dy = Dy = Emn + 5. Similarly, for S = an + 2 we
have D; = Dy = mn + 1. Also, for S = 2mn + 3, we have D; = Dy = —mn —|— = O
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Figure 2: Cy-face-magic labeling on P55 having Cy-face-magic value 53.

Theorem 2.7. Let m and n be integers such that m,n > 2. Then P,,, admits a
Cy-face-magic labeling if and only if m and n have the same parity.

Proof. (=) Suppose P,,,, admits a Cy-face-magic labeling. Then, by Lemma 2.4, m
and n have the same parity.

(<) Case 1. Assume m > 3 and n > 3 are odd integers. Let mgy and ngy be
integers such that m = 2mgy + 1 and n = 2ny + 1. We define

® T9i 191 =n(i—1)+jfor1<i<mog+1landl<j<ng+1,

o Ty =n(i—1)+ng+1+jforl<i<mgand 1< j < ng,

® Ty g9 =n(m—i+1)—j+1forl <i<mo+1and1<j<nand
® Toigj 1 =n(m—i+1)—ng—j+1forl<i<mpand1l<j<ny+1.

We observe that for the vertices (i,7) where i 4+ j even, we assign the labels
1,2,... mn + 5 in 1ex1eograph1c order however for the vertices (7, j) where i + j
odd, we a881gn the labels Ssmn + 5, §mn —|— ...,mn in reverse lexicographic order.
See Figure 2 for an example of this labehng on the 5 x 5 projective grid graph Ps 5.

We have @g;_19j-1 + Toi—12; = mn+1for 1 <i<mp+land1l < j<n
Also, we have ;91 + Z2;2; = mn +2 for 1 < ¢ < mg and 1 < j < ng. Thus, for
1<t<m—1and 1< j < ng, we have

Tigj—1 + Tigj + Tiy12j—1 + Tig1,25 = 2mn + 3.
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Next, we have xg;_12; + Z2i—12j41 = mn+2for 1 <i<mp+1and 1 < 5 < ny.
Also, we have g;9; + X941 = mn + 1 for 1 <7 < myg and 1 <5 < ng. Thus, for
1<i<m—1and 1< j < ng, we have

Tij + Tigjr1 + Tip12j + Tiv12541 = 2mn + 3.

We observe that, for 1 < j < ng+ 1, T19j-1 + Tmnio—2j = %mn +% and for
1 < j < no, T12j + Tmpr1—2; = smn + 3. Thus, for 1 < j < n — 1, we have

xl,j —f- xm,n-ﬁ-l—j —f- xl,j+1 —|— xm,n—j = an —f- 3

Similarly, for 1 < mo +1, 911 + Tig2-2i0n = %mn + % and for 1 <7 < my,
Toi1 + Tmg1-2im = mn —|— Thus for 1 <7< m—1, we have

i1l + Tongi—in + Tit1,1 + Tin—in = 2mn + 3.

Case 2. Assume m > 2 and n > 2 are even integers. Let mg and ngy be integers
such that m = 2mgy and n = 2ny. We define

® Ty 19j—1=n(i—1)+7jfor 1 <i<mgand 1< j < ny,
oxzivgj:n(i—l)jtnojtjforl<i<m0and1<j<no,

® 1y 19 =n(m—i+1)—j+1forl<i<mgand1l<j<ngand
® Toigi1=n(m—i+1)—ng—j+1forl <i<mpand1l<j<ng.

We observe that for the vertices (i,j) where i + j even, we assign the labels
1,2,...,3mn in lexicographic order; however, for the vertices (i,j) where i + j odd,
we assign the labels %mn + 1, %mn + 2,...,mn in reverse lexicographic order. See
Figure 3 for an example of this labeling on the 6 x 6 projective grid graph P .

We have 3,191 + Zgi—12; = mn+ 1 for 1 < ¢ < mgand 1 < j < ny. Also,
we have @g;9j-1 + @92 = mn + 1 for 1 < i < mg and 1 < j < ng. Thus, for
1<i<m—1and 1< j < ng, we have

Tigj—1 + Tigj + Tiv1,2j—1 + Tit1,2; = 2mn + 2.

Next, we have xg;_19; + T2i—12j41 = mn+2 for 1 <i<mpand 1 < j <ng — 1.
Also, we have 9;9; + X2;2541 = mn for 1 <7 < mg and 1 < j < ng — 1. Thus, for
1<i<m—1and 1< <ng— 1, we have

Tigj + Tigj1 + Tiv1,25 T Tip1,2j41 = 2mn + 2.

We observe that, for 1 < j < ng, T1,2j-1+Tmni2-2j = mn—i—l and for 1 < 7 < ny,
T12j + Tmpt1-25 = §mn + 1. Thus, for 1 < 7 <n — 1, we have

xl,j —f- xm,n-ﬁ-l—j —f- xl,j+1 —|— xm,n—j = an —f- 2

Similarly, for 1 <@ < mg, Z2i—11 + Tms2-2in = %mn + 1 and for 1 < i < my,
T9i1 + Tmt1-2in = %mn + 1. Thus, for 1 <7 < m — 1, we have

Til + Tmgl—in T Tix1,1 + Tinin = 2mn + 2.
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Figure 3: Cy-face-magic labeling on Pg ¢ having Cy-face-magic value 74.

3 (4-face-magic projective grid graphs having an odd num-
ber of vertices and C,-face-magic value 2mn + 2

In this section we characterize the Cy-face-magic labelings on P,,,, having C,-face-
magic value 2mn + 2 when m and n are odd. In Lemma 3.4, we show that a
Cy-face-magic labeling X = {z;; : (¢,7) € V(Ppn)} on Py, ,, having Cys-face-magic
value 2mn + 2 is centrally balanced in the sense that

Tij -+ Tmt1—int+1—5 = MN +1 for all (Z,j) € V(ipmm)

In Definitions 3.6, 3.8, 3.10, and 3.12, we introduce permutations on the rows and
columns of X, called elementary projective labeling operations (see Definition 3.14),
that result in another Cy-face-magic labeling on P, ,,. See Lemmas 3.7, 3.9, 3.11 and
3.13. Among all Cy-face-magic labelings that can be obtained by applying a sequence
of elementary projective labeling operations to X, there is a unique labeling Z in
which the labels on both the central row and the central column of Z are in ascending
order. This labeling Z is called the standard projective labeling associated with X
(see Definition 3.17). Thus, we only need to characterize the standard centrally
balanced Cs-face-magic labelings on P, ,,. See Theorem 3.16. In Definition 3.18, we
introduce the concept of a palindromic sequence labeling on the m x n planar grid
graph P, x P,. In Propositions 3.20 and 3.21, we show that there is a one-to-one
correspondence between the standard centrally balanced Cy-face-magic labelings on
Pm.n and the palindromic sequence labelings on P, x P,. We introduce the concept
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of an (m,n)-projective factorization sequence in Definition 3.28. In Theorem 3.32,
we show that any palindromic sequence labeling on P,, X P, can be constructed
from an (m, n)-projective factorization sequence or an (n, m)-projective factorization
sequence. Similarly, in Theorems 3.34 and 3.35, we show that any standard centrally
balanced C}-face magic labeling on P,,, ,, can be constructed from an (m, n)-projective
factorization sequence or an (n,m)-projective factorization sequence. In fact, this is
the only way to construct a standard centrally balanced C)-face-magic labeling on
Pm.n. These results allow us to count the number of Cy-face-magic labelings on P, ,,
having Cy-face-magic value 2mn + 2. See Theorems 3.40 and 3.41.

Notation 3.1. Throughout this section, we assume that both m > 3 and n > 3 are

odd integers. We write m = 2mg + 1 and n = 2ng + 1 for integers mq and ngy. For

any positive integer N, we let NT = N + 1. In particular, we have mJ = mg+ 1 and
+

Notation 3.2. We refer to the vertex (3(m+1),3(n+1)) = (mg,n) as the center
of the projective grid graph P, ,,. The graph automorphisms of P, ,, that are induced
by homeomorphisms of the projective plane are described in relation to the center
of Ppyn. We let Ry denote the rotation by 6 degrees in the counter-clockwise direc-
tion about the center. The symmetry H (V') is the reflection about the horizontal
(vertical) axis passing through the center. Thus, for distinct integers m and n, the
set of symmetries on P, ,, is { Ry, Riso, H,V'}. We let D, (D_) denote the reflection
about the diagonal with positive (negative) slope passing through the center. When
m = n, the set of symmetries on Py, ,, is Dy = { Ry, Roo, Riso, Ror0, H,V, D4, D_}.

Definition 3.3. Let X = {z;; : (4,j) € V(Pnn)} be a Cy-face-magic labeling on
Pmn with Cy-face value S = 2(mn + 1). We say that X is centrally balanced if, for
all (4,7) € V(Prmn),

1
Xy j + Tm+1—in+l—j = ES =mn + 1.

Lemma 3.4. Suppose m > 3 and n > 3 are odd integers. Let X = {z;; : (i,]) €

V(Pimn)} be a Cy-face-magic labeling on P, ,, with Cy-face-magic value S = 2mn+2.

1

Then X s centrally balanced. Furthermore, Ly = MM+ %

Proof. By Lemma 2.6, the digons formed by the vertex sets {(1,1),(m,n)} and
{(m,1),(1,n)} have face values

D1:x1,1+xm7n:%S:mn+1

and
Dy =z + 21, = %S =mn + 1.

Suppose that for some integer 1 < i < m,
i1+ Tmti—in = %S-

Since
i1+ Tiv11 + Tmgi—in + Tmein = S,
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we have

52

Tit+1,1 + LTm—in =

I NI

Similarly, suppose that for some integer 1 < j <

_ 1
T1j + Tmpt1-j = 59

Since
1+ Tij41 + Tmpgi—j + Tmp—j = 9,
we have
T1j41 + Tmpn—j = %S-
Hence,
Ti1+ Tmp1—in = %S

for all 1 <7< m and

forall 1 < j < n.
Suppose there exist integers 1 < i < m and 1 < j < n such that
1. forall 1 <7 <iand 1 <5 <n, Ty jr + Topg1—it py1—jr = %S and
2. forall 1 < j/ < j, Zj 5 + Tm+l—int1—j = %S

We need to show that ; j +Zmi1-int1-j = %S . When we add the two Cy-face-values

Tic1j-1+ Ti—1j + Tij—1 +Tij =5
and

Tmg2—int2—j T Tmt2—int1—j T Tmtl—int2—j + Tmti—inri—j = S,

we obtain
(Ti-1j-1+ Tms2-int2—j) + (Tim1j + Tmt2-int1-5)
+(Zij—1 + Tmt1-int2—j) + (Tij + Tmr1-ins1-5) = 25.
Since
_ 15
Ti—1,j—1 T Tmt2—int2—j = 59,
1
Ti1j + Tmy2—int1-j = 59, and
1
Tij—1+ Tmti-int2—j = 59,
we have
1
Tij+ Tmi1-int1-j = 59
Since
meg,nar = ‘rmar,naL + merlfmaL,nJrlfnar =mn + ]-7
we have

-1 1
xmar’nar = 2mn+ 5

This completes the proof. O
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Lemma 3.5. Let X = {x;; : (4,7) € V(Pmn)} be a centrally balanced Cy-face-magic
labeling on P, ,, with Cy-face-magic value S = 2mn + 2. For 1 < 7 < nyg, let

aj = 1, + L1541
Then,
1. for all 1 < i < mg where i is odd and 1 < j < ng, we have
Tig + Tije1 = a5, Timi1—j + Tin—j = 5 — aj,
Trnti—ij + Tmiiijr1 = Qj, ONA  Tipii—int1—j + Tmil—in—j = O — a;, and
2. for all 1 < i < mg where i is even and 1 < j < ng, we have
Tig+ Tijy =5 —a, Timi1—j + Tin—j =
Tmgl—ij T Tmgi—ijrl = O — aj, and Tmt+l—in+l—j T Tmtl—in—j = Aj-

Proof. When we equate the two Cy-face sums

Tij+ Tiji1 + Tig1y + Tigrj01 =S and

Tit1j + Tit1j41 + Tivzj + Tigzj41 = 5,

we obtain
Tij + Tiji1 = Tivoj + Tito,j41- (1)
By (1), for all 1 < i < myg where i is odd and 1 < j < ng, we have

Tij +Tiger = aj and Tppi-ij+ Tmii-iji1 = a5

Since
aj + T g+ Tojp1 = i+ Ty + oy + T4 =5,

we have
Ty g+ Ty 01 =5 —ay.

By (1), for all 1 < i < mg where i is even and 1 < j < ng, we have
Tij+ Tije1 =95 —a; and Tpgi-ij + Tmir-ijt1 = S — aj.
Since
aj + Tipri—j + Tinj = Tmyj + Tmjsl + Tingi—j + Tin—j = S,

we have
Tipti—j + Tipyj = S — aj.

By (1), for all 1 < i < my where 7 is odd and 1 < j < ng, we have

Tint1—j + Tin—j =S —a; and Typi_jny1—j + Tmgpi—in—j = S — a;.
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Since
(S —a;) + Topr1-j + Ton—j = Tint1—j + Tin—j + Tonti—j + Ton—j = 5,

we have
Tont1—j T Tan—j = G

By (1), for all 1 < i < mg where 7 is even and 1 < j < ng, we have
Tipg1—j + Tin—j = aj and Ty1—int1—j + Tmpi—in—j = G;-
]

Definition 3.6. Let X = {z;; : (4,j) € V(P.n)} be a centrally balanced Cy-face-
magic labeling on P, ,. Let n be a permutation on the set {1,2,...,mg}. We define
a labeling on P, ., Z = {2;; : (i,j) € V(Pm)}, such that for all 1 < i < mg and
1 < j < n, we have

Zij = Tn(i)j if n(i) —i is even,
Zij = Ty(i)nt1—j> if n(i) — i is odd,
Fmd g = Tm g
Zmtl—ij = Tm+1-n().j> if n(i) — i is even and
Zm41—i,j = Tm41—n(i),n+1—5> if 77(2) — 1 is odd.

We let €, denote the labeling operation given by &€,(X) = Z.

Lemma 3.7. Let X = {x;; : (1,7) € V(Pmn)} be a centrally balanced Cy-face-magic
labeling on P, and let n be a permutation on the set {1,2,...,mg}. Let &, be
the labeling operation defined in Definition 3.6. Then the labeling Z = €,(X) is a
centrally balanced Cy-face-magic labeling on Py, ,,.

Proof. We first verify that Z is centrally balanced. Suppose that 1 < i < mg and
1 <j<n Ifn(i)—iis even, then

Zij + Zmtl—int1—j = Tn)j T Tmtl-n()n+1—j = 39

If n(i) — i is odd, then

Zij + m+1- = + 1
1,J z 1—in+1—j xn(i),n—i-l—j xm—i—l—n(i),j = —25.
I urthermore, we have

~ls

ZmaL,j + ZerlfmaL,nJrlfj = xmg,j + merlfmaL,nJrlfj

Next, we show that Z is a Cs-face-magic labeling on P, ,,. For all 1 <7 < m and
1 < j < n, one may use Lemma 3.5 to verify that

Zij+ Zigy1 = Tij + @i and zio1; + Zivigen = Tivng t Tigngete
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Thus

Zij T Zig+1 t Zit1j T Zig1g41
= Ty Tigea + Tigrg + Tiprge = S

Since Z is centrally balanced, for 1 <7 < m, we have
Tin + Tmi1—il + Titipn + Tmoin = 35 + 35 = S.
Also, since Z is centrally balanced, for 1 < j < n, we have
Tmj + Tips1—j + Tmji1 + T1pj =38+ 125 = 5.
O

Definition 3.8. Let X = {z;; : (4,j) € V(Py.n)} be a centrally balanced Cy-face-
magic labeling on P, ,. Let £ be a permutation on the set {1,2,...,n0}. We define
a labeling on Py, ,,, Z = {z;; : (4,7) € V(Pmn)}, such that for all 1 < i < m and
1 < 7 < ng, we have

Zij = Tik(j) if k(j) — 7 is even,

Zigj = merlfi,n(j)a if /‘i(]) —j is Odd,
Zi,nar = "L‘z’,naﬁ

Zimt1—j = Tintl-n(j)s if k(j) — 7 is even and

Zin+l—j = xm—l—l—i,n—l—l—/@(j)) if li(j) —j is odd.

We let €, denote the labeling operation given by &, (X) = Z.

Lemma 3.9. Let X = {x;; : (1,7) € V(Pmn)} be a centrally balanced Cy-face-magic
labeling on Py, and let k be a permutation on the set {1,2,...,ng}. Let &, be
the labeling operation defined in Definition 3.8. Then the labeling Z = €.(X) is a
centrally balanced Cy-face-magic labeling on Py, ,,.

The proof of Lemma 3.9 is similar to the proof of Lemma 3.7; we leave the details
of the proof to the reader.

Definition 3.10. Let X = {z;; : (i,5) € V(Pm»)} be a centrally balanced Cy-face-
magic labeling on P, ,,. Let o : {1,2,...,mo} — {0,1}. We define a labeling on
Poms Z ={zij:(i,7) € V(Prn)}, such that for all 1 <i < mp and 1 < j < n, we
have

Zij = T(1—a(i))ita(i)(m+1—i),js and

EmA1—i,j — LTa(i)i+(1—(i))(m+1—i),5 -

We let €, denote the labeling operation given by €,(X) = Z. The labeling operation
€, has the effect of keeping the labelings on the vertices of columns 7 and m + 1 — i
the same if a(i) = 0 and swapping the labelings on the vertices of column i with
those of column m + 1 — 7 if a(i) = 1.
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Lemma 3.11. Let X = {z;; : (i,j) € V(Pmn)} be a centrally balanced Cy-face-
magic labeling on Py, ,, and let o = {1,2,...,mo} — {0,1}. Let &, be the labeling
operation defined in Definition 3.10. Then the labeling Z = E,(X) is a centrally
balanced Cy-face-magic labeling on Py, .

Proof. First, we show that Z is centrally balanced. Suppose a(i) = 0. Then

Zij = Tij and  Zpii-ij = Tmgi—ig

['hus
y . —— . . —=1g
Zij AmAl—intl—j = Lij Tm+1—intl—j = Dl

Suppose «(i) = 1. Then

Zij = Tmyi—iy AN Zpgioij = T

Thus
y . e hy . . —1g
Zij AmAl—intl—7 = Tmtl—ij Tintl—j = Dl

The proof that Z is a C4-face-magic labeling on P, ,, is similar to that in the proof
of Lemma 3.7. U

Definition 3.12. Let X = {z;;: (1,7) € V(P.n)} be a centrally balanced Cy-face-
magic labeling on P, .. Let 8 : {1,2,...,n0} — {0,1}. We define a labeling on
Pons Z ={zj:(i,j) € V(Ppn)}, such that for all 1 <7 < m and 1 < j < ng, we
have

Zij = Ti,(1-B())j+B()(n+1-7), and

Fin+l—j = Ti,5(j)j+(1-B()(n+1-j)-

We let €5 denote the labeling operation given by €5(X) = Z. The labeling operation
€3 has the effect of keeping the labelings on the vertices of rows j and n+ 1 — j the
same if (j) = 0 and swapping the labelings on the vertices of row j with those of
rown+ 1 —jif B(j) = 1.

Lemma 3.13. Let X = {z;; : (i,j) € V(Pmn)} be a centrally balanced Cy-face-
magic labeling on P, and let B : {1,2,...,n0} — {0,1}. Let €z be the labeling
operation defined in Definition 3.12. Then the labeling Z = E5(X) is a centrally
balanced Cy-face-magic labeling on Py, ,,.

The proof of Lemma 3.13 is similar to the proof of Lemma 3.11; we leave the
details of the proof to the reader.

Definition 3.14. We call each of the labeling operations &, in Definition 3.6, €, in
Definition 3.8, &, in Definition 3.10 and € in Definition 3.12 an elementary projective
labeling operation.

Definition 3.15. We say that two centrally balanced Cj-face-magic labelings on
Pm.n are projective labeling equivalent if one labeling can be obtained from the other
by applying a sequence of elementary projective labeling operations.
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Given a centrally balanced Cj-face-magic labeling X on P, ,, the next theo-
rem identifies a canonical centrally balanced Cs-face-magic labeling on P, ,, that is
projective labeling equivalent to X.

Theorem 3.16. Let X = {x;; : (i,5) € V(Pmn)} be a centrally balanced Cy-face-
magic labeling on Py,,. Then there is a unique centrally balanced Cy-face-magic
labeling Z = {z;j : (i,7) € V(Pmn)} on Ppn that is projective labeling equivalent to
X such that

1. Lt < Zgpt < < gt and
2 Zt 1 < Zpt g < < 2

Proof. By Lemma 3.4, we have Lt = %(mn +1) = iS. It is easy to check that
this value remains the same for any elementary projective labeling operation that we

apply to X. Since X is centrally balanced, for all 1 < i < mg, we have

1
xi,ng + merlfz',ng - ES
: 1 1 : .
Thus, either Tipnd < 79 or Tpy1—ipd < 15. We define a function o : {1,2,...,mg} —

{0,1} as follows. For each 1 < i < my, we define

N 0, if :L'LT% < iS,
=91 if o . <18,

m+1—i,n
We replace X with €,(X). This new centrally balanced Cj-face-magic labeling on
Pm.n satisfies, for all 1 < i < my,
T, 4 < iS, and
Mo

1
+>ZS

xm+1—i,n0

Choose a permutation n of {1,2,...,mg} such that

Tyyng < Tyt < "< T o

W(mO)JLO

We replace X with &, (X). This new centrally balanced Cj-face-magic labeling on
Pm.n satisfies,
Tyt <Tg, 4 << T +
0] 70 Y

A similar argument allows us to choose a function 3 : {1,2,...,n0} — {0,1} and a
permutation k£ on {1,2,...,n0} such that Z = €,(E3(X)) satisfies

Dt < Zypd <0 < Zpy gt and

Zmar,l < ngﬂ < e K< ngm.
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Definition 3.17. We refer to the centrally balanced C)-face-magic labeling Z in
Theorem 3.16 as the standard projective labeling associated with X. We say that Z
is a standard centrally balanced Cy-face-magic labeling on P, ,,.

As a result of Theorem 3.16, we need only find all standard centrally balanced
Cy-face-magic projective labelings on P,, ,,. See Table 2 for an example of a standard
centrally balanced Cy-face-magic projective labeling on Pg .

Definition 3.18. Let Y = {y, ; : (i,7) € V(P,, x P,)} be a labeling on the planar
grid graph P,, x P,. Suppose there exist palindromic sequences of positive integers
(a1,as,...,am_1) and (by, by, ..., b,_1). For convenience, let ap = 0 and by = 0. We
say that Y is a palindromic sequence labeling on P, x P, provided that,

1. Y ={1,2,...,mn} and

2. forall 1 <i<mand1<j<n, we have
i—1 j—1
Yij =Y11+ (Z ak) + (Z be)-
k=0 =0

Definition 3.19. Let X = {z;, : (i,j) € V(P.»)} be a standard centrally balanced
Cy-face-magic labeling on P, ,,. The palindromic sequence labeling associated with
X is the labeling on the planar grid graph P, x P, given by Y = {y,; : (i,j) €
V(P,, x P,)} where

ymg-l—aﬂ,ng'—l—agj = ‘rmg—i—( Dioying +(—1)io2j

for all 0 < i < myg, 0 < j < ng and 01,09 € {—1,1}. We refer to the transformation
T defined by ‘.T(X) =Y as the projective to palindromic sequence transformation.

Proposition 3.20. Suppose X = {z;; : (i,j) € V(Pun)} is a standard centrally
balanced Cy-face-magic labeling on Py, . LetY = T(X) = {yi;: (i,)) € V(P xP,)}
where

ym§+a1i,n3+agj = ‘rmaur(—l).iali,naur(fl)iagj

for all 0 < i < mg, 0 < j < ng and 01,00 € {—1,1}. Then Y is a palindromic
sequence labeling on P,, X P,.

Proof. We first observe that Y = X = {1,2,...,mn}.

For each 1 < i < myg, let ¢; = mit +1—imd ~ Tt it Similarly, for each 1 <

J < my, let d; = Lt nd+1—j — Lot md —j- Since X is a standard centrally balanced

Cy-face-magic labeling on P,,,,, we have

T 11—ing = T —ind forall 1 <7< mpy, and

mfzn7

Tt md+1=5 = Lt md—j» for all 1 <@ < nyg.

Thus, ¢; is positive for all 1 < ¢ < mg and d; is positive for all 1 < 7 < np.
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Let ¢o = 0 and dy = 0. By Lemma 3.4, we have x,+ + = s(mn+1)=1S. By
the definitions of ¢; and d;, we have

xmg—i,na_ = 'rmg,ng - § Ck, for O Z myo, and
xma',ngfj = mo ng § df? for 0 < J < ng.

Since X is centrally balanced, we have

T vimd = T i+ D o for 0 <4 < my, and

Hence,

i

Lot it = Tmit, ++01(ch>, for 0 <7< mgand oy € {—1,1}, and (2)
k=0

Ly it tonj = L, +—|—02(ng) for 0 < j <npand oy € {—1,1}. (3)

Since X is a Cj-face-magic labeling on P,,,,, (2) and (3) uniquely determine the
values of X which are given by

T vorind+oaj = 19+ (—1) 0 (Z ck) + (=1)"o9 (;ZO dg), (4)

k=0

for all 0 < i < myp, 0 < j < ngand 01,09 € {—1,1}. In order to verify (4), we need
to show that the face sums of each Cj-face on P,,,, is S = 2mn + 2. We replace i
with ¢+ 1 and j with j + 1 in (4) to obtain

i+1 FES!
Tind tor(i)f +oagan) = 15 T (1) oy (Z C’“) )He (Z dg) ®)

k=0
i1 j
Tt +or(ind +ri = 45 T (=10 (Z C’“) + () e (Z dz)’ and  (6)
k=0 £=0
i FE=!
xmg+01i,na_+o‘2(jil) = iS + (_1)]i10-1 (Z Ck) + (_1)10'2 (Z d@) ) (7)
k=0 =0

where 0 < ¢ < mg if i £ 1 represents i — 1, 0 < @ < myg if 7 = 1 represents 7 + 1,
0<j<ngif jx1represents j —1 and 0 < j < ng if j £ 1 represents j + 1. Addlng
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(4), (5), (6) and (7), yields

xmg-l—(n (i41),ng +o2(j+1) + "L‘mg'-l—(n (i£1),ng +o2j

S.

+ xma'—l—ali,na'—i—ag(j:tl) + xmg—l—ali,ng-‘ragj =
For convenience, let ¢, + = 0 and d,+ = 0. By (4) and
0 0

ymarJrali,naLJrUgj - xmaur(—l)]'ali,na”r(fl)iagja

we have

7

J
yngrali,nngUgj = ymg,na' + 01 (Z Cs) + 02 (Z dt> ) (8)
0 t=0

forall 0 <i<mg,0<j<ngj and 01,09 € {—1,1}.
We need to show that Y = {y;; : (4, j) € V(P,, x P,)} is a palindromic sequence
labeling on P,, x P,. Let

A = Cppt _p for 0 < k < my, (9)

Ak = Ck—myg, for m§ <k <m—1, (10)

by = dng%, for 0 < ¢ < ng, and (11)

by = dy—ny, for ng << n—1. (12)

Then (ai,as,...,an_1) and (by, by, ..., b,—1) are palindromic sequences. Observe

that ag = Condr = 0 and by = dnar = 0. We need to show that for all 1 <i < m and

1 < j < n, we have

i—1 j—1

Yij = Y11 +Zak+zbz- (13)
k=0 (=0

Case 1. Assume 1 <7 < maL and 1 < j < naL. Let 0y = —1 and 09 = —1. From

(8), we have

i’ 5
Ymg —it i = Ymg md — (Z Cs> - (Z dt), and (14)
t=0

s=0
0 0
YLL = Yt g — (Z Cs> - (Z dt)- (15)
s=0 t=0

Recall that ¢, + =0 and d,+ = 0. Subtracting (15) from (14) yields

mg ng
Y —itnd —jr — Y11 = ( Z Cs) + ( Z dt>~

s=i'+1 t=j'+1
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Replacing ¢ with mg — i and j" with nj — j yields

mg. ng
Yiji — Y11 = Z Cs + Z dt
sfmar—z-i-l t:nar—]—l—l
i—1 j—1

Hence, by (9) and (11), (13) holds for 1 <i < md and 1 < j < ng.

Case 2. Assume mj < i< m and nj < j < n. From (8), we have

Ym +irmi 43" = Ymg nd T (Z > (Z dt) (16)

s=1
md ot
Y11= Yt ot — (Z cs) - (Z dt). (17)
s=1 t=1
Again, recall that ¢, + =0 and d,+ = 0. Subtracting (17) from (16) yields
mg' jl
misnnier = (2o0) + () + (z i)+ ().
s=1 s=1 t=1

Replacing ¢ with ¢ —mg and j" with j — nJ yields

zmo J— ”0

yi,j—y1,1—zcs+ Z Cs+zdt+ Zdt
_Zcmtlﬂ’ Z Ch— m0+zd+ €+Zd€ mo
Eno

Hence, by (9), (10), (11) and (12), (13) holds for mg <i <m and ng < j < n
A similar argument to those in Cases 1 and 2 shows that (13) holds when either
1<i<ma’andnaL<j<n,orm5r<i<mand1<j<ng. O

Proposition 3.21. Suppose Y = {y;; : (i,j) € V(P, x P,)} is a palindromic
sequence labeling on P,, x P,. Let X = T(Y) = {x;; : (1,5) € V(Pp.n)} where

xmg+01i,n3+02j = ymar—i—( Dioring +(—1)io2j

for all0 <i<mp, 0<j<ngandoy, o9 € {—1,1}. Then X is a standard centrally
balanced C’4 -face-magic labeling on Py, .
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Proof. Let (a1, as,...,an_1) and (b1, bs,...,b,_1) be the palindromic sequences used
inY. LetaO—Oandbo—O Then, forall 1 <7< m and 1 < j < n,

i—1 j—1
Yij = Y11 +Zak+zbz- (18)
k=0 =0

Since y; 1 is the smallest label in Y, we have y; ; = 1. Also, ¥, is the largest label
in Y. Thus y,,, = mn. By equation (18),

Thus
Yt —1+Zak+2bg L(mn +1).

Let S =2(mn +1). Then y,+ .+ = iS
Let co=0and dy =0. For 1 <k <mg and 1 < £ < ng, Let
Ck = Uyt _jy = Qg and
dy = bngfe = bpin,-

We can show that

{ J
(5 oS
s=0 t=0

for all 0 <i < mg, 0<j<ng and 01,09 € {—1,1}. The proof that equation (19)
follows from equation (18) is similar to the proof that equation (13) follows from
equation (8) in Proposition 3.20.

Since X =T(Y) and y,,+ .+ = 15, we have

i J
"L‘mg—l—ali,ng'-‘ragj - iS + (_1)J01 (Z Ck> + (_1)102 (Z d€> )
/=0

k=0
for all 0 < i < mp, 0 < j < ng and 0q,09 € {—1,1}. It is straight forward to show
that X is a standard centrally balanced Cj-face-magic labeling on P, ,,. We leave
the details to the reader. O

Remark 3.22. The graphs P,,,, and P, x P, have the same vertex set. We
observe that the projective to palindromic sequence transformation T has the ef-
fect of applying the symmetry H'V7 to the set of vertices {(mg & i,ng + j)} in
V(Pmn) = V(P x B).

By Proposition 3.20, when we apply this transformation to a standard centrally

balanced Cj-face-magic labeling X on P,,,, the result is a palindromic sequence
labeling Y = T(X) on B, X P,.
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By Proposition 3.21, when we apply this transformation to a palindromic se-
quence labeling Y on P,, x P,, the result is a standard centrally balanced Cj-face-
magic labeling X = T(Y) on Py, .

Since T is an involution, 7 is a one-to-one correspondence between standard cen-
trally balanced Cy-face-magic projective labelings on P, ,, and palindromic sequence
labelings on P, x P,.

Definition 3.23. The horizontal lexicographic labeling HLL(m,n) = {x;; : (i,j) €
V(P,, x P,)} on P,, x P, is defined by

for all (i,7) € V(P x P,).

Similarly, the vertical lezicographic labeling VLL(m,n) = {z;; : (i,7) € V(P X
P,)} on P,, x P, is defined by

Tij =] —i—n(z’ — 1)
for all (4,j) € V(P x P,).
Notation 3.24. Let (aq,as,...,a,) be a sequence of positive integers and let r be
a positive integer. The concatenation of r copies of (a1, as,...,a,) is denoted by
(a1,a9,...,0,)" = (1,09, ..., Qn, Q1,02 ..., Qpy ..., G1,02; ... Q)
where there are 1 copies of (aq,as, ..., a,) in this sequence. For example,
(1,5,8)> = (1,5,8,1,5,8,1,5,8).

Remark 3.25. The palindromic sequences related to the horizontal lexicographic
labeling HLL(m, n) on P,, x P, are
(al, ag, . .. ,am,l) = (1)m—1’ and
(bl, bg, ey bn—l) = (m)”_l.

The palindromic sequences related to the vertical lexicographic labeling VLL(m,n)
on P, x P, are

)m—l

(ar,as,...,am—1) = (n , and

(by,ba, ... byy) = (1)1

Definition 3.26. Let X = {z;; : (i,7) € V(P x P,)} be a palindromic sequence
labeling on P, x P,, and let r be a positive integer. The r-horizontal connected sum
of X, denoted by Y = HCS"(X), is the palindromic sequence labeling on P, x P,
given by

Ymitij = (mn)k + x5, forall0<k<r, 1<i<m, and 1< j<n.

Similarly, the r-vertical connected sum of X, denoted by Y = VCS"(X), is the
palindromic sequence labeling on P,, x P,,. given by

Yink+; = (mn)k +x;;, forall0<k<r, 1<i<m, and1<j < n.
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Remark 3.27. Let X = {z;; : (i,5) € V(P x P,)} be a palindromic sequence
labeling on P,, x P, that uses the palindromic sequences (aj,as,...,a,_1) and
(b1,b9,...,b,_1). Then the r-horizontal connected sum of X is a palindromic se-
quence labeling on P,,,. x P, that uses the palindromic sequences

(a},ay,....a,. )= (al,aQ,...,am,l,(A,al,ag,...,am,l)’“_l) and

(bllﬂb/27 < 7b;L 1) - (blaan .. '7bn—1)

where A=1+b; +by---+b,_1.

Similarly, the r-vertical connected sum of X is a palindromic sequence labeling
on P, x P, that uses the palindromic sequences

(a},db, ... a, 1) = (ai,ag,...,am_1) and
(), b, b0 ) = (b1, bo, ... by, (B, by, b, o b))

where B=14a;+as- -+ Q1.

We introduce the following definition in order to discuss the main results of this
paper.

Definition 3.28. Suppose there exists a positive integer k£ such that one of the two
following conditions holds.

1. There are factorizations of m = myms ... my and n = ninsy ... ng, where m; > 1
and n; > 1forall 1 <7<k

2. There are factorizations of m = mimy...mjmj_, and n = nin;...n;, where
m;>1foralll<i<k+1landn,>1foralll<i<k.

We say that (mq, ny, ma,na, ..., mg, ng) is an (m, n)-projective factorization sequence
of length 2k. Also, we say (m/,n}, my,ny,...,my,ny,my.,) is an (m,n)-projective
factorization sequence of length 2k 4 1. For convenience, we let nj_, = 1 and refer
to (mf,n},mh, ny, ... ,mj ,n.,) as an (m,n)-projective factorization sequence of
length 2k+1. In addition, we say that (my, ny, mo, no, ..., my, ng) and (mf, ny, ms, nj,
My 1, M) are (m,n)-projective factorization sequences.

Furthermore, we let 7(m,n) denote the number of distinct (m,n)-projective fac-

torization sequences.

Notation 3.29. Let k£ be a positive integer. Let my, mao, ..., mg and nqy, ng, ..., n; be
integers greater than 1 except possibly ny (for which ny > 1). Let X7 = HLL(my, ny).
For 2 < i < k, let X; = VCS™(HCS™(X;_1)). Let M = mymy---my and N =
ning - --nk. By Remarks 3.25 and 3.27, X} is a palindromic sequence labeling on
PM X PN-

Let X = {x;; : (4,5) € V(Pn x P,)} be a palindromic sequence labeling
on P, x P,. Let Grid(m/,n') = {(i,j) : 1 < i < m'and1 < j < n'}. Let
Labelx (Grid(m/,n")) = {z;; : (i,7) € Grid(m/,n')}.
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Definition 3.30. Let m > 3 and n > 3 be odd integers.

1. Let F' = (my,n; : 1 < i < k) be an (m,n)-projective factorization sequence.
Let Xy = HLL(mq,ny). For 2 < i < k, let ¥; = HCS™(X,_1) and X; =
VCS"(Y;). The horizontal palindromic sequence labeling associated with F' is
given by HPSL(F') = Xj.

2. Let F' = (n;,m} : 1 < i < k) be an (n, m)-projective factorization sequence.
Let X! = VLL(m/,n}). For 2 < i < k, let Y/ = VCS"(X/_,) and X! =
HCS™i(Y/). The vertical palindromic sequence labeling associated with F' is
given by VPSL(F’) = Xj.

Lemma 3.31. Let X = {z;; : (1,7) € V(P X P,)} be a palindromic sequence
labeling on Py, x P,. Let F' = (m;,n; : 1 <i < k) be an (m, n)-projective factorization
sequence and let W = HPSL(F'). Suppose x;; = w;; for all (i,7) € Grid(m/,n’).
Let z be smallest positive integer such that z € Labelx (Grid(m/,n’)) and z +1 ¢
Labelx (Grid(m/,n')). Then either x,y411 =241 or &y 11 = 2 + 1.

Proof. The labels 1,2, ..., z appear in Labelx (Grid(m’, n")). We observe that @, ;1.1
<mjforali>m'+1,ori=m'+1and j > 1. Also, x1 741 < x;; forall j > n'+1,
or j =n'+1 and ¢ > 1. Hence, among all vertices in V(P,, x P,)\ Grid(m/, n’), the
vertex with the smallest label from X is either (m’ 4 1,1) or (1,n' 4+ 1). Since z 4 1
does not appear in Label x (Grid(m/, n')), either ., 411 = z2+10or 21 41 = 2+1. O

Theorem 3.32. Let m > 3 and n > 3 be odd integers. Let X = {xz;; : (i,5) €
V(P x P,)} be a palindromic sequence labeling on P,, x P,. Then X is constructed
in one of the following two ways.

1. There exists an (m,n)-projective factorization sequence
F = (my,n1,ma,no, ..., my,ng) such that X = HPSL(F).

2. There exists an (n, m)-projective factorization sequence
F' = (n},m},nb,ml, ... .,n},,m,) such that X = VPSL(F").
(See Definition 3.30.)

Furthermore, distinct (m,n)-projective factorization sequences Fy and Fy give
rise to distinct palindromic sequence labelings HPSL(Fy) and HPSL(Fy) on P, x P,.
Similarly, distinct (n, m)-projective factorization sequences F| and Fj give rise to
distinct palindromic sequence labelings VPSL(F]) and VPSL(F3) on P,, X P,.

Proof. By Remarks 3.25 and 3.27, the constructions of HPSL(F') and VPSL(F") are
palindromic sequence labelings on P, X P,.

We need to show that X must necessarily be either HPSL(F') or VPSL(F”). Let
(a1,as,...,am_1) and (by,bs, ..., b,_1) be the palindromic sequences used in X. Then

i—1 7j—1
xi,j:xl,l—i—Zai—f—ZbE, foralll1<i<mand1<j<n,
k=0 =0
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where ay = 0 and by = 0.

In the proof we will choose the assumption that leads to the conclusion that
X = HPSL(F) in part (1) of Theorem 3.32. The proof of part (2) of Theorem
3.32 is similar to the proof of part (1) of Theorem 3.32. By Definition 3.30, for
the (m,n)-projective factorization sequence F' = (my,n; : 1 < k < k'), we have
X; = HLL(my,nq) and for 2 < k < K/, Y, = HCS™(X)_1) and X} = VCS™*(Y%).
Then HPSL(F) = Xj.

Given a palindromic sequence S of positive integers, we let v(S) denote the
number of terms in S and ¢(S) denote the sum of the terms in S. Define

A =1,

By =my,
HPS(1) = (A)™ ' = (1), and
VPS(1) = (By)™ " = (my)™ ",

Then
v(HPS(1)) =my — 1, (20)
v(VPS(1)) =ny — 1, (21)
o(HPS(1)) =m; — 1, and
o(VPS(1)) = (ny — 1)my

For all k£ > 2, define

Ap = o(VPS(k — 1)) + 1,

HPS(k) = (HPS(k — 1), (Ay, HPS(k — 1))™ 1), (22)
By = o(HPS(k)) + 1, and
VPS(k) = (VPS(k — 1), (Bg, VPS(k — 1)) ). (23)
Then

v(HPS(k)) = my,(v(HPS(k — 1)) + 1) — 1, (24)
v(VPS(k)) = ni (v(VPS(k — 1)) + 1) — (25)
o(HPS(k)) = myo(HPS(k — 1)) + (my, — 1)Ak, and
o(VPS(k)) = ngo(VPS(k — 1)) + (ng — 1) By.

We observe that HPS(k) and VPS(k — 1) are the palindromic sequences used in
Y, for all 1 < k& < &’ and HPS(k) and VPS(k) are the palindromic sequences used
in X, for all 1 < k < k. Further, it should be pointed out that the integers m; and
ng, for all 1 < k <k, are arbitrary positive integers with no assumption that m;, is
a factor of m or ny is a factor of n. We will demonstrate that m, is a factor of m
and ny, is a factor of n, for all 1 < k < &/, at the end of the proof.
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Let M, = v(HPS(X%)) and N, = v(VPS(Xy)). By (20), (21), (24) and (25), we

have

M" = mymy---my, and (26)

NF =ning -+ ng. (27)

Then Y} is a palindromic sequence labeling on PM,j X Pthl and X} is a palindromic
sequence labeling on Py X Py

Let W = HPSL(F). We let (c1,c¢o,...,cn,,) and (dy,ds, ..., dy,,) be the palin-

dromic sequences used in W. Then
i—1 7j—1
w; ;= Wi, +Zci—|—2dg, forall 1 <i< M;C and 1 < j < N;C,
k=0 =0

where ¢y = 0 and dy = 0.

We assume that z; ; = w; ; for all (4,j) € Grid(m’,n’). We want to show under
various assumptions that either

z;j =w;; forall (i,j) € Grid(m' + 1,n'), or
Tij = Wi for all (’l,j) S Grid(m', n' + 1)

Let z be smallest positive integer such that z € Labelx(Grid(m/,n')) and z + 1 ¢
Label x (Grid(m/,n’)). By Lemma 3.31, either z,y 111 =2+ 1 or 2y 11 = 2+ L.

Since xy is the smallest label in X, we have x,; = 1. Thus 1€ Labelx (Grid(1, 1)),
but 2 ¢ Labely(Grid(1,1)) By Lemma 3.31, either x5 = 2 or z5; = 2. We will
assume that x5 ; = 2. We will see that the choice z5; = 2 leads to the conclusion in
part (1) of Theorem 3.32.

The choice 212 = 2 leads to the conclusion in part (2) of Theorem 3.32. Since
the proof of part (2) of Theorem 3.32 is similar to the proof of part (1) of Theorem
3.32, we leave the details of the proof of part (2) of Theorem 3.32 to the reader.

Since x5; = 2, we have Labelx(Grid(2,1)) = {1,2}. By Lemma 3.31, cither
Tip = 3 or 237 = 3. We may continue to argue in this fashion. Let m; be
the largest positive integer such that z,,, 1 = mq, but z,,, 111 # m; + 1. Thus
Labelx(Grid(m4, 1)) = {1,2,...,m1}. By Lemma 3.31, either x15 = my + 1 or
i1 =My + 1. Since @y, 4110 #mq + 1, v =my + 1.

We observe that a; = 1 for all 1 <¢ < my and a,,, > 1. Thus x;2 = my +1 for all
1 <@ <my and Ty, 412 # 2my + 1. Hence, Labelx (Grid(m4,2)) = {1,2,...,2m,}
and Z,,, 112 # 2my + 1. By Lemma 3.31, we have z3; = 2m; + 1. We continue
to argue in this fashion. We let n; be the largest integer such that z,,, ,, = miny,
but 1,41 # min; + 1. Thus the labels from X coincide with X; = HLL(my,nq)
on Grid(my, ny), but the labels from X do not coincide with HLL(my,n; + 1) on
Grid(my,ny + 1). Thus z = myn; = M, N;" is the largest label such that z €
Labelx (Grid(my,n1)), but z+1 ¢ Labelx (Grid(my, ny)). Also, x1,,+1 # M;" N +1.
By Lemma 3.31, @411 = M{PN;” + 1. Hence, a,,, = Ay = o(VPS(1)) +1 =
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(ny — 1)my + 1. Therefore, the labels from X coincide with the labels from X; =
HLL(my,n1) on the vertices in Grid(M;", Ni"), 2 = M Ni is the smallest positive
integer such that z € Labely(Grid(M;", N;7)) and z + 1 ¢ Labelx(Grid(M;", N;"))
and Tapr1n = 2 + 1.

In order to complete the proof by Mathematical Induction, we assume that for
some positive integer k that the labels from X coincide with the labels from Xj
on the vertices in Grid(M," |, N;' |), 2 = M;” | N;" | is the smallest positive integer
such that z € Labelx (Grid(M," |, N, |)) and z+1 ¢ Labelx(Grid(M," ;, N} |)) and
Taph p11 = 2+ 1.

For convenience, let n’ = N," . We first establish the following claim. Suppose

there exists a positive integer s such that, for some integer m’ with sM," | < m/ <
(s +1)M,! |, the labels from X coincide with the labels from HCS*™'(X}_;) on the
vertices in Grid(m’,n’). Le., we have x; ; = w; ; for all (7, j) € Grid(m/,n’). We want
to show that the labels from X must coincide with the labels from HCS***(X},_;)
on the vertices in Grid(m’ 4+ 1,n). Le., we want to show z; ; = w;; for all (¢, ) €
Grid(m’ + 1,n'). Then a,y = A; for some 1 <t < k. Let z be the smallest positive
integer such that z € Labelx(Grid(m’,n’)) and z + 1 ¢ Labelx(Grid(m',n)). Then
xy o = z for some (7, j") € Grid(m/,n’). By Lemma 3.31, either z,y111 = 2+ 1
or 1,41 = 2+ 1. We want to show that z,,,1; = 2 + 1. For the purposes of
contradiction, assume 1,41 = 2z + 1. Since the labels from X coincide with the
labels from HCS®(X;_1) on Grid(m/,n’), and HCS*(X}._1) = {1,2,...,sM;" [N |},
we have 7/ > sM,;tl.
Case 1. Assume ¢y = A; = 1. We want to show 7/ = m’ and a,y, = 1 = A; = ¢,.
For the purposes of contradiction, we assume i' < m/. Since X and W coincide
on Grid(m/,n’), we have ay = ¢y = 1. Then 2+ 1 = zyj + ay = zpy1j €
Label x (Grid(m/, n’)) which contradicts z+1 ¢ Labelx (Grid(m’, n")). Hence, i = n/,
Cpy = A1 =1and 2,y jy = 2.

We observe that x,,; € Labelx(Grid(m/,n’)), but @, 1 + 1 = w1 + ¢ =
Wyy11 ¢ Labelx(Grid(m/,n’)). Since z is the smallest positive integer with the
property that z € Labelx(Grid(m/,n")) and z 4+ 1 ¢ Labelyx(Grid(m/, n’)), we have
T/l = 2.

We next observe that z,,2 = 2,1 + by = z +my. For the purposes of contra-
diction, we assume 11 = 2 + 1. Thus @, w41 = T4 + o(HPS(1)) = 2 4+ my.
This contradicts the condition that each of the labels from {1,2,...,mn} is used
exactly once in X. Hence, z + 1 = Zpyy11 = Ty + Ay = 2 + apy. Therefore,
Qpy =1 = A1 = ¢y. Thus Tpyq1; = Tpyj + Ay = Wiy j + Cpy = Wyy 41, for all
1 <j <n'. Hence, z;; = w;; for all (i,7) € Grid(m' + 1, 7).

Case 2. Assume ¢y = A; for some integer 2 <t < k — 1. We want to show ¢ = m/
and a,, = o(VPS(t — 1))+ 1 = A, = ¢v. Let pr = ¢/M;", and p, = N;" | /N,
We show that the labels from X on Grid(m’,n’) is a p; X py array of copies of X;_;
such that the labels in any two copies of X;_; differ by some constant. From (22)
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and (23), we have
HPS(k — 1) = ((HPS(t — 1), az+
VPS(k — 1) = ((VPS(t = 1),b;n+ |

i < p1),HPS(t — 1)) and

1<

: 1< j <ps), VPS(t — 1)),

where Uipgh | = A, such that s; > ¢ for all 1 <7 < p; and bJ'N;il = By, such that
t; > tforall 1 <j < py. Since HPS(t — 1) = (a1, aq9,...,an, ,) and VPS(t — 1) =
(b1, ba, ..., bN, ), we have

ig—1 ja—1

:L‘Z'5Mt+—1+i4vj5Nz+—1+J'4 - :L‘Z'5Mz+—1+1vj5Nt+—1+1 + Z R + Z bj
=0 7=0

for all 0 <i5 <p1, 0 < Js < po, 1 <y < Mt and 1 < jy < N

For the purposes of contradiction, we assume i" < m’. Since X and W coincide
on Grid(m/,n’), we have ay = ¢y = A;. Also, xy j = z is the label on the rightmost
column of a copy of X;_; lying within Grid(m/, n’). Let (ig, jo) be the lower leftmost
vertex and (i1,71) be the upper rightmost vertex in this copy of X; ;. Then i; =
i0+Mt_1 = 20+V(HPS(t—1)) and jl = jO+Nt—1 = ZQ+V(VPS(t—1)) AlSO, Ty 1 =
Ty o +o(HPS(t—1)) +0(VPS(t—1)) and z;, ;, = @, j, +o(VPS(t—1)). Since {z;; :
iop <1 < ip and jo <@ < i} contains the labels {x; jo, Tiojo + 1, Tigjo + 25 - - - » Tiy s I
we have (i, j') = (i1,71). Thus z;, j, = z and z;, j, = @, ;, —0(VPS(t—1)). We have
Tiy+1.jo = Tiyjo T At = (x4, j, —o(VPS(t —1))) + (¢(VPS(t—1))) +1) = 2+ 1. Thus
2+1 = x;, 41, € Labely(Grid(m'n’)) which contradicts z+1 ¢ Labelx (Grid(m'n’)).
Hence, i' =m/, ¢y = A, = o(VPS(t — 1)) + 1 and x,,, j = 2.

We have p; = m'/M,", and p, = N,' |/N;",. We observed that the labels from
X on Grid(m/,n’) is a p; X py array of copies of X; ; such that the labels in any
two copies of X, ; differ by some constant. Thus the labels from X on the vertices
of column m' from Grid(m',n') are a stack of copies of the rightmost column of
X;_1 that lie one atop another such that the labels in any two copies differ by some
constant. Let j, = N,y + 1. We observe that z,, j, = 1 + o(VPS(t — 1)) and
Win/411 = Wips 1 + Coy = Ty + Ay = Ty j, + 1. Thus 2,y 5, € Labelx (Grid(m/, n’))
and @,y j, +1 = wpy11 ¢ Labelx(Grid(m/,n)). Let io = m' — M,y = m/ —
v(HPS(t — 1)). Then {z;; : i < i < m' and 1 < ¢ < jo} contains the labels
{Ziy1, Tig1 + 1, Tip1+2,..., T 4, . Since z is the smallest positive integer such that
z € Labelx(Grid(m/,n')) and z + 1 ¢ Labelx(Grid(m/,n)), we have j/ = j, and
Ty j, = 2. Thus bj, = B,. Hence, 2y j,41 = Ty j, + By = 2+ o(HPS(t)) + 1. For
the purposes of contradiction, we assume zq,/41 = z + 1. Let i3 = M, + 1. Since
i3 = M;" < M" | <m’, we have z;, v11 = 2141 + o(HPS(t)) = 2 + 1 + o(HPS(?)).
Thus z;, 11 = 2 + o(HPS(t)) + 1 duplicates the label 2,y j,+1 = 2+ o(HPS(t)) + 1.
This contradicts the condition that each of the labels from {1,2,...,mn} is used
exactly once in X. Thus z+ 1 = 2411 = Ty 1 + @y = 2 — 0 (VPS(t — 1)) + apy.
Therefore, a,y = o(VPS(t—1))+1= A = ¢py. Thus @115 = Ty j + Ay = Wiy j +
Cry = Wy, for all 1 < j < n'. Hence, ; ; = w; ; for all (i,j) € Grid(m' + 1,n/).

Therefore, the only time that we can choose z1,/41 = z + 1 is when the labels
from X on column m’ of Grid(m',n’) is the rightmost column of the labels from
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HCS?*(X%_1) for some positive integer s. We let my be the largest positive integer
such that the labels of X match the labels of HCS™* (Xj_;) on Grid(mM," |, N ),
but the labels of X do not match the labels of HCS™ (X, ;) on Grid((my +
)M |, N,' |). By assumption, there are at least two copies of X;_; in this horizontal
connected sum of X;_;. Thus, we have m; > 1.

If we have X = HCS™* (X}_1), then X =Y. We set &/ = k and ny = 1. Then
Xy = VCS' (V) = Y. Hence, X = Xj.

Otherwise, X is a labeling on a larger set of vertices than the labeling Y, =
HCS™ (Xj—1) on Grid(M,", N," |). Thus the labels from X coincide with the labels
from Y} on the vertices in Grid(M,', N7 ;). Since Y, = HCS"™(X}_,) is a palin-
dromic sequence labeling on Py x Py+ 2 = M N, | is the smallest positive
integer such that z € Labely (Grid(M,", N,' |)) but 2 +1 ¢ LabelxGrid(M,;", N, ,)).
Furthermore, TNy =2+ 1.

In order to further complete the proof by Mathematical Induction, we assume
that for some positive integer k that the labels from X coincide with the labels
from Y} on Grid(Mlj, Nl;tl), z = ]\LJJVIi1 is the smallest positive integer such that
z € Labely (Grid(M,[, N;_,)) and z + 1 ¢ Labelx (Grid(M,", N;")) and @ y+ 4, =
z 4 1.

For convenience, let m’ = M;". We establish the following claim. Suppose there
exists a positive integer s such that, for some integer n' with sN;” |, < n’ < (s +
1)N," |, the labels from X coincide with the labels from VCS**!(Y}) on Grid(m/, n’).
Le., we have z; ; = w; ; for all (i, j) € Grid(m/,n’). We want to show that the labels
from X must coincide with the labels from VCS**!(Y;) on Grid(m/,n’ +1). Le., we
want to show x;; = w;; for all (i,7) € Grid(m/,n’ + 1). Then b,y = B, for some
1 <t < k. Let z be the smallest positive integer such that z € Labelx(Grid(m/, n'))
and z + 1 ¢ Labelx (Grid(m/,n’)). Then x; ;, = z for some (¢',5") € Grid(m/,n’).
By Lemma 3.31, either ,y1117 = 2+ 1 or 1,741 = 2+ 1. We want to show
that z;,,41 = z+ 1. For the purposes of contradiction, assume z,,,4+11 = z + 1.
Since the labels from X coincide with the labels from VCS*(Yy) on Grid(m/, n’) and
VCS* (Vi) = {1,2,...,sM,"N," |}, we have j' > sN," .

Case 3. Assume djy = By = my;. We want to show j' = n’ and b, = m; =
B; = d,. For the purposes of contradiction, we assume 7' < n’. Since X and W
coincide on Grid(m/,n’), we have bjy = d; = my. Thus the labels of X on the

vertices from row j' of Grid(m/,n) correspond to copies of a non-topmost row of
X; = HLL(my,n,) laid side by side such that the labels in any two copies differ
by some constant. Furthermore, ay # A; = 1; otherwise, z +1 = xy j» + ay =
xy41,; € Labelx (Grid(m/, n’)) which contradicts z+1 ¢ Labelx (Grid(m', n')). Thus
ayp = A, for some r > 1land ay_; = Ay =1for 1 <i<my —1. So zy_pyy 410 =
zZ—mq+ 1 and Til—my+1,5'+1 = Ti' —my 41,5/ -+ bj/ =z+1. Thus z +1= Tl —my+1,5'+1 €
Label x (Grid(m/, n’)) which contradicts z+1 ¢ Labelx (Grid(m/, n’)). Hence, j' =/,
dp = By = my and = 2.

We observe that 41,y = 1,y +¢ for all 1 < ¢ < my — 1. Thus z,, » €



S.J. CURRAN / AUSTRALAS. J. COMBIN. 83 (3) (2022), 361-396 389

Labelx (Grid(m/, n')), but
Ty + 1 =210 +my = wyi + dp = w111 ¢ Labelx (Grid(m/, n')).

Also, {z; 1 < i < my}is the set {1, 210 + L, 210 + 2,. .., Ty v, b Since 2z
is the smallest positive integer with the property that z € Labelx(Grid(m/,n’)) and
z 4+ 1 ¢ Labelx (Grid(m/,n’)), we have x,,, ,» = z.

We observe that @, 410 = Ty + Ay = 2+ Ay = 24+ 0(VPS(1)) + 1. For the
purposes of contradiction, we assume 111 = 2z + 1. Since n; = v(VPS(1)) + 1,
Ty +1my = Tr+11 +0(VPS(1)) = 2+ 1+ 0(VPS(1)). This contradicts the condition
that each of the labels from {1, 2, ..., mn} is used exactly once in X. Hence, 1,741 =
z 4 1. Since 2 = Xy, = T10 + (M — 1), we have 2+ 1 = 2141 = Ty + by =
(z—mq+1)+b,. Therefore, b,y = my; = By = d,y. Thus z; 41 = T + by = w; 0 +
dp = w; 4 for all 1 <@ <m'. Hence, x;; = w; ; for all (4, 5) € Grid(m/,n' + 1).
Case 4. Assume d;j = B, for some integer 2 < ¢ < k — 1. We want to show j' = n/
and b,y = o(HPS(t)) +1 = B, = d,y. Let p1 = M;"/M;" and p, = j'/N;*,. An
argument similar to that in Case 2 shows that the labels from X on Grid(m/,n’) is
a p1 X py array of copies of Y; such that the labels in any two copies of Y; differ by
some constant.

For the purposes of contradiction, we assume j' < n’. Since the labels of X and
W are the same on Grid(m’,n), by = dj = B;. Then x; j = z is the label on
the topmost row of a copy of Y; that lies in Grid(m’,n’). Let (ig,jo) be the lower
leftmost vertex and (i, j;) be the upper rightmost vertex in this copy of Y;. Then
i1 =10 + v(HPS(t)) and j; = jo + v(VPS(t — 1)). Also, x;, j, = x,j, + o (HPS(t)) +
o(VPS(t—1)) and z;, j, = @, 5, +o(HPS(t)). Since {z;; : ip < i <4y and jo < i < j1}
is the set of labels {z;, jo, Tio.jo+1, Tigjo+2s - - -, Tiy jr }» we have (7', j') = (i1, 71). Thus
T 5 = z and x;, j, = x4, ;, —o(HPS(t)). We have x;, j, 11 = 4, + B = z+1. Thus
z+1 = w;, j,+1 € Labelx(Grid(m'n’)) which contradicts 241 ¢ Label y (Grid(m/, n’)).
Hence, j' =1/, d,y = By and zy ,y = 2.

We have p; = M," /M," and py = n//N;~,. We observed that the labels from X
on Grid(m/,n’) is a p; X pe array of copies of Y; such that the labels in any two copies
of Y; differ by some constant. Thus the labels from X on the vertices of row n’ of
Grid(m/, n’) are a list of copies of the topmost row of ¥; laid side by side such that
the labels in any two copies differ by some constant.

Let iy = v(HPS(¢)) + 1. Then zy,,, = 21, + o(HPS(t)). We observe that
zi,n € Labelx(Grid(m/,n')). Also, wy i1 = Wiy + dw = T1p + Br = @iy + 1.
Hence, z, v + 1 = wy 41 ¢ Labelx (Grid(m/,n’)). Let jo =n' —v(VPS(t —1)). We
observe that {z;; : 1 < i < ip and jo < j < n'} is the set of labels {z1 j,, 21, +
1,21, +2,...,%;,,,}. Since z is the smallest positive integer with the property that
z € Labelx(Grid(m/,n’)) and z + 1 ¢ Labelx (Grid(m’,n’)), we have x;, ,» = 2.

Since iy = M,", we have a;, = A1 = o(VPS(t)) + 1. Thus @y, 110 = Tiy +
a, = z+ 0o(VPS(t)) + 1. Let js = N, +1 = v(VPS(¢)) + 1. We observe that
j3 = N7 < N}/ |. For the purposes of contradiction, we assume @,/ 11 = 2 + 1,
Hence, 41, = Tpyi11 + 0(VPS(t)) = 2+ 1+ o(VPS(¢)). This contradicts the
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condition that each of the labels from {1,2,..., mn} is used exactly once in X. Thus
241 =211 = 21,y +by = 2—0(HPS(t)) + b,y. Therefore, b,y = oc(HPS(t)) +1 =
By =d,y. Thus ;41 = T + by = Wi + dyy = w; 4 for all 1 <4 <m/. Hence,
z;; = w;; for all (i,7) € Grid(m/,n’ +1).

Therefore, the only time that we can choose z,,,411 = 2+ 1 is when the labels of
X on row n’ of Grid(m/,n') is the topmost row of the labels on VCS*(Y}) for some
positive integer s. We let n; be the largest positive integer such that the labels of
X match the labels of VCS™ (Y}) on Grid(M,", nyN," |), but the labels of X do not
match the labels of VCS™ " (Y},) on Grid(M,", (ny + 1)N, ). By assumption, there
are at least two copies of Y} in this vertical connected sum of Y,. Thus, we have
ng > 1.

If X is a labeling on a larger set of vertices than the labeling X = VCS™*(Y}),
then we need to continue the inductive step. Thus the labels from X coincide with
the labels from Xj on Grid(M;", N;7). Since X; = VCS™(Y;) is a palindromic
sequence labeling on PM; X PNJ, z = M, N, is the smallest positive integer such
that z € Labelx (Grid(M,", N)')) but z 4+ 1 ¢ Labelx(Grid(M,", N,")). Furthermore,
Tappyn = 2+ 1

Otherwise, we have X = VCS™*(Y}). We set k' = k. Then ny = ng and X = Xp.
This completes the inductive step of the proof.

From equations (26) and (27), we have

m:Mlj = mymg - -my and

n =N =ning - ny.

Thus my, is a factor of m and ny, is a factor of n for all 1 < k < k'. Also, each of
the factors my and n; are greater than 1, for all 1 < k& < k', except possibly ng
(for which ng > 1). We let F' denote the (m,n)-projective factorization sequence
F = (mg,ng: 1< k<FE). Then X = HPSL(F).

Let F; = (my1, M1, Mio, Mgy ..., Mg, Nk, ), for i = 1 and 2, be distinct (m,n)-
projective factorization sequences. We need to show that HPSL(F}) and HPSL(F3)
are distinct palindromic sequence labelings on P, x P,. Let (a;; : 1 < j < m) and
(bij : 1 < j < n) be the palindromic sequences used in HPSL(F;) for ¢ = 1 and
2. If either the sequences (a;; : 1 < j < m), for ¢ = 1 and 2, are different, or the
sequences (b;; : 1 < j < n), for i = 1 and 2, are different, then the palindromic
sequence labelings HPSL(F}) and HPSL(F,) are distinct. If F} and F; have different
lengths, then either the number of distinct values in the sequences (a;; : 1 < j < m),
for 1+ = 1 and 2, are different, or the number of distinct values in the sequences
(bij:1<j<n), fori=1and 2, are different.

Suppose F; and Fy have the same length &' = ky = ky. Let k be the smallest
positive integer such that either my j # Moy or ny; # ng . Since two factorizations
of m (or n) with exactly k factors each cannot have exactly k& — 1 factors that are
the same, we have £k < k' — 1. In case nyp = nop = 1, we have k < k' — 2. Let
HPS(7, j) and VPS(i,j) be the palindromic sequences used in X; ; for i = 1 and 2.

If my k. # may, then the vertical palindromic sequence for X; , = VCS"*(HCS™*



S.J. CURRAN / AUSTRALAS. J. COMBIN. 83 (3) (2022), 361-396 391

(Xig-1)) is
VPS(i, k) = (VPS(i, k — 1), (Bi g, VPS(i, k — 1))+ 1),
where
Biy = miglo(HPS(i, k — 1)) + o (VPS(i, k — 1)) + 1] — o(VPS(i, k — 1)).

Since HPS(1,k—1) = HPS(2,k—1), VPS(1,k—1) = VPS(2,k — 1) and my j, # may,
we have By, # Bay.

If nyx # nog, then the horizontal palindromic sequence for Y ;43 = HCS™#+1
(VCS™*(Y; 1)) is

HPS(i, k + 1) = (HPS(i, k), (A; 1, HPS(, k)™ 71),
where
Aiger = niklo(VPS(i, k — 1)) + o(HPS(i, k)) + 1] — o (HPS(4, k).

Since VPS(1,k—1) = VPS(2,k—1), HPS(1, k) = HPS(2, k) and ny  # nax, we have
Ay g1 # Ao gyr. Inall three cases, HPSL(F) ) and HPSL(F}) are distinct palindromic
sequence labelings on P, x P,.

A similar argument shows that if ] and F} are distinct (n, m)-projective factor-
ization sequences, then VPSL(F7) and VPSL(F}) are distinct palindromic sequence
labelings on P, x P,. O

Example 3.33. Table 1 illustrates the palindromic sequence labeling HPSI.(3, 3, 3, 3)
on Py x Py that uses the palindromic sequences HPS(2) = (1,1,7,1,1,7,1,1) and
VPS(2) = (3,3,21,3,3,21,3,3). This labeling corresponds to the (9,9)-projective
factorization sequence (3,3, 3, 3).

Theorem 3.34. Let m > 3 and n > 3 be odd integers. Let X = {x;; : (i,j) €
V(Pimn)} be a standard centrally balance Cy-face-magic labeling on Py, . Then X is
constructed in one of the following two ways.

1. There exists an (m,n)-projective factorization sequence
F = (my,nq,mg,ng, ..., my,ng) such that X = T(HPSL(F)).

2. There exists an (n, m)-projective factorization sequence
F' = (n},m},nh,mb, ..., 0, my,) such that X = T(VPSL(F")).

Furthermore, distinct (m, n)-projective factorization sequences Fy and Fy give rise
to distinct palindromic sequence labelings T(HPSL(F})) and T(HPSL(Fy)) on P,
Similarly, distinct (n, m)-projective factorization sequences F| and F} give rise to
distinct palindromic sequence labelings T(VPSL(FY)) and T(VPSL(F})) on P, .

Proof. By Proposition 3.20, T7(X) is a palindromic sequence labeling on P,, x P,.
By Theorem 3.32, T(X) is constructed in one of the following two ways.
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6162|6370 |71 ]72]79 80|81
28 159 | 60 | 67 | 68|69 |76 |77 |78
25|56 |57 64|65 |66 |73 |74 75
3435|3643 |44 |45 |52 |53 |54
311323340 |41 4249|5051
28 129130 |37 |38|39]|46 |47 |48
819 |16 |17 |18 |25 |26 | 27
13|14 | 15|22 | 23|24
213 (10]11}12]19]20 |21

Table 1: The palindromic sequence labeling HPSL(3, 3,3,3) on Py x Py.
For convenience, we display Py x Py as a 9 x 9 checkerboard.

1. There exists an (m, n)-projective factorization sequence
F = (my,n1,ma,no, ..., my,ng) such that T(X) = HPSL(F).

2. There exists an (n, m)-projective factorization sequence
F' = (nf},m),nb,ml, ... ,n},,m,) such that T(X) = VPSL(F’).

Since T is an involution, we have either X = T(HPSL(F)) or X = T(VPSL(F")).

By Theorem 3.32, given distinct (m, n)-projective factorization sequences F; and
F5, the palindromic sequence labelings HPSL(F}) and HPSL(F3) on P, x P, are
distinct. Thus T(HPSL(F7)) and T(HPSL(F3)) are distinct standard centrally bal-
anced Cj-face-magic projective labelings on P,, ,. Similarly, if F| and Fj are distinct
(n,m)-projective factorization sequences, then T(VPSL(FY])) and T(VPSL(F})) are
distinct standard centrally balanced Cy-face-magic projective labelings on P,,,,. O

Theorem 3.35. Let m > 3 be an odd integer. Let X = {z;; : (1,7) € V(Prm)}
be a standard centrally balance Cy-face-magic labeling on P, ,,. There exists an
(m, m)-projective factorization sequence F' = (my,ni, ma, N, ..., My, M) such that
X = T(HPSL(F)).

Proof. By Theorem 3.34, X is constructed in one of the following two ways.

1. There exists an (m,m)-projective factorization sequence F = (mq,ni, ma,
Na, ..., My, Ny ) such that X = T(HPSL(F)).

2. There exists an (m,m)-projective factorization sequence F' = (n,m/,ni,
mp, ..., np,my,) such that X = T(VPSL(F")).

If X is constructed in the first of these two ways, we are done. Otherwise, there
exists an (m, m)-projective factorization sequence F' = (n}, m), nh,mb, ... .nj,,m},)
such that X = T(VPSL(F")). We apply the reflection D, about the diagonal line
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with positive slope passing through the center of P,,,, to X to obtain the labeling
Y. Then Y = T(HPSL(F")). 0J

Example 3.36. Table 2 illustrates the standard centrally balanced Cj-face-magic
projective labeling T(HPSL(3,3,3,3)) on Pgg with Cy-face-magic value S = 164.
This labeling corresponds to the (9, 9)-projective factorization sequence (3,3, 3, 3).

61 2 (6310|7112 79|20 |81
78123 |76 | 1568|1360 | 5 |58
55 | 8 |57 |16 |65 |18 | 73|26 |75
04 | 47 152139 |44 3736|2934
3113213340 |41 42|49 |50 |51
48 | 53 |46 | 45 | 38 |43 | 30 | 35 | 28
71569 | 641766 25| 74|27
24 1771221691467 6 |59 4
11623 701172198021

Table 2: The standard centrally balanced Cjy-face magic labeling
T(HPSL(3,3,3,3)) on Pgo. For convenience, we display Pgg as a 9 x 9
projective checkerboard.

Notation 3.37. Let m > 3 be an odd integer. We define the function g given by

m (( ))> ifm=1 (mod4),
o= {(T)'( +)!, ifm=3 (mod 4).

c,;;»-l>

The following theorem gives us the minimum number of distinct Cj-face-magic
projective labelings on P, , having C,-face-magic value 2mn + 1 or 2mn + 3 for
distinct odd integers m and n.

Theorem 3.38. [9] Let m > 3 and n > 3 be distinct odd integers. Then the number
of distinct Cy-face-magic projective labelings on P, ,, having Cy-face-magic value
2mn + 1 or 2mn + 3 (up to symmetries on the projective plane) is at least

(7(m,n) + 7(n,m))2™/> 273 3(m) B(n).
The next theorem gives us the minimum number of distinct Cy-face-magic pro-
jective labelings on P, ,, having C-face-magic value 2m?* + 1 or 2m? + 3.

Theorem 3.39. [9] Let m > 3 be an odd integer. Then the number of distinct
Cy-face-magic projective labelings on P, m having Cy-face-magic value 2m* + 1 or
2m? + 3 (up to symmetries on the projective plane) is at least

7(m,m)2m 3 (6(m))2



S.J. CURRAN / AUSTRALAS. J. COMBIN. 83 (3) (2022), 361-396 394

We determine the number of centrally balanced Cy-face-magic projective labelings
on Py, , when m and n are distinct odd integers in the theorem below.

Theorem 3.40. Let m > 3 and n = 3 be distinct odd integers. Then the num-
ber of distinct centrally balanced Cy-face-magic projective labelings on Py, (up to
symmetries on the projective plane) is

(T(m, n) + 7(n,m)) 22278 (R (250,

Proof. We first count the number of centrally balanced C)-face-magic projective la-
belings on P,,,. For each standard centrally balanced Cj-face-magic labeling X
on P, ,, there are 2Mm,!2"n,! elementary projective labeling operations that give
rise to 2M0my!2"ng! centrally balanced C-face-magic projective labelings on P, ,
associated with X. Of these elementary projective labeling operations, 4 of them
result from the symmetries Ry, Rig9, H and V. Thus there are i(?m()mo!?”ono!) =
2m/2tn/2=3 (L) (21 distinct centrally balanced Cy-face-magic projective labelings
on P, , associated with X (up to symmetries on the projective plane). By Theo-
rem 3.34, each (m, n)-projective factorization sequence F' and each (n,m)-projective
factorization sequence F” are associated with unique standard centrally balanced Cjy-
face-magic projective labelings X on P,,,, given by T(HPSL(F')) and T(VPSL(F")).
Thus there are (7(m, n)+7(n, m))2m/>/2=3(=Ly|(2-1)| distinct standard centrally
balanced Cj-face-magic labeling X on P,,, (up to symmetries on the projective
plane). O

We determine the number of centrally balanced Cy-face-magic projective labelings
on Py, ., in the next theorem below.

Theorem 3.41. Let m > 3 be an odd integer. Then the number of distinct cen-
trally balanced Cy-face-magic projective labelings on P, ., (up to symmetries on the
projective plane) is

7(m, m)2" 3 ((m=1)1)?,

The proof is similar to that of Theorem 3.40. We now state the minimum number
of Cy-face-magic labelings on P, ,, when m and n are distinct odd integers.

Theorem 3.42. Let m > 3 and n > 3 be distinct odd integers. Then the num-
ber of distinct Cy-face-magic projective labelings on Py, (up to symmetries on the
projective plane) is at least

(7 (m, ) + (0, m)) 27/ 47/2 3 (B (21)1 4 28(m) B(n)).

Proof. By Theorem 3.40, there are (7(m,n) + 7(n,m))2m/>n/2=3(2d)|(2-1)] dis-
tinct standard centrally balanced Cy-face-magic labeling X on P, ,, (up to symme-
tries on the projective plane). By Theorem 3.38, for each value S = 2mn + 1 and
S = 2mn+3, there are at least (7(m, n)+7(n, m))2™/2*"/2733(m)[3(n) Cy-face-magic
projective labelings on P, ,, with Cy-face-magic value S. Therefore, by Lemma 2.6,
there are at least

(7(m,n) + 7(n,m))2m/2n/2=3 (=) (2=1)) + 28(m) B(n))
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distinct Cy-face-magic projective labelings on P, ,, (up to symmetries on the projec-
tive plane). O

Theorem 3.43. Let m > 3 be an odd integer. Then the number of distinct Cy-face-
magic projective labelings on P, ., (up to symmetries on the projective plane) is at
least

7(m, m) 2" (21 + 2(8(m)) ).

Proof. We make use of Theorems 3.39 and 3.41 to verify this theorem. The proof is
similar to that of Theorem 3.42. O

These results lead us to ask the following question.

Problem 3.44. Can one characterize the Cj-face-magic labelings on the m x n
projective grid graph P, ,, when m and n are even?

Due to Lemma 2.5, the C-face-magic value of a labeling in Problem 3.44 must
be 2mn + 2. Curran and Locke [10] have characterized the Cy-face-magic projective
labelings on the 4 x 4 projective grid graph P,4. They show that there are 144
Cs-face-magic projective labelings on P44 up to symmetries on the projective plane.
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