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Abstract

We study and characterize meandric permutations avoiding one or more
patterns of length three, and find explicit formulae for the cardinality of
each of these sets. We determine the distribution of the descent statistic
for the set of meandric permutations avoiding the pattern 231. The
sets of meandric permutations avoiding any other pattern of length three
can be either trivially determined, or deduced from the 231 case via the
symmetries of the square. In the 231 case we provide a bijection with
a set of Motzkin paths that maps the statistic “number of descents of a
permutation” to the statistic “number of non-horizontal steps of a path”.
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1 Introduction

A meander is, roughly speaking, a system formed by the intersections of two curves
in the plane, with equivalence up to homeomorphism within the plane [16]. It can
be visualized as a highway which crosses a river several times [17].

Even though the first pictures of meanders can be found in Poincaré [20] in
connection with the study of certain geometric transformations, and the notion of
meander was used by Arnol’d [3] as a tool for analyzing differential-geometric objects,
the study of meanders on their own is more recent. The problem of the enumeration of
meanders has received much attention since the last decade of the twentieth century,
and good bounds on the asymptotic number of these objects have been found (see
[2], [5], [10], [11] and [17] and references therein); however, an exact enumeration
remains elusive as the precise asymptotic behaviour (see [7] and [12]). Meanders are
also studied in connection with other combinatorial, geometric, and algebraic objects
(foldings of strips of stamps [18], knots [21], non-crossing partitions [9], Temperley-
Lieb algebras [6], to cite only a few examples), and for their applications in other fields
(e.g. boundary value problems [8]). For more information see the OEIS sequence of
meandric numbers (sequence A005316 in [23]) and the survey [16].

A meander with n nodes can be naturally associated with a permutation in Sn.
This association is injective and a permutation that can be obtained in this way is
called meandric.

A permutation σ = σ1 · · ·σn ∈ Sn avoids the pattern τ ∈ Sk if there are no
indices i1, i2, . . . , ik such that the subsequence σi1σi2 · · ·σik is order isomorphic to τ .

The theory of permutation patterns goes back to the work of Knuth [15], who, in
the 1970s, introduced the definition of pattern avoidance in connection to the stack
sorting problem. The first systematic study of these objects appears in the paper by
Simion and Schmidt [22]. Nowadays, the theory is very rich and widely expanded,
with hundreds of papers published in the last decades [14].

In this paper, we enumerate the sets of meandric permutations avoiding any
subset of S3. To begin with, we deal with sets of permutations avoiding a single
pattern τ . It turns out that in the cases τ = 123 and 321 these sets contain only
permutations whose structure is trivially described. The four remaining cases are
related to each other by the symmetries of the square. Hence we focus our attention
on the set Mn(231) of meandric permutation avoiding 231. We enumerate this set
with respect to the descent statistic, obtaining both a functional equation satisfied
by the corresponding generating function, and an explicit formula for its coefficients.
This sequence appears in [23] as the enumerating sequence of Motzkin paths without
up steps in odd positions. We provide a bijection between this set of Motzkin paths
and Mn(231) which maps the statistic “non-horizontal steps” to the statistic “number
of descents”.

The paper is organized as follows. In Section 2 we recall the main definitions,
present several examples and introduce the notion of diagram of a meandric permuta-
tion, a tool which will be useful in the following. In Sections 3 and 4 we characterize

http://oeis.org/A005316
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the sets of meandric permutations avoiding the single patterns 321 and 123. In Sec-
tion 5 we tackle the enumeration of sets of meandric permutations avoiding every
other single pattern of length 3, taking into account the descent statistic. In Section 6
we turn our attention to meandric permutations avoiding two or three patterns of
length 3.

2 Main definitions

An open meander is a configuration consisting of an oriented simple curve and an
oriented line in the plane, that cross a finite number of times and intersect only
transversally. Two open meanders are equivalent if there is a homeomorphism of the
plane that maps one meander to the other. In this paper we will consider only open
meanders and call them simply meanders, for short.

We will always draw a meander so that the line is horizontal and oriented from
left to right. The curve of a meander has two loose ends. Depending on the number
of crossings, the loose ends belong to different half-planes defined by the horizontal
line when the number of crossings is odd, and to the same half-plane otherwise. In
the odd case we draw the curve so that the first loose end is below the line; in the
even case we draw the curve so that both loose ends are below the line and the first
one is on the left.

We represent the handles of the curve between two intersection points with the
line by means of semicircles. We will call this representation the canonical represen-
tation of a meander.

Example 2.1. The following figure shows a meander and its canonical representa-
tion.

1 2 3 4 5 6 7 1 2 3 4 5 6 7

The intersections between the two curves have a natural labelling by the integers
{1, 2, 3, . . . , n}, defined by their ordering along the line.

These labels also have a linear order defined by their order along the curve.
When read in this order they yield a permutation in Sn. A permutation obtained in
this way is said to be meandric (or planar). Not all permutations are meandric. To
begin with, a meandric permutation must be parity alternating, namely, even integers
appear in even positions and odd integers appear in odd positions (see [17]). Notice
that parity alternating permutations are also studied on their own (see [13], [25] and
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[26]). Moreover, if π is a meandric permutation of even length we have π(1) < π(n),
otherwise it would violate the orientation of the curve.

Given a permutation π ∈ Sn such that π(k) and k have the same parity for every
k, we associate to π a curve in R2, that will be called the diagram of π, as follows:

• set π(0) = 0 and π(n+ 1) = n+ 1, by convention;

• draw the points (i, 0) for i = 0, . . . , n+ 1;

• draw the semicircle of diameter (π(2k + 1), 0) (π(2k + 2), 0) above the x−axis
for every k = 0, . . . , bn−1

2
c (upper arc);

• draw the semicircle of diameter (π(2k), 0) (π(2k + 1), 0) below the x−axis for
every k = 0, . . . , bn

2
c, (lower arc).

We denote by diag(π) the diagram of π. For example, the diagram of π = 34521
is

0 1 2 3 4 5 6

As examples of non-meandric (even if parity alternating) permutations, consider
4321 and 3412. In fact the corresponding non-self avoiding diagrams are, respectively,

0 1 2 3 4 5

and

0 1 2 3 4 5

Lemma 2.2. The permutation π is meandric if and only if diag(π) is self-avoiding.

Proof. The meander associated with a meandric permutation π is obtained from the
diagram of π by
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• drawing a straight line passing through the centers of the semicircles and ori-
ented from left to right;

• replacing the semicircle of diameter (0, 0) (π(1), 0) by an infinite half-line stem-
ming from the point labelled π(1) and placed below the straight line;

• replacing the semicircle of diameter (π(n), 0) (n + 1, 0) by an infinite half-line
stemming from the point labelled π(n) and placed below the straight line if n
is even and above this line if n is odd.

Hence, if the diagram of π is self-avoiding, we can conclude that the corresponding
curves are self-avoiding and have the correct orientation, so they form a meander.

Conversely, consider a meandric permutation π of length n and the associated
meander. Recall that the curve of this meander consists of n − 1 semicircles and
two vertical half-lines starting at (π(1), 0) and (π(n), 0). In order to construct the
associated diagram, we simply replace the two half-lines by the semicircles γ1 and γ2
joining (0, 0)− (π(1), 0) and (n+ 1, 0)− (π(n), 0), respectively. First of all, γ1 and γ2
do not intersect each other. This is trivial when n is odd because in this case γ1 and
γ2 are an upper arc and a lower arc. In the even case, they do not intersect because
π(1) < π(n), as observed above. Moreover, γ1 and γ2 do not intersect any arc γi of
the meander or otherwise γi would have intersected on of the two half-lines.

We submit that in the literature one can find several different ways to associate
a meander with a permutation. Our description follows that of Lando and Zvonkin
(see [17]), while other authors associate to a meander the permutation obtained by
listing the indices of the intersection points, in the same order as they are met by the
curve [18]. Notice that the two permutations obtained in these two different ways
are inverse of each other. In other papers, the strings associated in this way to a
meander are considered as cycles of a permutation [16], [21].

We represent here the meandric permutations of orders 2, 3, 4 and the corre-
sponding meanders.

π = 12
1 2

π = 123
1 2 3

π = 321
1 2 3

π = 1234
1 2 3 4

π = 1432
1 2 3 4

π = 3214
1 2 3 4
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Let Mn denote the set of meandric permutations of length n and Mn(T ) the set of
meandric permutations of length n avoiding all the patterns in the set T ⊆

⋃
n≥0 Sn.

If T consists of a single pattern τ , we denote M(T ) simply by M(τ). Set

M :=
⋃
n≥0

Mn

and
M(T ) :=

⋃
n≥0

Mn(T ).

Let π ∈ Sn be a permutation of length n. Write π in one line notation as
π = π1π2 · · · πn. Then the reverse of π is the permutation πr := πnπn−1 · · · π1, the
complement of π is πc := (n+ 1− π1) (n+ 1− π2) · · · (n+ 1− πn) and the reverse-
complement of π is πrc := (πr)c = (πc)r.

The following result will be useful in the sequel.

Proposition 2.3. If π ∈Mn, then

• if n is odd, πr and πc are meandric permutations;

• if n is even, πr and πc are not meandric permutations;

• πrc is a meandric permutation for every n.

Proof. If n is odd, πr is a meandric permutation whose diagram is obtained by
flipping diag(π) along a horizontal axis, πc is a meandric permutation whose diagram
is obtained by flipping diag(π) along a vertical axis and πrc is a meandric permutation
whose diagram is obtained by rotating diag(π).

If n is even, πr and πc are not meandric permutations because they are not
parity alternating, while πrc is a meandric permutation whose diagram is obtained
by flipping diag(π) along a vertical axis.

Notice also that if a permutation π is meandric then its inverse π−1 is also mean-
dric. In fact the meander associated with π−1 can be obtained from the meander of
π by stretching the curve and, correspondingly, bending the line in a homeomorphic
way.

As an example consider the permutation π = 5412367. This permutation is
meandric with meander

1 2 63 4 75

We represent the meanders of π−1, πr, πc, πrc.
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π−1 = 3452167
1 2 63 4 75

πr = 7632145
1 2 63 4 75

πc = 3476521
1 2 63 4 75

πrc = 1256743
1 2 63 4 75

In the sequel we will make use of the notion of standardization of a permutation.
Given a word w of length n whose letters are distinct integers, the standardization
of w, indicated with std(w), is the unique permutation in Sn obtained from w by
replacing the smallest symbol in w by the symbol 1, the second smallest symbol in
w by 2, and so on. As an example std(927) = 312 ∈ S3.

3 Meandric permutations avoiding 321

There is only one meandric permutation of length n avoiding the pattern 321, for
every n.

Proposition 3.1. |Mn(321)| = 1 for every n.

Proof. Let π = π1 · · · πn be a permutation in Mn(321). Let k := π1 and h := π−1(1).
If k 6= 1 then k ≥ 3 since it is odd. The symbols that appear between k and 1 in the
one-line notation of π are greater than k, because π avoids the pattern 321. Hence
the lower arc connecting the nodes 0 and k intersects the lower arc i connecting
π(h− 1) and 1. This contradicts the fact that π is meandric.
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As a consequence π1 = 1. Iterating this argument we conclude that the only
element of Mn(321) is 1 2 · · · n.

4 Meandric permutations avoiding 123

As in the previous section, this case is almost trivial. In fact,

Proposition 4.1. |M2t(123)| = t for every t and |M2t+1(123)| = 1 for every t.

Proof. Let π be a permutation in Mn(123) and set π(1) = k, with k odd. Then
π−1(n) = k+ 1 and π(i) = k− i+ 1 for every i = 2, . . . , k, because π is 123-avoiding
and the diagram of π is self-avoiding. For the same reason, π(k + i) = n− i+ 1 for
every i = 2, . . . , n− k.

Now,

• if n = 2t these conditions are sufficient to assure that π belongs to M2t(123);

• let n = 2t+ 1. If k 6= n then π contains 1 and n as consecutive elements, which
contradicts the fact that π is parity-alternating. Hence, the only permutation
in M2t+1(123) is 2t+ 1 2t · · · 2 1.

Notice that the odd case agrees with the fact that the reverse map provides a
bijection between M2t+1(123) and M2t+1(321).

5 Meandric permutations avoiding 132, 213, 231 or 312

Now we consider the case of permutations avoiding exactly one among the patterns
132, 213, 231 or 312.

In these cases we enumerate restricted meandric permutations according to the
descent statistic, i.e., the number of descents of a permutation. Recall that a descent
of a permutation π is an index i such that πi > πi+1. We denote by desπ the number
of descents of π and by Mn,d(τ) the subset of Mn(τ) of permutations with d descents.

Lemma 5.1. i) Let π be a permutation in Mn(231). Then either

∗ π = σ n, where σ ∈Mn−1(231), or

∗ π = σ nn − 1 τ , where σ ∈ M(231) and τ is a permutation of odd length
in M(231), up to a standardization.

ii) Let π be a permutation in Mn(132). Then

∗ If n > 0 is even, then π = σ n where σ is any permutation in Mn−1(132).

∗ If n is odd, then π = σ n τ , where τ is any permutation of even length such
that τ r is in M(231) and the standardization of σ is any permutation of
even length in M(132).
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Proof. Consider first meandric permutations avoiding the pattern 132. Let π be a
permutation in Mn(132). Since π avoids 132, we can write π as σ n τ , where each
symbol in τ is smaller than each symbol in σ and, up to a standardization, τ and σ
are permutations avoiding 132.

• If n > 0 is even, then π = σ n where σ is any permutation in Mn−1(132). In
fact, if τ 6= ∅, diag(π) would not be self-avoiding, because the arcs joining π(1)
with 0 and π(n) with n+ 1 would intersect.

• If n is odd, then π = σ n τ , where τ is any permutation of even length such
that τ r is in M(231) and the standardization of σ is any permutation of even
length in M(132).

Furthermore, a permutation π in M2t(231) can be written as σ 2t τ , where the
symbols of σ are smaller than the symbols of τ , σ is any permutation of odd length
in M(231) and the standardization of τ is any permutation of even length whose
reverse is in M(132).

To conclude the proof, observe that, by Proposition 2.3, the reverse map provides
a bijection between M2k+1,d(231) and M2k+1,2k−d(132).

Theorem 5.2. We have

|M2k+1,2d(231)| = |M2k+1,2(k−d)(132)| = |M2k+2,2(k−d)(132)|

=
1

k + 1

(
k + 1

d+ 1

)(
2k + 1− d

d

)
for all k, d ≥ 0; (1)

|M2k,2d(231)| =
1

k + 1

(
k + 1

d+ 1

)(
2k − 1− d

d

)
for all k ≥ 1, d ≥ 0; (2)

|M2k+1(231)| = |M2k+1(132)| = |M2k+2(231)| =
k∑
d=0

1

d+1

(
k

d

)(
2k+1−d

d

)
(3)

for all k ≥ 0, and

|M2k(231)| =
k∑
d=0

1

d+ 1

(
k

d

)(
2k − 1− d

d

)
for all k ≥ 0. (4)

Proof. By the previous lemma, |M2k+1,d(132)| = |M2k+2,d(132)|, for all k, d ≥ 0.

Denote

A(x, y) :=
∑

π∈M2k+1(231)

x|π|ydesπ =
∑
k,d≥0

|M2k+1,d(231)|x2k+1yd,

and
B(x, y) :=

∑
π∈M2k(231)

x|π|ydesπ =
∑
k,d≥0

|M2k,d(231)|x2kyd.
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The previous lemma allows us to write the following relations between the generating
functions A and B.

A(x, y) = xB(x, y) + x2y2A(x, y)B(x, y),

B(x, y) = 1 + xA(x, y) + x2y2A(x, y)2.

Notice that from the previous equations it follows in particular that a meandric
permutation avoiding 231 has an even number of descents. Straightforward compu-
tations lead to the following functional equation.

A(x, y) = x+ (x2 + x2y2)A(x, y) + 2x3y2A(x, y)2 + x4y4A(x, y)3.

Set Ã(x, y) = (xA)(x
1
2 , y

1
2 ). Then

Ã(x, y) = x(1 + (1 + y)Ã(x, y) + 2yÃ(x, y)2 + y2Ã(x, y)3).

By the Lagrange inversion formula (see [24, Ch. 5] or [27, Sec. 5.1]) we get

[xn]Ã(x, y) =
1

n
[zn−1]R(z)n

where R(z) = 1 + (1 + y)z + 2yz2 + y2z3.

Hence

[xn]Ã(x, y) =
1

n
[zn−1]

∑
i1,i2,i3,i4

i1+i2+i3+i4=n

(
n

i1, i2, i3, i4

)
((1 + y)z)i2(2yz2)i3(y2z3)i4

=
1

n

∑
i1,i2,i3,i4

i1+i2+i3+i4=n
i2+2i3+3i4=n−1

(
n

i1, i2, i3, i4

)
(1 + y)i2(2y)i3(y)2i4

=
1

n

∑
i3,i4

(
n

1 + i3 + 2i4, n− 1− 2i3 − 3i4, i3, i4

)
(1 + y)n−1−2i3−3i4(2y)i3(y)2i4 .

Since (1 + y)n−1−2i3−3i4 =
∑

j

(
n−1−2i3−3i4

j

)
yj, we have

[xnyd]Ã =
1

n

∑
i3,i4

(
n

1 + i3 + 2i4, n− 1− 2i3 − 3i4, i3, i4

)(
n− 1− 2i3 − 3i4
d− i3 − 2i4

)
2i3 .

Now,
|M2k+1,2d(231)| = [x2k+1y2d]A = [xk+1yd]Ã (5)

=
1

k + 1

∑
i3,i4

(
k + 1

1 + i3 + 2i4, k − 2i3 − 3i4, i3, i4

)(
k − 2i3 − 3i4
d− i3 − 2i4

)
2i3 .
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We want to show that this last expression is equal to

1

k + 1

(
k + 1

d+ 1

)(
2k + 1− d

d

)
. (6)

To this aim, dividing the right hand side of Equation (5) by 1
k+1

(
k+1
d+1

)
, we get

after trivial calculations∑
i3,i4

(
d+ 1

1 + i3 + 2i4

)(
k − d

i3, i4, k − d− i3 − i4

)
2i3

=
∑
j

(
d+ 1

d− j

)∑
i4

(
k − d

j − 2i4, i4, k − d− j + i4

)
2j−2i4

=
∑
j

(
d+ 1

d− j

)(
2k − 2d

j

)
=

(
2k + 1− d

d

)
.

where in the first equality we applied the change of indices j = i3 +2i4, in the second
one we exploited the formula

∑
t

(
a
t

)(
a−t
j−2t

)
2j−2t =

(
2a
j

)
, which is an easy consequence

of Zeilberger’s algorithm (see [19]), and in the third one we applied Vandermonde’s
formula

∑r
t=0

(
a
r−t

)(
b
t

)
=
(
a+b
r

)
(see [1, p. 14]). This shows that the right-hand side of

Equation (5) is in fact equal to Expression (6).

This proves Formula (1).

Notice that the coefficients of Ã(x, 1) were found through a slightly different
application of the Lagrange Inversion formula in [4, p. 96].

Formula (2) can be obtained by a similar argument and, as a consequence, we
obtain also Formulae (3) and (4).

To conclude the enumeration of the meandric permutations avoiding a pattern of
length three according to the descent distribution, note that |Mn,d(312)|= |Mn,d(231)|
and |Mn,d(213)| = |Mn,d(132)|, since the reverse-complement map is a bijection be-
tween these pairs of sets.

The sequences {|M2k(231)|}k≥0 and {|M2k+1(231)|}k≥0 appear in [23] as sequences
A109081 and A106228, respectively. Both these sequences admit combinatorial in-
terpretations in terms of Motzkin paths. This suggests the existence of a bijection
between the set Mn(231) and the set of Motzkin paths of length n with no up steps
in odd position. In fact, these paths are enumerated by sequence A215067, which
interleaves A109081 and A106228.

Recall that a Motzkin path of length n is a lattice path starting at (0, 0), ending at
(n, 0), consisting of up steps U of the form (1, 1), down steps D of the form (1,−1),
and horizontal steps H of the form (1, 0) and lying weakly above the x-axis.

Denote by Mn,d the set of Motzkin paths of length n, with d up steps appearing
only in even position.

http://oeis.org/A109081
http://oeis.org/A106228
http://oeis.org/A215067
http://oeis.org/A109081
http://oeis.org/A106228
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Now we define recursively a bijection Ψ between the sets Mn,2d(231) and Mn,d.

Set Ψ(∅) = ∅. Let π ∈Mn(231) with n > 0. Then by Lemma 5.1 either π = σ n,
where σ ∈ Mn−1(231), or π = σ nn − 1 τ , where σ ∈ M(231) and std(τ) is a
permutation of odd length in M(231).

• In the first case, Ψ(π) = Ψ(σ)H;

• in the second case, Ψ(π) = Ψ(τ)UΨ(σ)D.

It is immediately seen that Ψ is a bijection between Mn,2d(231) and Mn,d. In
fact,

• if π = σ n, then des(π) = des(σ) and the Motzkin paths Ψ(π) and Ψ(σ) have
the same number of up steps;

• if π = σ nn− 1 τ , then des(π) = des(σ) + des(τ) + 2 and, denoting by h and k
the number of up steps in Ψ(τ) and Ψ(σ), respectively, the Motzkin path Ψ(π)
has h+ k + 1 up steps.

As an example, consider the permutation π = 3 2 1 10 9 4 5 8 7 6 ∈ M10,6(231).
Here we have σ = 321 and std(τ) = 12543. Since

Ψ(τ) =

and

Ψ(σ) =

we have

Ψ(π) =

6 Meandric permutations avoiding multiple patterns of
length three

In this section we consider multiple avoidances. Let T be any subset of S3.

First of all, we consider a trivial case.

Proposition 6.1. |Mn(T )| = 1 if 321 ∈ T and 123 /∈ T for all n ≥ 0, and
M(T ) = {1, 12} if 321 ∈ T and 123 ∈ T .

Proof. In Section 3 we had that Mn(321) = {1 2 . . . n}.

In Section 4 we proved that

Mn(123) =

{
{nn− 1 · · · 1} if n = 2t+ 1,

{k k − 1 k − 2 · · · 1nn− 1 · · · k + 1 | 1 ≤ k ≤ n} if n = 2t.
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Notice that all the permutations in Mn(123) avoid also 312 and 231, and hence

Mn(123) = Mn({123, 312}) = Mn({123, 231}) = Mn({123, 231, 312}).

Moreover, the only permutation in Mn(123) which avoids 213 (respectively, 132) is
(n) (n − 1) · · · (1) if n is odd and (1) (n) (n − 1) · · · (2) ( (n − 1) (n − 2) · · · (1) (n),
respectively) if n is even.

As a consequence we can now consider only sets T containing neither 123 nor
321.

Theorem 6.2. |Mn(231, 312)| = Fn, |M2t+1(132, 213)| = F2t+1, and |M2t(132, 213)|
= 1, where Fn is the n-th Fibonacci number (see sequence A000045 in [23]).

Proof. In the seminal paper [22], the authors give the following characterization of
permutations in Sn(231, 312).

If π ∈ Sn(231, 312), then either π = nn− 1 · · · 1, or π = τ n n− 1 · · ·n− k where
τ is any permutation in Sn−k−1(231, 312).

Notice that, on the one hand, if τ is a meandric permutation, ‘π = τ n n−1 · · ·n−k
is meandric if and only if k is even, or otherwise the arc (n, n + 1) would intersect
the arc (τn−k−1, n) in diag(π). On the other hand, if τ is not meandric, neither is π.

As a consequence, if π ∈Mn(231, 312), either πn = n, or the symbols n, n−1, n−2
appear consecutively in this order in π. Hence every permutation in Mn(231, 312)
can be obtained either by appending n at the end of a permutation in Mn−1(231, 312)
or by replacing the symbol n− 2 with the word n (n− 1) (n− 2) in a permutation of
Mn−2(231, 312), and therefore

|Mn(231, 312)| = |Mn−1(231, 312)|+ |Mn−2(231, 312)|,

namely,
|Mn(231, 312)| = Fn.

If n = 2t + 1, the reverse map provides a bijection between Mn(132, 213) and
Mn(231, 312), and hence

|M2t+1(132, 213)| = F2t+1.

Recall that a permutation π in Sn(132, 213) is either the identity or of the form
π = (n−k) (n−k+1) · · · (n)τ where τ ∈ Sn−k−1(132, 213) (see [22]). If n = 2t and τ is
non-empty, the permutation π = (n−k) (n−k+1) · · · (n)τ is never meandric because
the arc (0, n−k) intersects the arc (τn−k−1, n+1), and hence |M2t(132, 213)| = 1.

Theorem 6.3. |Mn(132, 231)| = 2b
n−1
2
c, and |Mn(213, 312)| = |Mn(132, 312)| =

|Mn(213, 231)| = 2b
n−1
2
c.

Proof. As observed in [22], if π ∈ Sn(132, 231) then π1 = n or πn = n. On the one
hand, if n = 2t, then, if π1 = n, the arc (0, n) intersects the arc (πn, n+ 1); hence, if
π ∈Mn(132, 231), then π = τ n where τ ∈Mn−1(132, 231). As a consequence,

|M2t(132, 231)| = |M2t−1(132, 231)|.

On the other hand, if n = 2t+ 1, then

http://oeis.org/A000045
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• if π1 = n, then π2 = n − 1. In fact, the permutation obtained from π by
removing n is in Sn−1(132, 231), so the symbol n− 1 is either its first element,
or its last element. But πn = n − 1 is not possible, since in this case the arc
(π2, n) would intersect the arc (n− 1, n+ 1).

• If πn = n, then πn−1 = n − 1. In fact the permutation obtained from π
by removing n is a meandric permutation of even length, and hence its first
element cannot be the greatest one.

These considerations imply that a permutation π in M2t+1(132, 231) is either of the
form π = (2t+1) (2t) τ or π = τ (2t) (2t+1), where τ is an element of M2t−1(132, 231);
therefore |M2t+1(132, 231)| = 2|M2t−1(132, 231)| which implies

|Mn(132, 231)| = 2b
n−1
2
c.

The reverse-complement map and the inversion map allow us to prove the second
statement.

Theorem 6.4.

|Mn(132, 312, 213)| =

{
n+1
2

if n is odd,

1 if n is even;

and |Mn(132, 312, 231)| =
⌊
n+ 1

2

⌋
.

Proof. A permutation π in Sn(132, 312, 213) is trivially of the form π = (k) (k +
1) · · · (n) (1) (2) · · · (k−1) and it is easy to verify that such a permutation is meandric
if and only if both n and k are odd, or n is even and k = 1. This proves the first
assertion.

Lastly, consider a permutation π ∈ M2t(132, 312, 231). As seen before, π = τ n
where τ ∈M2t−1(132, 312, 231), and hence

|M2t(132, 312, 231)| = |M2t−1(132, 312, 231)|.

Moreover, if π ∈ M2t+1(132, 312, 231), then either π = τ n where τ ∈ M2t(132, 312,
231), or π = (n) (n− 1) · · · (1). Hence

|M2t+1(132, 312, 231)| = |M2t(132, 312, 231)|+ 1.

This completes the proof.

We summarize all our results in Table 1.
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T ⊆ S3 |Mn(T )|

123, {123,312}, {123,231}, {123,231,312}

{
n/2 if n is even

1 if n is odd

123, 213 ∈ T and 132, 321 /∈ T 1

123, 132 ∈ T and 213, 321 /∈ T 1

123, 132, 213 ∈ T and 321 /∈ T

{
1 if n is odd or n = 2

0 otherwise

321 ∈ T and 123 /∈ T 1

231, 312

{∑k
i=0

1
i+1

(
k
i

)(
2k−1−i

i

)
if n = 2k∑k

i=0
1
i+1

(
k
i

)(
2k+1−i

i

)
if n = 2k + 1

132, 213

{∑k
i=0

1
i+1

(
k
i

)(
2k+1−i

i

)
if n = 2k + 2∑k

i=0
1
i+1

(
k
i

)(
2k+1−i

i

)
if n = 2k + 1

{231, 312} Fn

{132, 213}

{
Fn if n is odd

1 if n is even

{132,231}, {213,312}, {132,312}, {213,231} 2b
n−1
2
c

{132, 312, 213}, {213, 231, 312}

{
n+1
2 if n is odd

1 if n is even.

{132, 312, 231}, {213, 231, 132} bn+1
2 c

{132, 312, 231, 213}

{
1 if n is even or n = 1

2 otherwise

123, 321 ∈ T 0 if n ≥ 3

Table 1: Summary of our enumerative results.
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