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Abstract

Zero forcing is an iterative process on graphs in which a color change
rule is used to force vertices to become blue. The amount of time needed
for all vertices in the graph to become blue is the propagation time.
Throttling minimizes the sum of the number of initial blue vertices and
the propagation time. In this paper, we study throttling in the context
of directed graphs (digraphs). We characterize all simple digraphs with
throttling number at most t and examine the change in the throttling
number after flipping arcs and deleting vertices. We also introduce the
orientation throttling interval (OTI) of an undirected graph, which is the
range of throttling numbers achieved by the orientations of the graph.
While the OTI is shown to vary among different graph families, some
general bounds are obtained. Additionally, the maximum value of the
OTI of a path is conjectured to be achieved by the orientation of a path
whose arcs alternate in direction. The throttling number of this orienta-
tion is exactly determined in terms of the number of vertices.
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1 Introduction

All graphs and digraphs (directed graphs) in this paper are simple and the conven-
tional graph theoretic notation and terminology in [10] is used. A simple way to
model information in a graph is to color each vertex blue (or white) if the informa-
tion is known (or unknown) at that vertex respectively. Zero forcing, introduced in
[1], is a process that uses a color change rule to spread information by iteratively
changing the color of vertices from white to blue. For a simple, undirected graph,
the (standard) color change rule states that if u is a blue vertex and there is a unique
white neighbor w of u, then u can force w to become blue. Such a force is denoted
u → w. Given an initial coloring of the vertices, the goal of the zero forcing process
is to color the entire vertex set of a graph blue by repeatedly performing valid forces.
It is natural to attempt to optimize this process by making it as efficient as possible.
In this context, there are multiple ways to interpret efficiency, leading to many rich
areas of study.

One way to make zero forcing efficient is to start the process with as few vertices
colored blue as possible. If B ⊆ V (G) is the initial set of blue vertices in an undirected
graph G and it is possible to eventually force each vertex in V (G) blue, then B is
called a zero forcing set of G. The size of a minimum zero forcing set of G is the
zero forcing number, Z(G).

Zero forcing can also be made efficient by reducing the time taken for all vertices
to become blue. The following definitions from [6] make this concept rigorous for
undirected graphs. With B ⊆ V (G) as the initial set of blue vertices, a set of forces
F that can be performed in some order until no more valid forces are possible is
called a set of forces of B in G. A set of forces F of a subset B ⊆ V (G) can be
used to partition V (G) according to time steps starting with F (0) := B. For each
t ≥ 0, F (t+1) is defined by considering the coloring of V (G) where

⋃t
i=0F (i) is blue

and V (G)\⋃t
i=0F (i) white. Specifically, given this coloring, F (t+1) is the set of white

vertices w for which there exists a blue vertex u with (u → w) ∈ F . For simplicity,
F [t] :=

⋃t
i=0F (i) for each integer t ≥ 0. Intuitively, F (t) is the set of vertices in V (G)

that are forced during time step t using F and F [t] is the set of vertices in V (G)
that are blue at time t using F . The propagation time of a set of forces F in G,
denoted pt(G;F), is the smallest integer t such that F [t] = V (G). By convention,
pt(G;F) = ∞ if F does not force all vertices in V (G) to become blue. For a subset
B ⊆ V (G), the propagation time of B in G, denoted pt(G;B), is the minimum value
of pt(G;F) over all sets of forces F of B in G.

In [12], Hogben et al. optimize zero forcing by studying the minimum propagation
time over all minimum zero forcing sets of an undirected graph G. This is called
the propagation time of G and is denoted pt(G). Then, in [5], Butler and Young
study the optimal balance between the size of a zero forcing set and its propagation
time by introducing the concept of throttling. If G is an undirected graph and
B ⊆ V (G), then th(G;B) := |B|+pt(G;B) and the throttling number of G is defined
as th(G) = min{th(G;B) | B ⊆ V (G)}. The zero forcing number is studied in [1]
as a tool for bounding the nullity of certain matrices associated with a given graph.
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Throttling has also been examined in a linear algebra context (see [13]). In addition,
much of the literature has been devoted to studying throttling (and its variants)
from a combinatorial perspective. For standard zero forcing, positive semidefinite
zero forcing, power domination, and Z-floor forcing, graphs with throttling numbers
at most t for an arbitrary integer t > 0 have been characterized as particular minors
of some larger host graph (see [4, 6, 7, 8]). Additionally, standard throttling and
positive semidefinite throttling have been described as forbidden subgraph problems
in [8].

In recent years, zero forcing concepts have been extended to digraphs. A digraph
is denoted Γ = (V (Γ), E(Γ)), and a simple digraph is a digraph with no parallel
arcs or loop arcs. The term double arcs is used to refer to a pair of arcs of the form
(u, v) and (v, u). Note that double arcs are not considered parallel and are allowed in
simple digraphs. An oriented graph is a simple digraph with no double arcs, and an
orientation �G of a simple, undirected graph G is an oriented graph whose underlying
undirected graph is G. If Γ is a digraph and (u, v) ∈ E(Γ), u is an in-neighbor
of v and v is an out-neighbor of u. The set of all in-neighbors and the set of all
out-neighbors of a vertex v in a simple digraph Γ is denoted as N−

Γ (v) and N+
Γ (v)

respectively where the subscript can be dropped if Γ is clear from context. The
in-degree and out-degree of a vertex v ∈ V (Γ) are defined as |N−(v)| and |N+(v)|
respectively. Furthermore, a source is a vertex with in-degree zero, a sink is a vertex
with out-degree zero. The (standard) color change rule for simple digraphs is that if
u is a blue vertex and there is a unique white out-neighbor w of u, then u can force
w to become blue.

For a simple digraph Γ, the zero forcing number Z(Γ), a set of forces F of a
subset B ⊆ V (Γ), pt(Γ;F), pt(Γ;B), pt(Γ), th(Γ;B), and th(Γ) are all defined
analogously to their undirected counterparts. The parameter Z(Γ) is studied in [3],
and an upper bound is given for the difference between the zero forcing numbers of
two orientations of a given simple graph. Furthermore, in [9], the authors study a
generalization of zero forcing (called k-forcing) on oriented graphs. In addition, the
parameters pt(Γ;F), pt(Γ;B), and pt(Γ) are studied in [2]. From here, the next
natural step is to explore the throttling number of simple digraphs. While th(Γ) is
determined in [2] for a specific type of Hessenberg path (see Section 2.1), there is
much more to be studied.

In this paper, we take a closer look at throttling for simple digraphs. We obtain
a variety of results in Section 2 about the throttling numbers of simple digraphs in
general. Specifically, we show that the throttling number of a simple digraph does
not change when all arcs are reversed and we give a structural characterization of
all simple digraphs with throttling number at most t for an arbitrary integer t > 0.
In Section 3, we examine the possible throttling numbers of all orientations of a
given simple, undirected graph G. To this end, we define the orientation throttling
interval (OTI) of a simple graph (see Definition 3.1). An upper bound is given for the
difference between the throttling numbers of two orientations of an arbitrary simple
graph G. While the OTI is shown to vary wildly for different graphs, some general
bounds and properties are determined. In Section 4, we focus on the OTI of path
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graphs. The lowest possible throttling number of a path on n vertices is shown to be
�2√n− 1	. The throttling numbers of specific orientations of paths are determined
exactly, and it is conjectured that these orientations achieve the maximum throttling
number of paths on n vertices. Finally, in Section 5, some concluding remarks are
made and directions for future work are given.

2 Throttling for simple digraphs

While throttling for undirected graphs has been studied extensively, in this section,
we explore the process on directed graphs in general. First, we consider the case when
throttling on digraphs is equivalent to that of an undirected graph. The following
remark describes this situation.

Remark 2.1. Let G be a simple graph, and let
↔
G be the graph obtained by replacing

every edge in E(G) with double arcs. Since a vertex u is a neighbor of vertex v in G

if and only if u is an out-neighbor of v in
↔
G, it follows that th(G) = th(

↔
G).

2.1 Monotonicity and characterizations

Recall that a graph parameter p is subgraph monotone if p(H) ≤ p(G) whenever H
is a subgraph of G. Minor and induced subgraph monotonicity are similarly defined.
In [6], it is shown that the throttling number of undirected graphs is not subgraph
monotone; therefore, it is not minor monotone. However, this result does not address
whether the throttling number is induced subgraph monotone. Note that subgraphs,
minors, and monotonicity for digraphs are defined analogously to undirected graphs.
The following example illustrates that the throttling number is not induced subgraph
monotone for oriented graphs (and therefore, directed graphs) and undirected graphs.

Example 2.2. Consider the oriented graph �H on the right of Figure 1 as an induced
subgraph of �G, shown on the left. A zero forcing set B ⊆ V ( �G) with |B|+pt( �G;B) ≤
2 + 2 = 4 is shown in blue. By checking all possible zero forcing sets of �H, we see
that th( �H) = 5 which can be achieved using the set of blue vertices shown on the
right.

Next, consider the undirected graph H on the right of Figure 2 as an induced
subgraph of G, shown on the left. We can similarly observe that th(G) ≤ 4 and
th(H) = 5. Therefore, the throttling number is not induced subgraph monotone for
oriented graphs and undirected graphs.

Example 2.2 highlights the fact that it is useful to know whether a digraph has
throttling number at most t for a given integer t ≥ 1. A characterization for undi-
rected graphs with this property is given in [6, Theorem 4.1]. With some modifica-
tions, an analogous characterization holds for directed graphs. To show this result,
we need a digraph version of the important graphs utilized in [6]. We begin by pro-
viding a method for extending a digraph Γ into a major of Γ using a given a zero
forcing set B, and a set of standard forces of B.
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Figure 1: An oriented graph �G with th( �G) ≤ 4 is shown on left and an

induced subgraph �H of �G is shown on the right with th( �H) = 5.

Figure 2: An undirected graph G with th(G) ≤ 4 is shown on left and an
induced subgraph H of G is shown on the right with th(H) = 5.

This construction requires defining the following graph. A Hessenberg path with
vertices {v1, v2, . . . , vn} is a simple digraph that contains all arcs of the form (vi, vi+1)
for each 1 ≤ i ≤ n−1 and does not contain any arc of the form (vi, vj) with j > i+1.
No restrictions are placed on back arcs, i.e., arcs of the form (vi, vj) with i > j. Note
that a single isolated vertex is also a Hessenberg path. We also need some useful
definitions from [2] and [12]. Given a simple digraph Γ, a zero forcing set B ⊆ V (Γ),
and a set of forces F of B, a sequence of vertices (v1, v2, . . . , vk) ∈ V (Γ) is a forcing
chain of F if (vi → vi+1) ∈ F for each integer 1 ≤ i ≤ k− 1. A forcing chain of F is
maximal if it is not a subsequence of a larger forcing chain of F .

Definition 2.3. Let Γ be a simple digraph and B ⊆ V (Γ) be a standard zero
forcing set of Γ. Suppose F is a set of forces of B with pt(Γ;B) = pt(Γ;F). Let
�H1, �H2, . . . , �H|B| be the induced Hessenberg paths in Γ formed by the maximal forcing
chains of F . For each vertex v ∈ V (Γ), let τ(v) be the number of time steps in the
propagation process of F in which v is blue and has not yet performed a force. Define
the extension of Γ with respect to B and F , denoted �E(Γ, B,F), to be the digraph
created by the following construction.

First, for each Hessenberg path �Hi ∈ Γ, we construct a new Hessenberg path �H′
i

so that for each v ∈ �Hi, there are τ(v) copies of v in �H′
i, and for each pair of vertices

a, b ∈ �Hi such that a is forced before b using F , every copy of a is to the left of
every copy of b in �H′

i. Add an arc going left to right between each pair of consecutive
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vertices in each �Hi, creating a forward-directed path. We call these arcs path arcs.
Also, add the same back arcs of the form (v, u) ∈ E( �Hi) to �H′

i by connecting the first

instance of v to the first instance of u in �H′
i. Observe that |V ( �H′

i)| = pt(Γ;B) + 1

for each 1 ≤ i ≤ |B|, and the Hessenberg paths { �H′
1, �H′

2, . . . , �H′
|B|} can be arranged

into a |B| × (pt(Γ;B) + 1) array of vertices.

Then, for each arc

(u, v) ∈ E(Γ) \
|B|⋃
i=1

E( �Hi),

v must be blue before u can perform a force in Γ since u and v are in distinct
Hessenberg paths. Therefore, there must be a copy v′ of v and a copy u′ of u in the
|B| × (pt(Γ;B) + 1) array such that v′ appears in either the same column as u′ or
in some column left of u′. For each of these arcs (u, v), create an arc from the last
instance of u to the first instance of v in each of their respective paths. Note that
this will always create either a vertical arc or a backward arc, but never a forward
arc. An illustration of this extension can be found in Figure 3.

v2 v3

u2 u3

v1 v1 v2 v3

u2 u3 u3 u3

v1

u1

v1

u1

Figure 3: The digraph Γ (top) with B in blue has the extension �E(Γ, B,F)
(bottom).

It is important to note that every digraph Γ is a minor of any of its own extensions.
Specifically, we can always contract the path arcs between copies of the same vertex
to obtain the original digraph Γ. Next, we construct a digraph, illustrated in Figure 4,
that can be used to characterize graphs with a given throttling number.

Definition 2.4. For any integers a ≥ 1 and b ≥ 0, the digraph Ha,b+1 is constructed
via the following process. Begin with an undirected complete graph on a × (b + 1)
vertices and replace each edge with double arcs. Arrange the vertices in an array
with a rows and b+1 columns. Then, label every vertex with respect to its location
on the array so that a vertex that lies in the i-th row and j-th column is labeled as
vi,j , where 0 ≤ i ≤ a− 1 and 0 ≤ j ≤ b (with v0,0 and va−1,b as the bottom-left and
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top-right corners respectively). Next, delete all the forward diagonal arcs, i.e., the
arcs of the form (vh,k, vl,m) where h �= l and m > k. Also, delete all forward arcs
of the form (vh,k, vl,m) where h = l and m > k + 1 so that each row is an induced
Hessenberg path with all possible backward arcs.

We define the path arcs of Ha,b+1 to be the arcs of the form (vi,j, vi,j+1) for any
0 ≤ i ≤ a − 1 and 0 ≤ j ≤ b − 1. We refer to all other arcs in Ha,b+1 as non-path
arcs.

Figure 4: The graph H3,3 is shown.

To use a similar argument as in the proof of [6, Theorem 4.1], we must ensure that
we can contract an arc used to perform a force in a directed graph without increasing
the throttling number. The following remark addresses this necessary condition.

Remark 2.5. Lemma 3.15 in [6] states that in an undirected graph, contracting
an arc in a forcing chain cannot increase the throttling number. Using this exact
argument, it follows that contracting an arc that is used to perform a force also does
not increase the throttling number on a directed graph.

Using the graphHa,b+1, we can now give an analogous theorem to [6, Theorem4.1]
for simple digraphs.

Theorem 2.6. Given a simple digraph Γ and a positive integer t, th(Γ) ≤ t if and
only if there exist integers a ≥ 1 and b ≥ 0 such that a+ b = t and Γ can be obtained
from Ha,b+1 by contracting path arcs and deleting non-path arcs.

Proof. First, suppose th(Γ) ≤ t. Let B ⊆ V (Γ) be a zero forcing set of Γ that satisfies
th(Γ;B) ≤ t and let F be a set of forces of B in Γ such that pt(Γ;F) = pt(Γ;B).
Let a = |B|, b′ = pt(Γ;B) = th(Γ;B) − a, and b = t − a. Then, b′ ≤ b and Γ is a

minor of �E(Γ, B,F). Furthermore, �E(Γ, B,F) is a subdigraph of Ha,b′+1 which is a

subdigraph of Ha,b+1. Note that by the construction of �E(Γ, B,F) and Ha,b+1, Γ can
be obtained from Ha,b+1 by contracting path edges and deleting non-path edges.

Conversely, suppose Γ′ = Ha,b+1 with a + b = t and Γ can be obtained from Γ′

by contracting path arcs and deleting non-path arcs. Observe that the vertices in
the left column of Ha,b+1 form a zero forcing set of size a with propagation time b.
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By Remark 2.5, contracting path arcs in Ha,b+1 does not increase the throttling
number. Furthermore, the only arcs used to perform forces in Ha,b+1 are path arcs.
Therefore, deleting non-path arcs also does not increase the throttling number. Thus,
th(Γ) ≤ th(Ha,b+1) ≤ a + b.

Note that for a fixed integer t ≥ 1, there are finitely many digraphs of the form
Ha,b+1 with a + b = t, which means there are finitely many digraphs that can be
obtained from them. Corollary 2.7 follows from this observation.

Corollary 2.7. If t is a fixed positive integer, then there are finitely many digraphs
Γ with throttling number equal to t.

2.2 Flipping arcs and other digraph operations

Next, we study the effect of flipping arcs on throttling. We start by giving a rela-
tionship between the throttling numbers of two directed graphs Γ and Γ0, where Γ0

can be obtained from Γ by flipping a single arc, that is, replacing (a, b) ∈ E(Γ) with
(b, a).

Proposition 2.8. Flipping an arc (a, b) ∈ E(Γ) of a simple digraph Γ, where (b, a) /∈
E(Γ), to achieve a new graph Γ0 cannot increase the throttling number of the graph
by more than one.

Proof. Let B be a zero forcing set of Γ with a set of forces F such that pt(Γ;F) =
pt(Γ;B) and th(Γ) = th(Γ;B). Suppose Γ0 is the digraph obtained from Γ by flipping
an arbitrary arc (a, b) ∈ E(Γ) where (b, a) /∈ E(Γ). To show that th(Γ0) ≤ th(Γ)+1,
it suffices to find a zero forcing set B0 ⊆ V (Γ0) with |B0| ≤ |B|+1 and pt(Γ0;B0) ≤
pt(Γ;B).

First, suppose (a → b) ∈ F . In this case, we claim that B0 = B ∪ {b} is a zero
forcing set of Γ0. Observe that |B0| ≤ |B|+1 and F0 = F \{a → b} is a set of forces
of B0. To show that pt(Γ0;B0) ≤ pt(Γ;B), it is sufficient to show that the vertices
forced by time step t in Γ are also forced in Γ0 by time step t. In other words, we
aim to show for any time step t, we have F [t] ⊆ F [t]

0 .

Let t′B be the time step in which the force a → b is performed in Γ. Note that
for any vertex v ∈ V (Γ) \ {b} and for all 0 ≤ t ≤ t′B, the set of white out-neighbors
of v in Γ0 at time step t using F0 is a subset of the set of white out-neighbors of v in
Γ at time step t using F . Symbolically, this means

(
N+

Γ0
(v) \ F [t]

0

) ⊆ (
N+

Γ (v) \ F [t]
)
.

Since b is not yet blue at any time t for 0 ≤ t ≤ t′B in Γ, it follows that F [t] ⊆ F [t]
0

for all 0 ≤ t ≤ t′B.

Observe that b is the only vertex that gained an out-neighbor in Γ0, namely a,
after flipping the arc in Γ. At time t′B, the vertex a must be blue in Γ using F in order
to force b. Therefore, vertex a is also blue at time t′B in Γ0 using F0. Since a ∈ F [t′B ]

and F [t′B] ⊆ F [t′B ]
0 , a ∈ F [t′B]

0 . This means that
(
N+

Γ0
(b) \ F [t′B]

0

) ⊆ (
N+

Γ (b) \ F [t′B]
)
.

Thus,
(
N+

Γ0
(v)\F [t′B]

0

) ⊆ (
N+

Γ (v)\F [t′B]
)
for all v ∈ V (Γ). This includes the vertex b,
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which implies that for all v ∈ V (Γ) at time t > t′B,
(
N+

Γ0
(v) \ F [t]

0

) ⊆ (
N+

Γ (v) \ F [t]
)
.

Hence, F [t] ⊆ F [t]
0 for all t ≥ 0 and pt(Γ0;F0) ≤ pt(Γ;F).

Next, suppose (a → b) /∈ F . In this case, we claim B0 = B ∪{a} is a zero forcing
set of Γ0 with |B0| ≤ |B|+ 1. If there exists a vertex x such that (x → a) ∈ F , we
let F0 = F \ {x → a}; otherwise, let F0 = F . Observe that b is the only vertex that
gained an out-neighbor after flipping (a, b), namely a, which is blue from the start.

Hence, for all v ∈ V (Γ), we have
(
N+

Γ0
(v) \ F [t]

0

) ⊆ (
N+

Γ (v) \ F [t]
)
, which implies

F [t] ⊆ F [t]
0 for all t ≥ 0. Thus, pt(Γ0;F) ≤ pt(Γ;F).

Note that pt(Γ0;F0) ≤ pt(Γ;F) and |B0| ≤ |B|+ 1 in both cases. Therefore,

th(Γ0) ≤ th(Γ0;B0) ≤ |B0|+ pt(Γ0;F0) ≤ |B|+ 1 + pt(Γ;F) = th(Γ) + 1.

Corollary 2.9. If a simple digraph Γ0 is obtained from another simple digraph Γ by
flipping a single arc (a, b) ∈ E(Γ) where (b, a) /∈ E(Γ), then | th(Γ0)− th(Γ)| ≤ 1.

Proof. By Proposition 2.8, the throttling number cannot increase by more than 1,
so it suffices to prove that the throttling number cannot decrease by more than
1. Suppose that Γ0 can be obtained from Γ by flipping a single arc and that the
throttling number decreases by more than 1. In turn, Γ can be obtained from Γ0

by flipping a single arc, and the throttling number increases by more than 1. This
contradicts Proposition 2.8.

Corollary 2.9 motivates further study of the throttling number as opposed to the
propagation time of a digraph Γ, as th(Γ) behaves more predictably than pt(Γ) does
when a single arc is flipped. For example, a path with 4 vertices with all arcs going
in one direction has propagation time 3. However, if the arc incident to the source
is flipped, the propagation time becomes 1, so an arc flip can change this parameter
by more than 1.

This raises a question: how do propagation time and throttling number change
when every arc in the digraph is reversed? The transpose of a digraph Γ, denoted
ΓT , is obtained by flipping all of its arcs. Additionally, the terminus of F , denoted
Term(F), is the set of vertices that do not perform a force in F . The reversal of a set
of forces F , denoted Rev(F), is the set of forces F found by reversing the direction
of each arc in F . Observe that Term(F) is a zero forcing set of ΓT with Rev(F) as
a set of forces.

The next result, in [2], relates the propagation time of a set of forces in a digraph
to that of its reversal in the digraph’s transpose.

Lemma 2.10. [2, Corollary 2.4] Let Γ = (V,E) be a simple digraph, B ⊆ V (Γ) be
a minimum zero forcing set of Γ, and F be a set of forces of B such that pt(Γ;F) =
pt(Γ;B). Then, pt(Γ,F) = pt(ΓT ; Rev(F)).

Although Lemma 2.10 uses a minimum zero forcing set B, an identical proof yields
the same result when B is not minimum. We now consider whether F and Rev(F)
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can be replaced by their respective zero forcing sets (namely, B and Term(F)) in the
equation pt(Γ,F) = pt(ΓT ; Rev(F)). Figure 5 illustrates that this is not always the
case.

Figure 5: For the graph Γ (top), B is the set of blue vertices satisfying
pt(Γ;B) = 2. For ΓT (bottom), pt(ΓT ; Term(F)) = 1, where F is the
unique set of forces of B in Γ.

It is easy to see for any digraph Γ, zero forcing set B ⊆ V (Γ), and set of forces F
of B, that |Term(F)| = |B| (see [2]). This fact, together with Lemma 2.10, can be
used to show that pt(Γ;B) = pt(ΓT ; Term(F)) holds if B is more carefully chosen.
In particular, we obtain our desired equality if B is chosen to have optimal prop-
agation time for its size. This motivates the following definition which generalizes
propagation time.

Definition 2.11. For a simple digraph Γ and integer k ≥ 0, define the k-propagation
time of Γ as ptk(Γ) = min{pt(Γ;B) | B is a zero forcing set and |B| = k}.
Proposition 2.12. Let Γ be a simple digraph, B ⊆ V (Γ) be a zero forcing set of Γ
such that |B| = k and pt(Γ;B) = ptk(Γ), and F be a set of forces of B such that
pt(Γ;F) = pt(Γ;B). Then, pt(Γ;B) = pt(ΓT ; Term(F)).

Proof. First, we will show that pt(ΓT ; Rev(F)) = pt(ΓT ; Term(F)). Note that by
definition, we already know that pt(ΓT ; Rev(F)) ≥ pt(ΓT ; Term(F)). Suppose for
the sake of contradiction that pt(ΓT ; Rev(F)) > pt(ΓT ; Term(F)). Then, there must
exist some set of forces F ′ of Term(F) such that pt(ΓT ;F ′) < pt(ΓT ; Rev(F)).
From Lemma 2.10, we know pt(ΓT ; Rev(F)) = pt(Γ;F) = pt(Γ;B), so pt(ΓT ;F ′) <
pt(Γ;B). However, Lemma 2.10 also implies that pt(ΓT ;F ′) = pt(Γ; Rev(F ′)), so

pt(Γ; Rev(F ′)) = pt(ΓT ;F ′) < pt(Γ;B) = ptk(Γ).

We see that the propagation time of Rev(F ′) on Γ is strictly less than ptk(Γ). How-
ever, Rev(F ′) is a set of forces of Term(F ′) and |Term(F ′)| = k, so this is a contra-
diction. Thus, pt(ΓT ; Term(F)) = pt(ΓT ; Rev(F)) = pt(Γ;F) = pt(Γ;B).

Now, Proposition 2.12 can be used to equate th(Γ) and th(ΓT ).

Theorem 2.13. For a simple digraph Γ, th(Γ) = th(ΓT ).
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Proof. Let Γ = (V (Γ), E(Γ)) be a simple digraph and choose a zero forcing set B
and set of forces F of B such that pt(Γ;F) = pt(Γ;B) and th(Γ) = |B| + pt(Γ;B).
Therefore, pt(Γ;B) = ptk(Γ) for k = |B|; otherwise, th(Γ) < |B|+pt(Γ;B) which is
a contradiction. Thus, pt(ΓT ; Term(F)) = pt(Γ;B) by Proposition 2.12. It follows
from this fact and the definition of the throttling number that

th(ΓT ) ≤ |Term(F)|+ pt(ΓT ; Term(F))

= |B|+ pt(Γ;B)

= th(Γ).

Flipping the roles of Γ and ΓT , we obtain the reverse inequality th(Γ) = th
(
(ΓT )T

) ≤
th(ΓT ). Therefore, th(Γ) = th(ΓT ).

The equality in Theorem 2.13 can be extended to the case where only a sin-
gle component of a digraph is transposed. To see this, we first need the following
important lemma.

Lemma 2.14. Let Γ be a simple digraph with |V (Γ)| = n, and let k be any integer
such that Z(Γ) ≤ k ≤ n. Then, ptk(Γ) = ptk(Γ

T ).

Proof. Let B be a zero forcing set of Γ and F be a set of forces of B such that |B| = k
and pt(Γ;F) = pt(Γ;B) = ptk(Γ). Then, ptk(Γ) = ptk(Γ;B) = ptk(Γ

T ; Term(F)) ≥
ptk(Γ

T ) by Proposition 2.12. By reversing the roles of Γ and ΓT , we obtain the
reverse inequality.

Theorem 2.15. Let Γ1 and Γ2 be simple digraphs. Then, th(Γ1∪Γ2) = th(ΓT
1 ∪Γ2).

Proof. Let Γ = Γ1 ∪ Γ2 and B be a zero forcing set of Γ such that th(Γ) = th(Γ;B).
Note that th(Γ;B) = |B1|+|B2|+max{pt(Γ1;B1), pt(Γ2;B2)}, where B1 = B∩V (Γ1)
and B2 = B ∩ V (Γ2). Also, let k1 = |B1|. There exists some B′

1 ⊆ V (ΓT
1 ) such that

|B′
1| = k1 and pt(ΓT

1 ;B
′
1) = ptk1(Γ

T
1 ) by definition of ptk1(Γ

T
1 ). By Lemma 2.14, it

follows that pt(ΓT
1 ;B

′
1) = ptk1(Γ1). Thus, pt(ΓT

1 ;B
′
1) = ptk1(Γ1) ≤ pt(Γ1;B1) by

definition of ptk1(Γ1). Hence,

th(ΓT
1 ∪ Γ2) ≤ th(ΓT

1 ∪ Γ2;B
′
1 ∪ B2)

= |B′
1|+ |B2|+max{pt(ΓT

1 ;B
′
1), pt(Γ2;B2)}

≤ |B1|+ |B2|+max{pt(Γ1;B1), pt(Γ2;B2)} = th(Γ1 ∪ Γ2).

By reversing the roles of Γ and ΓT , we obtain the reverse inequality.

Another natural question that arises is whether the throttling number of a di-
rected or undirected graph resulting from a disjoint union (∪) of two graphs can be
determined using the throttling numbers of each of the operands. Let Γ1 and Γ2 be
directed or undirected graphs. If B1 ⊆ V (Γ1) and B2 ⊆ V (Γ2) are zero forcing sets
such that th(Γ1) = th(Γ1;B1) and th(Γ2) = th(Γ2;B2), it is clear that

th(Γ1 ∪ Γ2) ≤ |B1|+ |B2|+max{pt(Γ1;B1), pt(Γ2;B2)}.
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However, the throttling number of a disjoint union of two digraphs is not neces-
sarily equal to this upper bound, as shown in Example 2.16.

Example 2.16. Let �G1 be a path on four vertices with all arcs oriented in the same
direction and let �G2 be the disjoint union of two copies of �G1. By considering all zero
forcing sets of �G1 and �G2 respectively, we see that th( �G1) = 3 and th( �G2) = 5. Zero
forcing sets B1 and B2 that realize these respective throttling numbers are shown in
blue on the left of Figure 6. However, a zero forcing set B ⊆ �G1 ∪ �G2 that realizes
th( �G1 ∪ �G2;B) = 6 is shown in blue on the right of Figure 6. Therefore,

th( �G1 ∪ �G2) ≤ 6 < 2 + 2 + 3 = |B1|+ |B2|+max{pt( �G1;B1), pt( �G2;B2)}.

�G1 :

�G2 :

�G1 ∪ �G2 :

Figure 6: Digraphs �G1 and �G2 are shown with th( �G1) = 3, th( �G2) = 5, and

th( �G1 ∪ �G2) ≤ 6.

The final digraph operation we consider is adding or deleting a vertex in a digraph
and its effect on the throttling number.

Proposition 2.17. Adding or deleting a vertex can change the throttling number of
a simple digraph by at most one.

Proof. Let Γ be a simple digraph with a zero forcing set B ⊆ V (Γ) and set of forces
F of B such that th(Γ) = |B|+ pt(Γ;F).

First, suppose a vertex v, along with a possibly empty set A of arcs incident to
v, is added to Γ. Color B ∪ {v} blue. Then the same set of forces F can be used
without increasing propagation time, since no vertices from the original digraph
gain any white out-neighbors when v and A are added. Hence, throttling number
can increase by at most one when a vertex is added, which implies that throttling
number can decrease by at most one when deleting a vertex.

Now, suppose instead that a vertex v is deleted from Γ to obtain Γ′. If (u → v) ∈
F for some u ∈ V (Γ), then remove the force u → v from F . Also, if (v → w) ∈ F
for some w ∈ V (Γ), remove the force v → w from F and add w to B. Additionally,
if v ∈ B, then remove v from B. Call the resulting set of forces F ′ and set of vertices
B′. Now color B′ blue in Γ′. If the vertex w exists, it can no longer be forced by v.
However, in this case, w is colored blue at time t = 0. After deleting v, no vertices
gain any white out-neighbors, so it is clear that pt(Γ′;F ′) ≤ pt(Γ;F). Hence, the
throttling number can increase by at most one when a vertex is deleted, which implies
that throttling number can decrease by at most one when adding a vertex.
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3 Throttling for orientations of simple graphs

For a given undirected graph, there are many ways to direct the edges and create an
oriented graph. Naturally, the zero forcing number, propagation time, and throttling
number vary among different orientations. These ranges of zero forcing numbers, k-
forcing numbers, and propagation times are studied in [3], [9], and [2] respectively.
In this section, we investigate the range of throttling throttling numbers achieved
by the orientations of a given simple graph. This idea is formalized in the following
definition.

Definition 3.1. For a simple graph G, let T = {th( �G) | �G is an orientation of G}.
The orientation throttling interval of G, denoted OTI(G), is the set of integers in
the interval [m,M ] where m and M are the minimum and maximum values of T
respectively. The graph G is said to have a full orientation throttling interval if
k ∈ T for each integer k ∈ OTI(G).

This new terminology naturally raises the question: which graphs, if any, have
full orientation throttling intervals? We show that every simple graph has a full
orientation throttling interval whose length is bounded in terms of the number of
edges in the graph. We do so by stating an existing result from [3] for general graph
parameters and then applying this result to the throttling number using our findings
in Section 2.2.

Theorem 3.2. [3, Theorem 2.1] Suppose β is a positive-integer-valued digraph pa-
rameter with the following properties:

1. The equation β( �GT ) = β( �G) is satisfied.

2. If (u, v) ∈ E( �G) and �G0 is obtained from �G by replacing (u, v) by (v, u) (i.e.

reversing the orientation of one arc), then |β( �G0)− β( �G)| ≤ 1.

Then for any two orientations �G1 and �G2 of the same graph G, β( �G2) − β( �G1) ≤⌊
E(G)
2

⌋
. Furthermore, every integer between β( �G2) and β( �G1) is attained as β( �G)

for some orientation �G of G.

Corollary 3.3. Let G be a simple graph with orientation throttling interval [m,M ].
Then,

M −m ≤
⌊
E(G)

2

⌋
.

Furthermore, the orientation throttling interval of G is full.

Proof. Let �G be any orientation of G and �G0 be any graph obtained from �G by a
single arc flip. Also, let �Gm and �GM be orientations of G such that th( �Gm) = m and

th( �GM) = M . By Theorem 2.13 and Corollary 2.9, we have th( �G) = th( �GT ) and

| th( �G)− th( �G0)| ≤ 1. It follows from Theorem 3.2 that M −m ≤
⌊
E(G)
2

⌋
and that

OTI(G) is full.
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Another question that the orientation throttling interval raises is whether the
throttling number of the underlying simple graph is an element of its orientation
throttling interval. In other words, is it true that for a graph G, there always exists
some orientation �G such that th( �G) = th(G)? We show that this is the case for
graphs G that satisfy a constraint in terms of their independence number α(G).
Recall that if G is a graph, an independent set of G is a subset of V (G) that induces
a subgraph of G with no edges and α(G) is the size of a maximum independent set
of G.

The following proposition concerns a lower bound for the length of the orientation
throttling interval of a given graph. The lower bound for max(OTI(G)) is similar to
a result for k-forcing in [9], except that for throttling, we must add one to account
for a time step of forcing.

Proposition 3.4. Let G be a simple graph with at least one edge and OTI(G) =
[m,M ]. Then, m ≤ th(G) and α(G) + 1 ≤ M .

Proof. Let B be a zero forcing set of G, and let F be a set of forces of B that achieves
th(G) = |B| + pt(G;F). To prove that m ≤ th(G), it suffices to show that there

exists an orientation �G of G such that th( �G) ≤ th(G). We begin by orienting each
edge in G as follows. If (u → v) ∈ F , orient the edge between these vertices going
from u to v; otherwise, orient the edge in an arbitrary direction. Call the resulting
oriented graph �G. Note that pt( �G;F) ≤ pt(G;F) since the arcs in F exist in �G and
N+

�G
(v) ⊆ NG(v) for any vertex v. Thus,

m ≤ th( �G) ≤ |B|+ pt( �G;F) ≤ |B|+ pt(G;F) = th(G).

Now, we show that α(G) + 1 ≤ M by constructing an orientation of G that has
throttling number α(G) + 1 or greater. To do so, make each vertex in a maximum
independent set of G a source. This is possible because no two vertices in an inde-
pendent set have an edge between each other. Call some orientation that satisfies
this condition �G′. Then, any zero forcing set of �G′ must include the α(G) sources.
Further, since G has at least one edge and it is impossible for both vertices incident
to an edge to be sources, there is at least one vertex in �G′ that is not a source. Thus,
th( �G′) > α(G) and therefore α(G) + 1 ≤ th( �G′) ≤ M .

Corollary 3.5. Let G be a simple graph with at least one edge. If th(G) ≤ α(G)+1,
then

[th(G), α(G) + 1] ⊆ OTI(G).

Corollary 3.5 gives an interval of integers that must be contained in the OTI of
a given graph if a certain inequality is satisfied. Another way to understand the
orientation throttling interval is in terms of its maximum length. Proposition 3.6
gives an interval of integers that always contains the OTI as a subset.

Proposition 3.6. If G is a simple graph on n vertices, then OTI(G)⊆ [�2√n−1	,n].
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Proof. Given any oriented graph �G, coloring all vertices blue at the start yields throt-
tling value n, so th( �G) ≤ n. Also, for an undirected graph G, th(G) ≥ �2√n− 1	
from [5]. While this result is proven for undirected graphs, the same logic applies for
oriented graphs since the argument does not rely on the edges being undirected.

Propostion 3.6 gives a lower and upper bound for the throttling number of any
orientation of a graph in terms of the number of vertices. This is more useful than the
length bound given by Corollary 3.3 when the number of edges in a graph is large, as
with complete graphs. In fact, the following proposition states that complete graphs
can always be oriented to show that the bounds in Proposition 3.6 are tight. For
simplicity, if G is a graph on n vertices and OTI(G) = [�2√n− 1	 , n], we say that
the OTI of G is maximum.

Theorem 3.7. The orientation throttling interval of a complete graph is maximum.

Proof. To construct a tournament �Kn for some n with th( �Kn) = n, start with n
vertices labeled v0, v1, . . . , vn−1 and for each pair of distinct vertices vi and vj where
i > j, add the arc (vi, vj). This construction is illustrated with n = 5 in Figure 7a.

Now, begin with any zero forcing set of �Kn colored blue, and suppose n ≥ 4, as the
result is trivial for n ≤ 3. Our goal is to prove that th( �Kn) = n, which is true if only
one vertex can ever be forced at a single time step. For the sake of contradiction,
suppose va, vb, vx, vy are distinct vertices such that va → vx and vb → vy in time step
t. Also, suppose without loss of generality that b > a. Then, by construction, a > x
and b > y, which implies b > a > x. Since b > x and b > y, vertices vx and vy are
both white out-neighbors of vb at time step t. Thus, vb cannot perform a force this
time step, which is a contradiction. Hence, only one vertex can be forced at a single
time step for any zero forcing set, so th( �Kn) = n.

Now, to construct a tournament �Kn for some n such that th( �Kn) = �2√n− 1	,
let m be the largest integer such that m2 ≤ n, and let r = n−m2. Note that r ≤ 2m;
otherwise n = m2 + r ≥ m2 + 2m + 1 = (m + 1)2, contradicting our choice of m.
Now, choose the smallest graph of the form Ha,b+1 with m columns that has at least
n vertices. Specifically, choose Hm+k,m, where k = 0 if r = 0, k = 1 if 0 < r ≤ m,
and k = 2 if m < r ≤ 2m.

Next, contract r mod m path arcs in the top row of Hm+k,m to obtain a directed
complete graph with exactly n vertices. To obtain an oriented graph, we must delete
one arc in each pair of double arcs. For each pair of double arcs between two vertices
in the same column, choose either arc to delete. Also, delete arcs (b, a) such that

(a, b) is a path arc. We are now left with an orientation �Kn of Kn attained from
Hm+k,m by contracting path arcs and deleting non-path arcs, which implies that

th ( �Kn) ≤ 2m+ k − 1 by Theorem 2.6. For any possible m and k, this simplifies to

th ( �Kn) ≤ �2√n− 1	 . An example of this construction with n = 5 is illustrated in
Figure 7b.

Since �2√n− 1	 is the lower bound of throttling number of any oriented graph,
the above inequality becomes an equality. We have found orientations of Kn that
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achieve both the smallest and largest possible throttling number, so the OTI of a
complete graph is maximum.

v0

v1

v2v3

v4

(a) This oriented graph has throt-
tling number 5.

(b) This oriented graph has throt-
tling number

⌈
2
√
5− 1

⌉
= 4.

Figure 7: Orientations of K5 which achieve the maximum and minimum
throttling numbers are shown.

While complete graphs have orientations that achieve both the maximum and
minimum throttling number, this is not true for all types of graphs. In fact, paths
have orientations that achieve the minimum throttling number, but not the maxi-
mum.

Remark 3.8. By Proposition 3.4, m ≤ th(Pn) where OTI(Pn) = [m,M ]. Since
th(Pn) already achieves the lower bound of �2√n− 1	 by [5], it must be true that
m = �2√n− 1	 since m < �2√n− 1	 is impossible. Thus, a path on n vertices has

an orientation �Pn such that th(�Pn) = �2√n− 1	. Additionally, by Theorem 3.3, the
throttling number of any orientation of Pn is bounded above by

⌈
2
√
n− 1

⌉
+

⌊
E(Pn)

2

⌋
=

⌈
2
√
n− 1

⌉
+

⌊
n− 1

2

⌋
.

By Remark 3.8, it is impossible for an orientation of Pn to achieve throttling
number n for n ≥ 14. Furthermore, we can provide families of graphs that, unlike
complete graphs and paths, do not have orientations that achieve the minimum
possible throttling number. To do so, the following proposition is useful.

Proposition 3.9. Let �G be an oriented graph with at least one leaf. If u ∈ V ( �G) is

adjacent to k leaves, then a zero forcing set of �G must contain at least k − 1 leaves
adjacent to u.

Proof. Suppose for the sake of contradiction that a zero forcing set B ⊆ V ( �G)
contains k − 2 or fewer leaves adjacent to u. This means at least two leaves v, w
adjacent to u begin white. We can assume v and w are both sinks, as a zero forcing
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set necessarily contains all sources. Since v and w are leaves, they both can only be
forced by u. However, u can only force one vertex, so it cannot force both v and
w. Therefore, B is not a zero forcing set, a contradiction. Thus, B contains at least
k − 1 leaves adjacent to u.

While paths can be oriented to achieve the minimum throttling number but not
the maximum, oriented stars only achieve the maximum throttling number.

Corollary 3.10. The throttling number of an oriented star on n vertices is n.

Proof. By definition, a star on n vertices contains n− 1 leaves. By Proposition 3.9,
we must initially color n−2 leaves blue. If the last remaining leaf is a source, it must
be included in the zero forcing set as well, and since there is only one white vertex
left, no simultaneous forces can be performed. If the last remaining leaf is a sink, we
know that the only vertex that can force the leaf is the central vertex. Thus, both
vertices cannot be forced in the same time step because the central vertex must be
blue before forcing the leaf. Hence, there are no simultaneous forces in all cases, so
the throttling number is n.

This leads us to the question whether there are graphs that cannot be oriented
to achieve the upper and the lower bounds on the throttling number. To answer
this question positively, we must first establish a more general understanding of the
impact of leaves on zero forcing.

Corollary 3.11. Let �G be an oriented graph and X be the set of vertices in �G
adjacent to at least one leaf. Let x = |X| and y be the number of leaves in �G. If B

is a zero forcing set of �G, then |B| ≥ y − x.

Proof. For some vertex v ∈ X, let kv be the number of leaves to which v is adjacent.
From Proposition 3.9, we know that a zero forcing set of �G must contain at least
kv − 1 of the leaves adjacent to v. Summing over all vertices in X , we have

∑
v∈X

(kv − 1) =
∑
v∈X

kv −
∑
v∈X

1 = y − x

leaves that must be in a zero forcing set of �G. Note that no leaves are double-counted
since a leaf is only adjacent to a single vertex in X , by definition.

While Corollary 3.11 is not very helpful for graphs with relatively few leaves, such
as paths, a double star on n vertices is an example of a graph for which it is useful.
In double stars, y = n− 2 and x = 2, giving n− 4 as a lower bound on the size of a
minimum zero forcing set.

Corollary 3.11 is additionally useful for a family of graphs that we call augmented
double stars. To obtain this graph, let G be any double star on n− 1 vertices. Label
the internal vertices a and b. Delete the edge ab and add a vertex w and the edges
aw and bw. An example of an augmented double star is shown in Figure 8.
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a bw

Figure 8: An augmented double star on 9 vertices is shown.

Interestingly, unlike complete graphs, sufficiently large augmented double stars
have no orientations that achieve the upper or the lower bound for throttling number.

Theorem 3.12. Let G be an augmented double star on n vertices with n ≥ 12, and
let �G be any orientation of G. Then �2√n− 1	 < th( �G) < n.

Proof. From Corollary 3.11, since �G has n − 3 leaves and two vertices adjacent
to these leaves, a lower bound on the number of vertices in a zero forcing set is
n− 3− 2 = n− 5. Since n ≥ 12, we have n− 5 > �2√n− 1	, so �2√n− 1	 < th( �G).

To upper bound th( �G), first recall that there are two vertices adjacent to leaves
and one vertex adjacent to both of those vertices. Label them a, b, and w, respec-
tively. Let a′ be a leaf adjacent to a and b′ be a leaf adjacent to b. Color all vertices
in �G except a, a′, b, and b′. If a′ is a source, color it blue; otherwise, color a blue. Sim-
ilarly, if b′ is a source, color it blue; otherwise, color b blue. The remaining two white
vertices can be forced in a single time step, meaning th( �G) ≤ (n− 2) + 1 < n.

In this section, we introduced the concept of an orientation throttling interval,
proved its fullness for all simple graphs, and provided examples of graph families
with different orientation throttling intervals. While paths are one of the most basic
types of graph families, determining the maximum value of the OTI of a path actually
proves to be rather difficult. In Section 4, we investigate this further.

4 Throttling on alternating paths

In Remark 3.8, we found an upper bound on the throttling number of an oriented
path. Note that a tight upper bound must be at least the throttling number of any
particular orientation. This section is dedicated to finding an exact formula for the
throttling number of a specific orientation of paths.

Definition 4.1. An alternating path on n vertices is an orientation of Pn where
every vertex is either a source or a sink. Note that, when n is even, the reversal of
this graph is equivalent to the original graph, which is not the case when n is odd.
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We now compute an exact formula for the throttling number of an alternating
path �Pn in terms of n. To start this process, we utilize another known color change
rule.

Definition 4.2. [7] Suppose G is an undirected graph with B ⊆ V (G) colored blue
and V (G) \ B colored white. Let W1,W2, . . . ,Wk be the sets of white vertices in
the components of G−B respectively. The positive semidefinite (PSD) color change
rule states that if v ∈ B and wi ∈ Wi is the only white neighbor of v in G[B ∪Wi],
then v can force wi to become blue.

The PSD propagation time of a set of vertices B in a graphG is denoted pt+(G;B)
and the PSD throttling number of G is denoted th+(G).

Remark 4.3. Consider the way that PSD zero forcing works on the path Pn. In each
time step, all blue vertices force all of their adjacent white vertices simultaneously
(note that in PSD zero forcing, each vertex is no longer limited to only performing
one force).

Remark 4.3 is intrumental for most of the results in this section. For example,
we can now quickly find the throttling number of an odd alternating path.

Proposition 4.4. For an alternating path �Pn where n is odd, th(�Pn) = n−1
2

+⌈√
n+ 1− 1

2

⌉
.

Proof. Without loss of generality, we consider the alternating path on n vertices
�Pn where both endpoints are sinks. We can do this because th(�Pn) = th(�P T

n ) by

Theorem 2.13. The orientation �Pn has a total of n−1
2

sources which must be colored
blue initially. Note that the set of sources alone is not a zero forcing set since no forces
can occur because each source is adjacent to two sinks. Thus, we must initially color
some of the sinks blue as well. For this orientation, coloring a sink blue causes the
adjacent sources to simultaneously force the sinks immediately to the left and right
respectively (so long as they exist and have not yet been colored blue themselves).
Ignoring the sources, this is an identical process to PSD forcing on an undirected
path with n+1

2
vertices as described in Remark 4.3, where the vertices of this path

represent the n+1
2

sinks in �Pn. Thus, the throttling number of �Pn is the sum of the
n−1
2

sources and the PSD throttling number of a path with n+1
2

vertices. By Theorem

3.2 from [7], this gives us that th(�Pn) =
n−1
2

+
⌈√

n + 1− 1
2

⌉
.

While throttling an alternating path on an odd number of vertices is relatively
straightforward, the structure of an alternating path on an even number of vertices
makes the problem more difficult. We construct an auxiliary path to help us overcome
this issue.

Remark 4.5. Note that an alternating path �Pn on n vertices where n is even has n
2

sources, all of which must be blue initially in order to force the entire path. As in the
proof of Proposition 4.4, throttling the remaining n

2
vertices is akin to PSD throttling
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on an undirected path with n
2
vertices. However, in this case, the endpoint that is

a source will begin forcing the remaining n
2
white sinks immediately. To account for

this, we construct an undirected path P ′ on 1 + n
2
vertices and initially color one of

the endpoints blue, which we call u0. The vertex u0 corresponds to the endpoint in
�Pn that is a source, while all of the other vertices in P ′ represent the sinks in �Pn.
With this construction, any standard zero forcing process on �Pn is equivalent to some
PSD forcing process on P ′ where u0 is blue initially. An example of this equivalence
is depicted in Figure 9 with corresponding zero forcing sets shown in blue. Thus,
we can determine th(�Pn) by first minimizing |B′| + pt+(P

′;B′) where B′ is a PSD
zero forcing set of P ′ that contains u0, then adding n

2
to account for the remaining

sources and subtracting one to avoid counting u0 twice.

u0 u1 u2 u3

Figure 9: The top graph is the alternating path �P6. The bottom graph is
the corresponding path P ′, as constructed in Remark 4.5.

Next, we compute lower and upper bounds for the throttling number of an even
alternating path, which we later show to be equivalent.

Proposition 4.6. Suppose n is an even positive integer and p =
√
n+1−1
2

. Then, an

alternating path �Pn satisfies th(�Pn) ≥ n
2
+ �2p	 .

Proof. By Remark 4.5, it is sufficient to obtain a lower bound for |B′|+ pt+(P
′;B′)

where P ′ is the auxiliary path for �Pn and B′ is a PSD zero forcing set that contains
u0. Let x = |B′ \ {u0}| ≥ 0 be the number of vertices that are initially colored blue

in P ′ other than u0. Note that x is also the number of sinks in �Pn initially colored
blue and the total number of initially blue vertices in �Pn is n

2
+ x. Since u0 creates

one forcing chain in P ′ and each of the x other blue vertices can create at most
two forcing chains, the largest number of vertices that can be forced using PSD zero
forcing on P ′ during a single time step is 2x+ 1.

Let t′ = pt+(P
′;B′). As B′ forces the entire graph in t′ time steps, it follows that

x+ 1 + t′(2x+ 1) ≥ |V (P ′)| = n
2
+ 1. Solving for x yields

x ≥
n
2
− t′

2t′ + 1
.

To find the throttling number on the throttling number of P ′, we minimize x + t′.
By the previous inequality,

x+ t′ ≥
n
2
− t′

2t′ + 1
+ t′ := f(t′).
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This means that x + t′ ≥ min
a∈R

{f(a)}. If we differentiate f(t′) with respect to t′, we

find that f has a critical point at t′ =
√
n+1−1
2

= p. Taking the second derivative
of f and substituting p for t′ yields a positive value, meaning t′ = p is a minimum.
Therefore,

|B′| − 1 + t′ = x+ t′ ≥
n
2
− p

2p+ 1
+ p = 2p

which means that 2p+1 is a lower bound for |B′|+pt+(P
′;B′). Since |B′|+pt+(P

′;B′)
is necessarily an integer, we have that

|B′|+ pt+(P
′;B′) ≥ �2p+ 1	 = �2p	+ 1. (1)

Now suppose B ⊆ V (�Pn) satisfies th(�Pn) = |B|+ pt(�Pn;B) and let B′ be the corre-
sponding PSD zero forcing set in P ′. Therefore, by Remark 4.5 and the inequality
in (1),

th (�Pn) = |B|+ pt(�Pn;B) = |B′|+ n

2
− 1 + pt+(P

′;B′)

≥ �2p	 + 1 +
n

2
− 1 =

n

2
+ �2p	 .

Proposition 4.7. Suppose n is an even positive integer and p =
√
n+1−1
2

. Then, the

alternating path �Pn satisfies

th(�Pn) ≤ n

2
+

⌈ n
2
− �p	

2 �p	+ 1

⌉
+ �p	 .

Proof. As described in Remark 4.5, construct the auxiliary path P ′. For each 1 ≤
i ≤ n

2
, let ui be the i

th vertex after u0 in P ′ (see Figure 9). We now construct a PSD
zero forcing set B′ of P ′ with pt+(P

′;B′) ≤ �p	 as follows. Starting with u0, color

every (2 �p	 + 1)th vertex of P ′ blue, i.e., u0, u2�p�+1, . . . , uj where j = m(2 �p	+ 1)
and

m =

⌊ n
2

2 �p	+ 1

⌋
≥ 0.

This leaves a tail of k = n
2
− j white vertices after uj where 0 ≤ k ≤ 2 �p	. If

�p	 < k ≤ 2 �p	, color the endpoint un
2
of P ′ blue. Let B′ be the resulting set of

blue vertices in P ′. By construction of B′ (see Example 4.8), all forcing chains are
of length at most �p	 where each blue endpoint begins forcing in one direction while
the other blue vertices begin forcing in two directions. Thus, pt+(P

′;B′) ≤ �p	.
Next, we consider the size of B′. Excluding u0 and the �p	 vertices in the forcing

chain started by u0, there are n
2
− �p	 remaining vertices in P ′. By how B′ is

constructed, the first m − 1 vertices that were colored blue after u0 are each the
unique blue vertex in a set of 2 �p	 + 1 consecutive vertices. If 0 ≤ k ≤ �p	 or
�p	 < k ≤ 2 �p	, then

m− 1 <
n
2
− �p	

2 �p	+ 1
≤ m or m <

n
2
− �p	

2 �p	+ 1
< m+ 1,
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respectively. Also, if 0 ≤ k ≤ �p	, then we have m + 1 initially blue vertices in P ′;
otherwise, we have m + 2 initially blue vertices. In both cases, the number of blue
vertices is ⌈ n

2
− �p	

2 �p	 + 1

⌉
+ 1,

which corresponds to the number of sinks we color in �Pn and its endpoint that is a
source. Let B be the set of initially blue vertices in �Pn that corresponds to B′ in P ′.
By Remark 4.5,

th(�Pn) ≤ |B|+ pt(�Pn;B) = |B′|+ n

2
− 1 + pt(�Pn;B

′)

≤
⌈ n

2
− �p	

2 �p	 + 1

⌉
+ 1 +

n

2
− 1 + �p	 =

n

2
+

⌈ n
2
− �p	

2 �p	+ 1

⌉
+ �p	 .

Example 4.8. An example of the construction of B′ in the proof of Proposition
4.7 is shown in Figure 10. For n = 16, �p	 = 2. Note that we start by coloring
u0 and skip over 2 �p	 vertices each time. Also, uj = u5 = u2�p�+1, so m = 1 and
k = 3 > �p	. Thus, we color u8 at the end.

u0 u1 u2 u3 u4 u5 u6 u7 u8

Figure 10: The auxiliary path P ′ for �P16 is shown with PSD zero forcing set
B such that pt+(�P16;B) ≤ �p	 = 2.

We now have upper and lower bounds on the throttling number of an even alter-
nating path, which we can show are equal to obtain an exact formula. To do so, we
need the following fact.

Remark 4.9. [11, page 72] Let m and n be integers such that n > 0. Then, for any
x ∈ R, ⌈

m+ �x	
n

⌉
=

⌈
m+ x

n

⌉
.

Theorem 4.10. For an alternating path �Pn where n is even,

th(�Pn) =
n

2
+
⌈√

n+ 1− 1
⌉
.

Proof. Let n be a positive even integer and p =
√
n+1−1
2

. Note that n = 4p2+4p. From

Propositions 4.6 and 4.7, we have an upper and lower bound for th( �Pn). Thus, it is
sufficient to prove that these bounds are equal, which after algebraic manipulation
and substitution is equivalent to proving

⌈
2p2 + 2p− �p	

2 �p	+ 1
+ �p	

⌉
= �2p	 . (2)
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We will first bound the value under the ceiling on the left side of equation (2)
below by 2p. The lower bound of 2p can be shown with this series of equivalent
statements:

2p2 + 2p− �p	
2 �p	 + 1

+ �p	 ≥ 2p (3)

⇐⇒ 2p2 + 2 �p	2 − 4p �p	
2 �p	+ 1

≥ 0

⇐⇒ 2p2 + 2 �p	2 − 4p �p	 ≥ 0 (since 2 �p	 + 1 > 0)

⇐⇒ 2(p− �p	)2 ≥ 0.

We know 2(p− �p	)2 ≥ 0 is always true, so the lower bound of 2p given by (3) must
be true.

Now, we split into 2 cases. First, suppose �2p	 = �2 �p		. This case motivates us
to bound the expression on the left side of (3) above by 2 �p	. This upper bound is
clear:

2p2 + 2p− �p	
2 �p	+ 1

+ �p	 ≤ 2 �p	2 + 2 �p	 − �p	
2 �p	+ 1

+ �p	 = 2 �p	 ,
since �p	 ≥ p and 2 �p	+ 1 > 0. Thus, taking this with (3) gives us

2p ≤ 2p2 + 2p− �p	
2 �p	+ 1

+ �p	 ≤ 2 �p	 .

This equivalence follows since �2p	 = �2 �p		, which proves (2):

�2p	 =
⌈
2p2 + 2p− �p	

2 �p	+ 1
+ �p	

⌉
= �2 �p		 .

Alternatively, suppose �2p	 = �2 �p	 − 1	, which is equivalent to −1 < p− �p	 ≤
−1

2
. This case motivates us to bound the expression from the left side of (3) above

by 2 �p	 − 1. We do this with the following equivalent statements:

2p2 + 2p− p− 1

2 �p	+ 1
+ �p	 ≤ 2 �p	 − 1 (4)

⇐⇒ 2p2 + p− 2 �p	2 + �p	
2 �p	+ 1

≤ 0

⇐⇒ 2p2 + p− 2 �p	2 + �p	 ≤ 0 (since 2 �p	+ 1 > 0)

⇐⇒ (p+ �p	)(2(p− �p	) + 1) ≤ 0

⇐⇒ 2(p− �p	) + 1 ≤ 0. (since p+ �p	 > 0)

We see that 2(p − �p	) + 1 ≤ 0 is always true since −1 < p − �p	 ≤ −1
2
, so (4) is

true. Additionally, observe that⌈
2p2 + 2p− �p	

2 �p	 + 1

⌉
=

⌈
2p2 + 2p+ �−p− 1	

2 �p	 + 1

⌉
=

⌈
2p2 + 2p− p− 1

2 �p	 + 1

⌉
.
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The first equality is due to the fact that −�p	 = �−p− 1	 when −1 < p−�p	 ≤ −1
2
.

The second equality follows from applying Remark 4.9, which can be done since
2p2 + 2p = n

2
∈ Z and 2 �p	 + 1 ∈ Z

+. This, along with the bounds in (3) and (4),
gives us

�2p	 ≤
⌈
2p2 + 2p− �p	

2 �p	+ 1
+ �p	

⌉
=

⌈
2p2 + 2p− p− 1

2 �p	 + 1
+ �p	

⌉
≤ �2 �p	 − 1	 .

Since �2p	 = �2 �p	 − 1	 in this case, we obtain the equality in (2):

⌈
2p2 + 2p− �p	

2 �p	+ 1
+ �p	

⌉
= �2p	 .

Since (2) is true in both cases, th(�Pn) =
n
2
+
⌈√

n+ 1− 1
⌉
.

Note that if �Pn is an alternating path for some positive integer n, th(�Pn) is a lower
bound for the maximum value of the OTI of Pn. We conjecture that the alternating
path achieves this maximum value and the results that follow are tools that we build
which may aid in proving this conjecture.

Conjecture 4.11. Suppose n is a positive integer and �Pn is an alternating path.
Then, th(�Pn) = max(OTI(Pn)).

Proposition 4.12. Let �G be an oriented graph that has an arc (u, v) such that u is a

source and v is a sink. If the arc (u, v) is flipped to obtain �G0, then th( �G0) ≤ th( �G).

Proof. Let B be a zero forcing set of �G, and let F be a set of forces of B that achieves
th( �G) = |B| + pt( �G;F). Since u is a source, u ∈ B. There are now two cases to
consider.

First, suppose (u → v) /∈ F . Initially color B blue in �G0. Note that the only

vertices with different out-neighborhoods in �G0 are u and v. Specifically, u has lost
an out-neighbor and v has gained one, namely u. However, since u ∈ B, the set of
white out-neighbors of v remains the same. Also, each arc in F exists in �G0. As a
result, pt( �G0;F) ≤ pt( �G;F), so th ( �G0) ≤ |B|+pt( �G0;F) ≤ |B|+pt( �G;F) = th ( �G).

Now, suppose (u → v) ∈ F , which implies pt( �G;B) ≥ 1. Initially color

(B \ {u})∪ {v} blue in �G0. As in the previous case, u has lost a white out-neighbor
and v has gained a white out-neighbor, namely u. However, since v was a sink in
�G, the vertex u is the only out-neighbor of v in �G0, so v forces u in the first time
step. For any other vertex in V ( �G0), its white out-neighborhood in �G0 is a subset

of its white out-neighborhood in �G because none of these vertices have u as an out-
neighbor and v starts blue. Thus, all forces that occurred on the first time step in
�G can still occur on the first time step in �G0, excluding u → v but including v → u.



E. CAIRNCROSS ET AL. /AUSTRALAS. J. COMBIN. 84 (1) (2022), 1–27 25

After the first time step, all remaining forces in F can occur on �G0 without increasing
propagation time. Thus, it follows that

th ( �G0) ≤ |(B \ {u}) ∪ {v}|+ pt
(
�G0; (F \ {u → v}) ∪ {v → u}

)

≤ |B|+ pt( �G;F)

= th ( �G).

All cases have been exhausted. Thus, th ( �G0) ≤ th ( �G).

Corollary 4.13. Let �P be an oriented path with (u, v) ∈ E(�P ) such that both u

and v are neither sources nor sinks. If the arc (u, v) is flipped to obtain �P ′, then
th(�P ′) ≥ th(�P ).

Proof. Since u and v are neither sources nor sinks and �P is a path, both u and v
each have in-degree 1 and out-degree 1. After flipping (u, v), u is now a sink and v

is now a source in �P ′. By Proposition 4.12, th(�P ) ≤ th( �P ′) since �P can be obtained

from �P ′ by flipping the arc (v, u) between a source and a sink.

5 Concluding Remarks

It is clear that the throttling number of any undirected graph is bounded below by the
minimum throttling number of all of its orientations. Proposition 3.4 and Corollary
3.5 allow us to bound the throttling number of an undirected graph G above by the
maximum throttling number of all of its orientations if th(G) ≤ α(G)+1. However, it
remains to be shown whether th(G) is contained in the orientation throttling interval
of G whenever th(G) > α(G) + 1.

In Section 4, we studied the alternating path �Pn, which we conjecture to achieve
the maximum throttling number in OTI(Pn). We have verified this computation-
ally for n ≤ 14 (see [14]), but it still remains an open question whether this is true
for paths of any length. Proposition 4.12 and Corollary 4.13 may be useful starting
points since they characterize the behavior of the throttling number after performing
certain types of arc flips. However, not all oriented paths can be obtained from alter-
nating paths merely by performing these specific types of flips. Additionally, in many
cases there exist multiple orientations of a path that achieve the maximum throttling
number in the OTI. To aid in future computations, we share a public GitHub repos-
itory [14] containing multiple Sage programs which can calculate throttling number,
propagation time, terminus, OTI, and other parameters for a given graph or digraph.

Another question we have is whether we can generalize Conjecture 4.11 to all
bipartite graphs. In other words, is it true that for any bipartite graph, the upper
bound of that graph’s OTI is achieved when every vertex is either a source or a
sink? Note that, in a bipartite graph, it is possible to obtain such an orientation by
directing all arcs from one part to the other.
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Throttling has also been studied as a forbidden subgraph problem for undirected
graphs in [8]. Considering this problem for directed graphs, we found that if a graph
G on n vertices has C5, K2 ∪K2, K3 � P2, or a subgraph of K3 � P2 obtained by
deleting K3 edges, no orientation of G has throttling number n. However, a complete
characterization of forbidden subgraphs does not yet exist.
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