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Abstract

A signed graph G is a graph where each edge is assigned a + (positive
edge) or a − (negative edge). The signed degree of a vertex v in a signed
graph, denoted by sdeg(v), is the number of positive edges incident to
v subtracted by the number of negative edges incident to v. Finally, we
say G realizes the set D if D = {sdeg(v) : v ∈ V (G)}. The topic of
signed degree sets and signed degree sequences has been studied from
many directions. In this paper, we study properties needed for signed
trees to have a given signed degree set. We start by proving that D is
the signed degree set of a tree if and only if 1 ∈ D or −1 ∈ D. Further,
for every valid set D, we find the smallest diameter that a tree must have
to realize D. Lastly, for valid sets D with nonnegative numbers, we find
the smallest order that a tree must have to realize D.

1 Introduction

Every graph in this paper is finite, simple and undirected.

A signed graph is an ordered pair (G, s) where G is a graph and s : E(G) →
{−,+} is a function that assigns either a positive (+) or a negative (−) sign to
every edge. Further, we refer to an edge e as positive or negative if s(e) = + or
s(e) = − respectively. The notion of signed graphs was introduced by Harary [5],
and since then they have been widely studied (the interested reader is referred to
Zaslavsky [8]). This paper focuses in particular on signed degrees and signed degree
sets. The signed degree of a vertex v in a signed graph, denoted by sdeg(v), is the

∗ Corresponding author: ar2carbo@uwaterloo.ca

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License



A. CARBONERO ET AL. /AUSTRALAS. J. COMBIN. 84 (1) (2022), 111–123 112

number of positive edges incident to v subtracted by the number of negative edges
incident to v. For example, Figure 1 has a vertex v1 with signed degree +1. Moreover,
the signed degree set of a signed graph (G, s) is the set D = {sdeg(v) : v ∈ V (G)};
equivalently, we say that (G, s) realizes D. The graph in Figure 1, for example, has
signed degree set {1,−1}.

Figure 1: An example of a signed graph

The topic of signed degree sets stems from the study of signed degree sequences.
In [1], Chang et al. found necessary and sufficient conditions needed for an integral
sequence to be the signed degree sequence of a signed graph, while noting that a
polynomial time algorithm that verifies this condition could be designed. In the
same paper, the authors repeat the result but restricted to the case of signed trees.
In [7], Naikoo and Pizada characterized the signed degree sequences of k−partite
graphs. In the same paper, the authors prove that every set of integers is the signed
degree set of some k−partite graph. Another related subject is studying net regular
graphs: those graphs G for which there exists a σ such that (G, σ) realizes a set
D with |D| = 1. This concept has been studied [3, 4, 6] from various perspectives,
including its relationship to the spectrum of graphs, regularity degree-wise, and a
characterization of net-regular trees.

In this paper, we investigate, for a given degree set D, the minimum diameter
that a tree T must have to be the underlying graph of a signed tree (T, s) that realizes
D. We also study the same question but in regards to the order of T . We start the
paper in Section 2 by determining which sets are valid, i.e. the sets that can be
realized by a signed tree. In Section 3, we identify the minimum diameter needed
when given an arbitrary valid signed degree set. Finally, in Section 4, we repeat this
process but for order. Although we have limited results in Section 4, we were able to
find the minimum order of signed degree sets that consist of non-negative numbers.
In Section 5 we conclude the paper with a conjecture.

Throughout the paper we refer to vertices with degree 1 as pendant vertices.
To simplify our notation on signed degree sets, we will always use the variables
x1, x2, x3, . . . and so on to refer to positive integers greater than 1. Similarly, we
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use the variables y1, y2, y3, . . . and so on to refer to negative integers less than −1.
Finally, we use z1, z2, z3, . . . and so on to refer to any integer but 1 and −1.

2 Valid Sets

Before we discuss optimization of diameter and order, we must first determine which
sets can be considered. An important property of trees is that they have at least
two pendant vertices. Since pendant vertices have degree one, they will be incident
to either a negative or positive edge, which leads us to the following observation.

Observation. If 1 6∈ D and −1 6∈ D, then D cannot be the set of signed degrees of
a signed tree.

We can take it a step further and consider the following lemma. For it, we will
use the notation CT (n1, . . . , nm), where ni > 0, to denote the caterpillar CT where
any longest path P : v0, . . . , vm+1 has deg(vi) = ni for i 6= 0 and i 6= m+1, and every
other vertex in CT has degree 1.

Lemma 2.1. There exists a signed tree (T, s) that realizes D if and only if either
−1 ∈ D or 1 ∈ D.

Proof. As noted before, if a signed tree (T, s) realizes D, then −1 ∈ D or 1 ∈ D.
For the other direction, assume that −1 ∈ D or 1 ∈ D. Proving that there exists a
tree (T, s) that realizes D implies that there exists a tree that realizes {−n : n ∈ D}
(we simply invert every sign in (T, s)). Thus, it suffices to prove the theorem when
1 ∈ D and −1 ∈ D, and when 1 ∈ D but −1 6∈ D. We split the proof into these two
cases.

Case 1: Assume 1,−1 ∈ D, and assume 0 6∈ D (we deal with 0 at the end of
the case). Let D contain n positive integers and m negative integers, none equal to
1 or −1. The cases where n = 0 or m = 0 follow from the case where n > 0 and
m > 0 as the signed degree of a vertex v can be changed to 1 by adding sufficient
pendant vertices to v and assigning the appropriate signs to the new edges. Let
D = {1,−1, x1, . . . , xn, y1, . . . , ym}. We will construct a signed tree that realizes this
set.

Let CT := CT (x1, . . . , xn, |y1| + 4, . . . , |ym| + 4) be a caterpillar where P =
v0, . . . , vn+m+1 is a longest path. Without loss of generality, let deg(vi) = xi for
1 ≤ i ≤ n, and let deg(vn+i) = |yi| + 4 for 1 ≤ i ≤ m. We will define a function
s : E(CT )→ {+,−} such that (CT, s) realizes D. For an edge e in CT , define s as
follows.

s(e) =

{
+ if e is contained in P , or e is incident to a vertex vi where 1 ≤ i ≤ n,

− otherwise.

Hence sdeg(vi) = xi for 1 ≤ i ≤ n, and sdeg(vi) = 2−(2+|yi|) = yi for n+1 ≤ i ≤ m.
Since every other vertex has degree 1 or −1, (CT, s) realizes D. To account for 0,



A. CARBONERO ET AL. /AUSTRALAS. J. COMBIN. 84 (1) (2022), 111–123 114

let D′ = D ∪ {0}. Let v be a pendant vertex in CT . Attach a new vertex v′ to v,
and extend s so that s(vv′) = −. Now (CT, s) realizes D′, finishing this case.

Case 2: Assume 1 ∈ D but −1 6∈ D. Let (T, s) be a tree that realizes D ∪ {−1}
(whose existence follows from Case 1). Let T ′ be the tree constructed from T such
that for every vertex v ∈ T where sdeg(v) = −1, we attach two new vertices v1, v2 to v
in T ′, and let s′ be the extension of s so that s(vvi) = + for i ∈ {1, 2}. Consequently,
no vertex in (T ′, s′) has signed degree −1, and every new vertex has signed degree 1.
It follows that (T ′, s′) realizes D.

As a consequence of this lemma we know which degree sets are of interest to us:
the ones with −1 or 1. We thus define these sets as valid sets. Having established
this fact, we are able to delve into optimization.

3 Minimum Diameter for a Tree

There are infinitely many signed trees that realize a given valid degree set D. From
these signed trees, we start by studying the ones with optimal diameter.

Definition 3.1. Let D be a valid set. Define its diameter, denoted by diam(D),
as the smallest diameter that the underlying tree of a signed tree must have so it
realizes D, or equivalently:

diam(D) = min{diam(T ) : the signed tree (T, s) realizes D}.

Further, a signed tree (T, s) is optimal if diam(T ) = diam(D).

Definition 3.2. We denote the bipartite graph K1,n as ST (n). It follows that ST (n)
is a tree, and (ST (n), s) is a signed tree of diameter 2.

We invite the reader to verify that diam({1, 0}) = 3 and that diam({1, x}) = 2
for x > 1.

We start by considering degree sets that are composed of only positive values.

Theorem 3.3. If D = {1, x1, . . . , xn}, then

diam(D) =


2 if n = 1

3 if n = 2

4 if n > 2.

Proof. Throughout this proof, always assume s maps every edge to a +. When
n = 1, the signed graph (ST (x1), s) realizes D and has diameter 2, and evidently
no signed tree with diameter 1 can realize D. For n = 2, attach x2 − 1 vertices
to a pendant vertex in ST (x1). The resulting signed tree will realize D and have
diameter 3. Diameter 2 for this set is not possible because trees of diameter 2 are
stars, and stars only have one vertex with degree higher than 1. Similarly, trees
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with diameter 3 have exactly 2 vertices whose degree is not equal to 1, so no signed
tree of diameter 3 can realize a set D when n > 2. In other words, when n > 2, it
must be that diam(D) ≥ 4. It remains to show that diam(D) ≤ 4. Assume that
x1 < x2 < · · · < xn, and notice that since x1 > 1, it must be that xn > n. Starting
with ST (xn), attach xi vertices to a pendant vertex of ST (xn) for each i ∈ [n − 1].
Since xn > n, there will be enough pendant vertices of ST (xn) to do this. Call this
resulting tree T . Observe that (T, s) realizes D and has diameter 4, thus proving
that diam(D) ≤ 4.

Figure 2: An optimal signed tree by Theorem 3.3 given the set D={1, 4, 5}

Building off this theorem, we consider what changes must be made to a tree de-
scribed in Theorem 3.3 (and that can be seen in Figure 2) in order for it to accommo-
date a vertex of signed degree 0. As previously noted, we know that diam({1, 0}) = 3,
which we now know is higher than the diameter of {1, x} for x > 1. So, when adding
additional positive values to the degree set of {1, 0}, the behavior of optimal diam-
eter closely matches that of the previous theorem. In particular, the diameter of
{1, 0, x1, . . . , xn} is the same as the diameter of {1, x1, . . . , xn+1} when n ≥ 1. We
invite the reader to verify the following.

Corollary 3.4. If D = {1, 0, x1, . . . , xn}, then

diam(D) =

{
3 if n = 1

4 if n > 1

This technique of using simpler degree sets to prove results of more intricate ones
will repeat many times throughout the paper.

Moving to negative values, we want to prove in general that if −1 6∈ D and if
(T, s) realizes D, then vertices far away from the center of T cannot have negative
signed degrees. The following definition helps us formalize this notion.

Definition 3.5. A vertex v in a tree T is called a limiting pendant vertex if it is a
pendant vertex in a longest path of the tree (see Figure 3).
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Figure 3: A tree with limiting pendant vertices labelled pi, 1 ≤ i ≤ 5.

Lemma 3.6. Let (T, s) be a signed tree that realizes a set D where −1 6∈ D. If v is a
vertex in T with negative signed degree, then v is not a pendant vertex nor adjacent
to a limiting pendant vertex.

Proof. We proceed by contradiction. Let v be a vertex such that v is adjacent to
limiting pendant vertex p while sdeg(v) = y < 0. Let S be a longest path in T
containing p. To realize y, the vertex v must be incident to at least |y|+ 1 negative
edges since sdeg(vp) = +. Note that S may contain at most 1 of these negative
edges, so there exists a vertex w such that s(vw) = − and w is not a vertex in
S. This, however, implies that w is a pendant vertex by the maximality of S, so
sdeg(w) = −1, contradicting that −1 6∈ D.

The first case of degree sets D with negative values that we will consider is the
one where 1 is the only positive value in D. A signed tree that realizes such a degree
set must have pendant vertices with positive signed degree. As the following result
confirms, this implies that we need a larger diameter.

Lemma 3.7. If (T, s) is a signed tree that realizes D = {1, y1, . . . , ym}, then

diam(T ) ≥


4 if m = 1.

5 if m = 2.

6 if m > 2.

Proof. In a tree of diameter 3, there exists no vertex that is neither a pendant vertex,
nor adjacent to a limiting pendant vertex. By Lemma 3.6, a signed tree of diameter
3 that realizes a set without −1 cannot have a vertex of negative signed degree, so
if m = 1, then diam(T, s) ≥ 4. For the case when m = 2, notice that a tree of
diameter 4 or less there exists at most one vertex that is neither a pendant vertex
nor adjacent to a limiting pendant vertex. By Lemma 3.6, a signed tree of diameter
4 that realizes a set without −1 cannot have two vertices of negative signed degree,
so diam(T, s) ≥ 5. A similar logic can be used to prove the case where m > 2.
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Our penultimate case is the one where D may contain any integer with the
exception of −1. As the proof of Theorem 3.8 demonstrates, the fact that negatives
require such a big diameter allows us to add positive numbers to the signed degree
set without changing this parameter.

Figure 4: An optimal signed tree that realizes the degree set D =
{1,−4,−5} constructed from the tree in Figure 2.

Theorem 3.8. If D = {1, y1, . . . , ym, x1, . . . , xn} where m ≥ 1 and n ≥ 0 (where if
n = 0, then D = {1, y1, . . . , ym}), then diam(D) = diam(D ∪ {0})) and

diam(D) =


4 if m = 1

5 if m = 2

6 if m > 2.

Proof. Consider the case when m = 1. Let D′ = {−1, y1}. Let (T, s) be the signed
tree where T = ST (|y1|) and where s assigns a − to every edge. Note that (T, s) real-
izes D′. Let c refer to the vertex in T such that deg(c) = |y1|. Let P = {p1, . . . , p|y1|}
be the set of pendant vertices in T . For each i ∈ {1, . . . , |y1|}, attach two vertices to
pi, and extend s so it assigns + to the corresponding new edges. This will change
every vertex with signed degree of −1 to signed degree of 1, thus making (T, s) now
realize {1, y1}. For an example of this construction, but applied to the case when
m = 2, see Figure 4. Note that this process will increase the diameter of T to 4. Fi-
nally, to make the tree realize D, we will use a procedure that we first illustrate with
x1. Attach two new vertices u1 and u2 to c such that s(u1c) = − and s(u2c) = +.
This way the signed degree of c remains unchanged. Attach x1 + 1 vertices to u1,
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and let s assign + to these new edges. This makes the signed degree of u1 be x1. In
other words, (T, s) now realizes {1, x1, y1}. Observe that the diameter of T will not
increase using this procedure. Continuing in this manner for every xi ∈ D, we see
that we can modify (T, s) so that it realizes D while still having diameter 4. This
proves that diam(D) ≤ 4, and by Lemma 3.7, we have the result for m = 1.

We can use a similar technique when m = 2. We start with a signed tree (T, s)
as described in Theorem 3.3 that realizes D′ = {−1, y1, y2}, and we modify it so it
realizes {1, y1, y2} with diameter 5. Further, since the diameter is greater than 4,
we can apply the same method as the prior case where we modify the tree so it has
a vertex with signed degree xi while maintaining the diameter. Explicitly, we let c
be the center of the tree, and repeat the procedure of the previous paragraph. This
gives the desired upper bound while Lemma 3.7 gives the desired lower bound. This
technique also works when m > 2.

Figure 5: The signed graph on the left realizing D = {1,−1,−2, 2}, and
the signed graph on the right realizing D = {1, 5, 6}

.

Our final and most general case for the optimization of diameter is signed degree
sets that contain 1 and −1 along with z1, . . . , zn, where the numbers zi are meant to
denote distinct integer not equal to 1 or−1. The crux of this proof lies in the fact that
the result matches that of Theorem 3.3. In short, these results are similar because
it is possible to build an optimal tree that realizes a degree set {1,−1, z1, . . . , zn} by
modifying an optimal tree that realizes {1, x1, . . . , xn}.

Theorem 3.9. If D = {1,−1, z1, . . . , zn}, then

diam(D) =


2 if n = 1

3 if n = 2

4 if n > 2.

Proof. Let (T, s) be an optimal signed tree that realizes D. Further, set ∆ = ∆(T ),
the maximum degree of T , and let D′ = {1,∆ + 1, . . . ,∆ + n}. We will show that
diam(D) = diam(D′), which by Theorem 3.3 will give us the result.
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To prove that diam(D′) ≤ diam(D), we will show that we can create a tree
(T ′, s′) that realizes D′ from (T, s) such that diam(T ) = diam(T ′). This would suffice
because of the fact that diam(D′) ≤ diam(T ′) = diam(T ) = diam(D). To construct
(T ′, s′), we start by setting F as a tree such that F ∼= T . Let V = {v1, . . . , vn} be a
collection of non-pendant vertices in F . Define F ′ as that tree that outcomes from
attaching ∆ + i − degF (vi) new vertices to each vertex vi. Finally, let T ′ be that
tree that outcomes from attaching to every non-pendant vertex w /∈ V in F ′ the
quantity of ∆ + 1− degF ′(w) new vertices. Notice that every nonpendant vertex of
T has been changed when compared to T ′. Moreover, for every valid i, note that
degT ′(vi) = ∆+i, and for every non-pendant vertex w /∈ V we have degT ′(w) = ∆+1.
Thus, if s′ assigns + to every edge in T , then (T ′, s′) realizes D′. Since we added
vertices only to non-pendant vertices, it must be that diam(T ) = diam(T ′). For an
illustration of a signed graph (T, s) and (T ′, s′), see Figure 5.

To prove that diam(D) ≤ diam(D′), we start by letting (H, s) be an optimal
signed tree that realizes D′. We will show that we can create a signed tree (H ′, s′)
that realizes D such that diam(H ′) = diam(H). Let pi = ∆ + i− zi, and notice that
pi > 0. Set V = {v1, . . . , vn} as a set of vertices in H such that sdeg(vi) = ∆ + i,
and let G be that tree that outcomes from attaching pi new vertices to vi. Finally,
for each non-pendant vertex w in H such that w 6∈ V , let H ′ be that tree that
outcomes from attaching |sdegH(w)|+ 1 vertices [to w]. It remains to define s′. Set
s′ as the extension of s where edges in E(G) \ E(H) get assigned a −, and edges
in E(H ′) \ E(G) get assigned a + if sdegH(w) < 0 or a − if sdegH(w) > 0. Notice
then that sdegH′(vi) = ∆ + i − (∆ + i − zi) = zi, and for nonpendant vertices
w 6= vi we have that sdegH′(w) = 1 because of our choice of the sign that s assigns
to the new edges incident to w in H ′. Every other vertex will be pendant vertices
because they were either pendant vertices in H, or they were vertices added in the
construction, and since we did not add vertices to new ones, they have remained
pendant. Thus, (H ′, s′) realizes D. Since we only attached vertices to non-pendant
vertices, diam(H ′) = diam(H). This concludes the proof as diam(D) ≤ diam(H ′) =
diam(H) = diam(D′).

4 Minimum Order for a Tree

We now shift our attention to optimizing order, where the order of a graph G is
denoted by σ(G). Similar to the previous section, we want to optimize order while
realizing a given degree set D.

Definition 4.1. Let D be a valid set. Define its order, denoted by σ(D), as the
smallest order that the underlying tree of a signed tree must have so that it realizes
D, or equivalently:

σ(D) = min{σ(T ) : the signed tree (T, s) realizes D}.

Further, a signed tree (T, s) is now optimal when σ(T ) = σ(D) (so it no longer refers
to diameter).
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Unlike our diameter section, we have not found the minimum order for every
possible valid set D. Although conjecturing the optimal order is somewhat easy,
proving an equation gives optimal order demonstrated being hard. We have solved
only two cases, the first case encompassing only positive integers, and the second
case of positive integers and zero. The former case, as with diameter, is the simplest
one.

Theorem 4.2. If D = {1, x1, . . . , xn}, then σ(D) = 2− n+
∑
xi.

Proof. We will prove the theorem by induction. For n = 1, notice that (ST (x1), s),
where s assigns positives to every edge, is a tree of least order that realizes D, and
that σ(ST (x1)) = x1 + 1 which satisfies the formula. Assume that the result holds
for n − 1. Let (T, s) be a tree that realizes D with optimal order. Further, let p
be a limiting pendant vertex, and set v as the vertex adjacent to p. Since every
signed degree is positive and the tree is optimal, then every edge must be positive. It
follows that deg(v) = xa for some a. If we let T ′ be that tree obtained by removing
every pendant vertex adjacent to v, then T ′ stays connected and v becomes a pendant
vertex in T ′ since p was a limiting pendant vertex. Further, it cannot be the case that
(T ′, s|E(T ′)) realizes D since σ(T ′) < σ(T ), so it must be that (T ′, s) realizes D−{xa}.
By the induction hypothesis, σ(T ′) = 2− (n− 1) +

∑
xi − xa. This, combined with

the fact that σ(T ′) = σ(T )− (xa − 1), completes the inductive step.

Even though σ(D) for positives and zero has a very similar expression to that of
just positives (see Theorem 4.7), the proof of Theorem 4.7 is much harder. We first
need to establish two results about the structure of every optimal tree that realizes
a set with positive values and 0.

The proof technique we will use for these two results has the following structure:
to prove that every optimal signed tree of a set D realizes a statement P , we will
demonstrate that if there exists an optimal signed tree (T, s) that fails P , then
there exists a signed tree (T ′, s′) that realizes D and has the property that σ(T ′) <
σ(T ). This will be enough as it contradicts the fact (T, s) is optimal. Further, the
underlying tree T ′ will be based on T , having changes made through the “transfer”
of vertices. We formalize this in the following definition.

Definition 4.3. Let T be a tree with the distinct vertices u, v, and w. If uv ∈ E(T )
and the unique path between u and w includes v, then the graph T ′ that results from
transferring u to w is the graph with the following properties.

• V (T ′) = V (T ), and

• E(T ′) = E(T ) \ {uv} ∪ {uw}.

Notice that the condition of having v be in the path between u and w guarantees
that T ′ is a tree as well. Since multiple transfers usually occur in a single
proof, we will keep denoting the tree after the transfer also as T for the
sake of simplicity. The proofs and cases are short enough that hopefully the abuse
of notation will not cause confusion. In this paper, we use N(v) to refer to the
neighborhood of a vertex v.
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Lemma 4.4. If (T, s) is an optimal signed tree that realizes D = {1, 0, x1, . . . , xn},
and ab is an edge in T such that s(ab) = −, then sdeg(a) = sdeg(b) = 0.

Proof. Assume for a contradiction that a has signed degree k > 0. It follows that
there exist k + 1 vertices w1, . . . , wk+1 adjacent to a such that s(awi) = +. Transfer
the vertices in the set N(w1)−{a} to a pendant vertex p that realizes the conditions
for transfers (i.e. the transfer will not produce a cycle), and modify s so it assigns
the same respective sign to these new edges. Notice that the signed degree set of
(T, s) did not change. If we repeat this process again with w2, w3, . . . , wk−1, and wk

such that when dealing with wj we have p 6= wi with i < j, then T becomes a tree
where w1, . . . , wk are pendant vertices. Further, (T, s) will still realize the degree set
D. Finally, if we transfer w1, . . . , wk−1 of the vertices to a pendant vertex p′ 6= wk

and then delete wk, we notice that sdeg(p′) = k and that sdeg(a) = 0. Thus, T
still realizes D but its order has decreased, contradicting the assumption that T was
optimal at the beginning of the proof. We conclude that sdeg(a) = 0. The same
argument can be applied to b.

From now on, whenever a transfer happens in a signed tree, we also modify s so
it maintains the sign in the new edge unless otherwise stated.

Lemma 4.5. If (T, s) is an optimal signed tree that realizes D = {1, 0, x1, . . . , xn},
then there is only one edge e in T such that s(e) = −.

Proof. For a contradiction, assume that there exists an optimal tree T with at least
2 negative edges: u1v1 and u2v2, where the vertices are labeled such that the unique
path from u1 to u2 includes both negative edges. By Lemma 4.4, u1 has signed
degree 0, so there must exist a vertex w adjacent to u1 such that u1w is positive.
Transfer every vertex in N(u1)−{v1, w} to u2. This change will not affect the set that
(T, s) realizes because the signed degrees of u1 and u2 will not change. Transfer the
vertices in N(w)−{u1} to a pendant vertex p making sure p satisfies the conditions
for transfer. Again, notice that T still realizes D. However, if T ′ = T −{u1, w}, then
(T ′, s|E(T ′)) realizes D since sdeg(v2) = 0 by Lemma 4.4 and since deleting u1 only
changes the signed degree of v1 from 0 to 1. This contradicts the assumption that T
was of optimal order. Thus, there cannot be two negative edges in T .

The following corollary follows immediately from Lemma 4.4 and Lemma 4.5

Corollary 4.6. If uv is the unique negative edge in an optimal signed tree (T, s) that
realizes D, then deg(u) = deg(v) = 2.

We will denote the negative edge, and surrounding vertices, by G0, as illustrated
in Figure 6. This allows for a very simple proof of our last result. As with diameter,
we note that the result of a previous case facilitates the proof of another case.

Theorem 4.7. If D = {1, 0, x1, . . . , xn}, then σ(D) = 4− n+
∑
xi.
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Figure 6: The graph G0.

Proof. Let T be an optimal tree that realizes D. As noted, the graph G0 is an induced
subgraph of T , and s assigns the corresponding signs as indicated in Figure 6. There
are three cases:

Case 1: deg(u1) = 1. Consider the graph T ′ = T −{u1, u}. T ′ realizes D−{0}.
Further, T ′ is an optimal tree of D−{0} because if it was not, then T would not be an
optimal tree for D. Thus, σ(T ′) = σ(D−{0}) = 2−n+

∑
xi. Since σ(T ) = σ(T ′)+2,

the result holds.

Case 2: deg(u2) = 1. We can apply the same argument as in Case 1.

Case 3: deg(u1) 6= 1 and deg(u2) 6= 1. Let T1 and T2 be the two components of
T−uv, and let U and V be the set of signed degrees that (T1, s|E(T1)) and (T2, s|E(T2))
realize respectively. Notice that U ∪V = D−{0}, and that U −{1} and V −{1} are
mutually exclusive since T is optimal. Similarly, (T1, s|E(T1)) and (T2, s|E(T2)) must
also be optimal for U and V . Thus, by Theorem 4.2,

σ(T ) = σ(T1) + σ(T2)

= 2− (|U | − 1) +
∑
xi∈U

xi + 2− (|V | − 1) +
∑
xj∈V

xj

= 6− (|U |+ |V |) +
∑

xi

= 6− (n+ 2) +
∑

xi

= 4− n+
∑

xi.

5 Conclusion

We have studied two ways to optimize a signed tree, by diameter and by order. In
this paper, we found the optimal signed trees by diameter for any given valid degree
set. In addition, we found the optimal signed trees in regards to order for when the
degree set contains positives and when the degree set contains 0 and positives.

Future research directions include optimizing order for degree sets containing
negative values. Observe that the trees constructed in this paper to prove results
suggest that optimizing diameter requires a large order, and similarly optimizing
order requires a large diameter. We conjecture that if |D| > 2 and (T, s) realizes D,
then it is not possible to have both diam(T ) = diam(D) and σ(T ) = σ(D).
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