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Abstract

Assume G is a finite group such that |G| “ pqrs, where p, q, r and s are
distinct prime numbers, and let S be a minimal generating set of G, such
that |S| ě 3. We prove there is a Hamiltonian cycle in the corresponding
Cayley graph CaypG;Sq.

1 Introduction

In 1878 Arthur Cayley [1] introduced the definition of a Cayley graph. All graphs in
this paper are undirected and simple. (The graphs have no loops or multiple edges
or directions on the edges.)

Definition 1.1 ([11, Definition 1.1], cf. [7, p. 34]) Let S be a subset of a finite group
G. The Cayley graph CaypG;Sq is the graph whose vertices are elements of G, with
an edge joining g and gs, for every g P G and s P S.

The field of Cayley graphs has become a significant branch of algebraic graph
theory (see [10] for more information). Finding Hamiltonian cycles in Cayley graphs
is a fundamental question in graph theory, but in general it is extremely difficult.
There are many papers on the topic, but it is still an open question whether every
connected Cayley graph has a Hamiltonian cycle. (See survey papers [3, 12] for
more information.) In particular, a number of papers have shown that all connected
Cayley graphs of specific orders are Hamiltonian:

Theorem 1.2 ([11, 13, 16, 18]) Let G be a finite group. Every connected Cayley
graph on G has a Hamiltonian cycle if |G| has any of the following forms (where p,
q, and r are distinct primes):

(1) kp, where 1 ď k ď 47,

(2) kpq, where 1 ď k ď 7,

(3) pqr,

(4) kp2, where 1 ď k ď 4,

(5) kp3, where 1 ď k ď 2,

(6) pk, where 1 ď k ă 8.
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By the following theorem, every connected Cayley graph of order the product of
four distinct odd primes has a Hamiltonian cycle.

Theorem 1.3 ([15, Theorem 1.3]) If p, q, r, and s are distinct odd primes, then
every connected Cayley graph of order pqrs has a Hamiltonian cycle.

The theorem above requires all four primes to be odd. The goal of this paper is to
make progress toward removing this restriction, by proving certain cases where one
of the primes is 2. However, we add the assumption that the generating set of the
group contains a minimal generating set whose cardinality is greater than or equal
to 3.

Theorem 1.4 Assume G is a finite group of order pqrs with the generating set S,
where p, q, r, and s are distinct primes. If no 2-element subset of S generates G,
then CaypG;Sq contains a Hamiltonian cycle.

Remark 1.5 The case where p, q, r, and s are not distinct primes is still an open
problem. For instance, it is not known whether all connected Cayley graphs of order
9p2 or 3p3 are Hamiltonian.

Remark 1.6 To remove the restriction on the generating set of our result (Theo-
rem 1.4) and to complete the proof of the following problem “Every connected Cayley
graph of order pqrs (where p, q, r and s are distinct primes) are Hamiltonian”, it
would suffice to show that every connected Cayley graph of order 2pqr (where p, q,
and r are distinct odd primes) which has a minimal generating set of order 2, has a
Hamiltonian cycle.

2 Preliminaries

The purpose of this section is to introduce terminology and notation and to establish
some results that will be used in the proof of Theorem 1.4.

2.1 Notation and definitions

Throughout the paper, we have used standard terminology of graph theory and group
theory that can be found in textbooks, such as [7, 8].

The following notation is used in the paper:

• The commutator ghg´1h´1 of g and h is denoted by rg, hs.
• We will always let G1 “ rG,Gs be the commutator subgroup of G.

• We define G “ G{G1, g “ gG1 for any g P G, and S “ tg; g P Su for any S Ď G.

• We define G “ G{N , g “ gN for any g P G, and S “ tg; g P Su for any S Ď G.

• CG1pSq denotes the centralizer of S in G1.
• G ˙ H denotes a semidirect product of groups G and H , where H is normal.

• D2n denotes the dihedral group of order 2n.
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• e denotes the identity element of G.

• For S Ď G, a sequence ps1, s2, . . . , snq of elements of SYS´1 specifies the walk in
the Cayley graph CaypG;Sq that visits the vertices: e, s1, s1s2, . . . , s1s2 ¨ ¨ ¨ sn.
Also, ps1, s2, . . . , snq´1 “ ps´1

n , s´1
n´1, . . . , s

´1
1 q.

• We use ps1, s2, . . . , snq to denote the image of the walk ps1, s2, . . . , snq in
CaypG{G1;Sq
“ CaypG;Sq which is a Cayley graph on the quotient group G{G1.

• For k P Z
`, we use ps1, s2, . . . , smqk to denote the concatenation of k copies of

the sequence ps1, s2, . . . , smq.
• p, q, and r are distinct prime numbers.

• Cn denotes the cyclic group of order n.

• pG “ G{Cp, when Cp is a normal subgroup of G, we also let qG “ G{Cq when Cq is
a normal subgroup. Also, pg “ gCp, qg “ gCq, for any g P G, and pS “ tpg; g P Su,
qS “ tqg; g P Su for any S Ď G.

• If G “ pC2 ˆ Crq ˙ pCp ˆ Cqq, we let a2, ar, γp, and γq be elements of G that
generate C2, Cr, Cp, and Cq, respectively.

2.2 Basic methods

In this subsection, we will see some of the key ideas used to prove Theorem 1.4 which
is our main result.

The following well-known result handles the case of Theorem 1.4 where G is
abelian.

Lemma 2.2.1 ([2, Corollary on p. 257]) Assume G is an abelian group. Then every
connected Cayley graph on G has a Hamiltonian cycle.

Theorem 2.2.2 (Marušič [14], Durnberger [4, 5], and Keating-Witte [9]) If the
commutator subgroup G1 of G is a cyclic p-group, then every connected Cayley graph
on G has a Hamiltonian cycle.

The following lemma (and its corollary) often provide a way to lift a Hamiltonian

cycle in CaypG;Sq to a Hamiltonian cycle in CaypG;Sq. We introduce some useful
notation before stating the results.

Notation 2.2.3 Suppose N is a normal subgroup of G, and C “ ps1, s2, . . . , snq
is a walk in CaypG;Sq. If the walk ps1N, s2N, . . . , snNq in CaypG{N ;SN{Nq is
closed, then its voltage is the product VpCq “ s1s2 ¨ ¨ ¨ sn. This is an element of

N . In particular, if C “ ps1, s2, . . . , snq is a Hamiltonian cycle in CaypG;Sq, then
VpCq “ s1s2 ¨ ¨ ¨ sn.
Factor Group Lemma 2.2.4 ([19, Section 2.2]) Suppose:

• S is a generating set of G,
• N is a cyclic normal subgroup of G,
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• C “ ps1, s2, . . . , snq is a Hamiltonian cycle in CaypG;Sq, and
• the voltage VpCq generates N .

Then there is a Hamiltonian cycle in CaypG;Sq.
Corollary 2.2.5 ([6, Corollary 2.3]) Suppose:

• S is a generating set of G,
• N is a normal subgroup of G, such that |N | is prime,
• sN “ tN for some s, t P S with s ‰ t, and
• there is a Hamiltonian cycle in CaypG;Sq that uses at least one edge labeled s.

Then there is a Hamiltonian cycle in CaypG;Sq.
Lemma 2.2.6 [13, Lemma 2.8] Assume G “ H ˙ pCp ˆ Cqq, where G1 “ Cp ˆ Cq,
and let S be a generating set of G. As usual, let G “ G{G1 – H. Assume there
is a unique element c of S that is not in H ˙ Cq, and C is a Hamiltonian cycle in
CaypG;Sq such that c occurs precisely once in C. Then the subgroup generated by
VpCq contains Cp.
Lemma 2.2.7 ([11, Lemma 2.27]) Let S generate the finite group G, and let s P S,
such that xsy Ÿ G. If CaypG{xsy;Sq has a Hamiltonian cycle, and either

(1) s P ZpGq, or
(2) ZpGq X xsy “ teu,

then CaypG;Sq has a Hamiltonian cycle.

2.3 Facts from group theory

Throughout this subsection we state some facts in group theory, which are used to
prove our main result.

Lemma 2.3.1 ([17, Exercise 19 on page 43]) Assume |G| “ 2k, where k is odd.
Then G has a subgroup of index 2.

Corollary 2.3.2 Assume |G| “ 2k, where k is odd. Then |G1| is odd.
Proof. By Lemma 2.3.1, there is a normal subgroup H of G such that rG : Hs “ 2.
Now since G{H has order 2, it follows that G{H is abelian, so G1 Ď H . Therefore,
|G1| is odd. l

Proposition 2.3.3 ([8, Theorem 9.4.3 on page 146], cf. [6, Lemma 2.11]) Assume
|G| is square-free. Then:

(1) G1 and G{G1 are cyclic,
(2) ZpGq X G1 “ teu,
(3) G – Cn ˙ G1, for some n P Z

`,
(4) If b and γ are elements of G such that xbG1y “ G{G1 and xγy “ G1, then

xb, γy “ G, and there are integers m, n, and τ , such that |γ| “ m, |b| “ n,
bγb´1 “ γτ , mn “ |G|, gcdpτ ´ 1, mq “ 1, and τn ” 1 pmod mq.

Notation 2.3.4 For τ as defined in Proposition 2.3.3 (4),we use τ´1 to denote the
inverse of τ modulo m (so τ´1 ” τn´1 pmod mq).
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2.4 Cayley graphs that contain a Hamiltonian cycle

Within this subsection, we show that there exists a Hamiltonian cycle in some specific
Cayley graphs. The following proposition shows that in the proof of Theorem 1.4
we can assume |G| is square-free, because the cases where |G| is not square-free have
been already proved.

Proposition 2.4.1 Assume:

• |G| “ 2pqr, where p, q and r are distinct prime numbers, and
• |G| is not square-free.

Then every connected Cayley graph on G has a Hamiltonian cycle.

Proof. Without loss of generality we may assume r “ 2. Then |G| “ 4pq. Therefore,
Theorem 1.2 (2) applies. l

Proposition 2.4.2 ([20, Proposition 5.5]) If n is divisible by at most three distinct
primes, then every connected Cayley graph on D2n has a Hamiltonian cycle.

The following proposition demonstrates that we can assume |G1| in Theorem 1.4
is a product of two distinct prime numbers.

Proposition 2.4.3 [13, Proposition 2.22] Assume |G| “ 2pqr, where p, q and r
are distinct odd prime numbers. Now if |G1| P t1, pqru or |G1| is prime, then every
connected Cayley graph on G has a Hamiltonian cycle.

According to the following proposition we can assume |S| “ 3 to prove Theo-
rem 1.4.

Proposition 2.4.4 ([13, Proposition 3.10]) Assume |G| is a product of four distinct
primes and S is a minimal generating set of G, where |S| ě 4. Then CaypG;Sq
contains a Hamiltonian cycle.

Lemma 2.4.5 (cf. [6, Case 2 of proof of Theorem 1.1, pp. 3619-3620]) Assume

• G “ pC2 ˆ Crq ˙ pCp ˆ Cqq,
• |S| “ 3,

• pS is a minimal generating set of pG “ G{Cp,
• Cr centralizes Cq,
• C2 inverts Cq.

Then CaypG;Sq contains a Hamiltonian cycle.

Lemma 2.4.6 ([6, Lemma 2.9]) If G “ D2pq ˆ Cr, where p, q and r are distinct odd
primes, then every connected Cayley graph on G has a Hamiltonian cycle.
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2.5 Specific sets that generate G

This subsection presents a few results that provide conditions under which certain
2-element subsets generate G. Obviously, no 3-element minimal generating set can
contain any of these subsets.

Lemma 2.5.1 Assume G “ pC2ˆCrq˙G1, and G1 “ CpˆCq. Also, assume CG1pCrq “
Cq and Cq Ę CG1pC2q. If pa, bq is one of the following ordered pairs

(1) pa2amr γq, a2ajrγk
q γpq, where m ı 0 pmod rq and k ı 1 pmod qq,

(2) pa2amr γq, ajrγk
q γpq, where m ı 0 pmod rq and k ı 0 pmod qq,

(3) pa2amr , ai2ajrγk
q γpq, where m ı 0 pmod rq and k ı 0 pmod qq,

(4) pamr γq, a2ajrγk
q γpq, where m ı 0 pmod rq,

then xa, by “ G.

Proof. It is easy to see that pa, bq “ G, so it suffices to show that xa, by contains

Cp and Cq. Thus, it suffices to show that Ğ and qG are nonabelian, where Ğ “
G{pCr ˙ Cpq – D2q and qG “ G{Cq.

Since ar does not centralize Cp, it is clear in each of p1q–p4q that qa does not centralize

γp (and γp is one of the factors in qb), so qG is not abelian.

The pair pă, b̆q is pa2γq, a2γk
q q where k ı 1 pmod qq, or pa2γq, γk

q q where k ı 0
pmod qq, or pa2, ai2γk

q q where k ı 0 pmod qq, or pγq, a2γk
q q. Each of these is either a

reflection and a nontrivial rotation or two different reflections, and therefore generates
the (nonabelian) dihedral group D2q “ Ğ. l

Lemma 2.5.2 Assume G “ pC2ˆCrq˙G1, and G1 “ CpˆCq. Also, assume CG1pCrq “
teu. If pa, bq is one of the following ordered pairs:

(1) pa2ar, ai2ajrγk
q γpq, where k ı 0 pmod qq,

(2) pamr γq, a2ajrγpq, where m ı 0 pmod rq, and j ı 0 pmod rq,
(3) par, a2ajrγk

q γpq, where k ı 0 pmod qq,
(4) pa2amr γq, ai2ajrγpq, where m ı 0 pmod rq and j ı 0 pmod rq,

then xa, by “ G.

Proof. It is easy to see that pa, bq “ G, so it suffices to show that xa, by contains

Cp and Cq. We need to show that pG and qG are nonabelian, where pG “ G{Cp and
qG “ G{Cq, as usual.
As in the proof of Lemma 2.5.1, since ar does not centralize Cp, it is clear in each of

p1q–p4q that qa does not centralize γp (and γp is one of the factors in qb), so qG is not
abelian.

In p1q–p4q, γq appears in one of the generators in ppa,pbq, but not the other, and the
other generator does have an occurrence of ar. Since ar does not centralize γq, it

follows that pG is not abelian. l
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Lemma 2.5.3 Assume

• G “ pC2 ˆ Crq ˙ pCp ˆ Cqq, where p, q, and r are distinct odd primes,

• arγpa
´1
r “ γpτ

p , where pτ r ” 1 pmod pq, and
• arγqa

´1
r “ γqτ

q , where qτ r ” 1 pmod qq.
If pτ j ” ˘1 pmod pq (or qτk ” ˘1 pmod qq), where 1 ď j, k ď r ´ 1, then pτ ” 1
pmod pq (or qτ ” 1 pmod qq).
Proof. Assume pτ j ” ˘1 pmod pq; then pτ 2j ” 1 pmod pq. We also know that pτ r ” 1
pmod pq. So pτd ” 1 pmod pq, where d “ gcdp2j, rq. Since 1 ď j ď r ´ 1 and r is an
odd prime, it follows that d “ 1. Thus pτ ” 1 pmod pq. A similar argument works
when qτk ” ˘1 pmod qq to show qτ ” 1 pmod qq. l

3 Proof of the Main Result

In this section we prove Theorem 1.4, which is the main result. When p, q, r, and
s are distinct odd primes, then Theorem 1.3 applies. Therefore we may assume
without loss of generality that s “ 2. We are given a generating set S of a finite
group G of order 2pqr, where p, q and r are distinct odd prime numbers, and |S| ě 3.
We prove that CaypG;Sq has a Hamiltonian cycle. The proof is a long case-by-case
analysis. (See Figure 1 for outlines of the cases that are considered.) Here are our
main assumptions.

Assumption 3.0.1 We assume:

(1) p, q, r ě 5, for otherwise Theorem 1.2 (2) applies.

(2) |G| is square-free; otherwise Proposition 2.4.1 applies.

(3) G1 X ZpGq “ teu, by Proposition 2.3.3 (2).

(4) G – Cn ˙ G1, by Proposition 2.3.3 (3).

(5) |G1| is odd by Corollary 2.3.2. If |G1| “ 1, then Lemma 2.2.1 applies. If
|G1| “ pqr, then Proposition 2.4.2 applies. So we can assume |G1| P tpq, pr, qru.
Without loss of generality we may assume |G1| “ pq, so G1 “ Cp ˆ Cq.

(6) For every element s P S, |s| ‰ 1. Otherwise, if |s| “ 1, then s P G1, so G1 “ xsy
or |s| is prime. In each case CaypG{xsy;Sq has a Hamiltonian cycle by part 2
or 3 of Theorem 1.2. By Assumption 3.0.1 (3), xsy XZpGq “ teu, and therefore
Lemma 2.2.7 (2) applies.

(7) S is a minimal generating set of G. (Note that S must generate G, for otherwise
CaypG;Sq is not connected. Also, in order to show that every connected Cayley
graph on G contains a Hamiltonian cycle, it suffices to consider CaypG;Sq,
where S is a generating set that is minimal, i.e. removal of any element from
the generating set S leaves a set which does not generate G.)

(8) When |S| ě 4, Proposition 2.4.4 applies, so we assume |S| “ 3.
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|S| “ 3.

A. CG1pCrq ‰ teu or pS is minimal.

i. CG1pCrq ‰ teu (Section 3.1).

1. a “ a2 and b “ arγq.

2. a “ a2 and b “ a2arγq.

3. a “ a2ar and b “ a2γq.

4. a “ a2ar and b “ amr γq.

5. a “ a2ar and b “ a2a
m
r γq.

ii. pS is minimal (Section 3.2).

1. CG1pC2q “ Cp ˆ Cq.
2. CG1pC2q “ Cq.
3. CG1pC2q “ Cp.
4. CG1pC2q “ teu.

B. CG1pCrq “ teu and pS is not minimal.

i. CG1pC2q “ Cp ˆ Cq (Section 3.3).

1. a “ ar and b “ a2γq.

2. a “ ar and b “ a2a
m
r γq.

3. a “ a2ar and b “ amr γq.

4. a “ a2ar and b “ a2γq.

5. a “ a2ar and b “ a2a
m
r γq.

ii. CG1pC2q ‰ teu (Section 3.4).

1. a “ a2ar and b “ a2a
m
r γq.

2. a “ a2ar and b “ a2γq.

3. a “ a2ar and b “ amr γq.

4. a “ ar and b “ a2γq.

iii. CG1pC2q “ teu (Section 3.5).

1. a “ a2ar and b “ a2a
m
r γq.

2. a “ a2ar and b “ a2γq.

3. a “ a2ar and b “ amr γq.

4. a “ ar and b “ a2γq.

Figure 1: Outline of the cases in the proof of Theorem 1.4

3.1 Assume |S| “ 3 and CG1pCrq ‰ teu
In this subsection we prove the part of Theorem 1.4 where |S| “ 3, and CG1pCrq ‰

teu. Recall that G “ G{G1, qG “ G{Cq and pG “ G{Cp.
Proposition 3.1.1 Assume

• G “ pC2 ˆ Crq ˙ pCp ˆ Cqq,
• |S| “ 3,
• CG1pCrq ‰ teu.

Then CaypG;Sq contains a Hamiltonian cycle.

Proof. Let S “ ta, b, cu. If CG1pCrq “ Cp ˆ Cq, then since G1 X ZpGq “ teu (see
Proposition 2.3.3 (2)), we conclude that CG1pC2q “ teu. So we have

G “ Cr ˆ pC2 ˙ Cpqq – Cr ˆ D2pq.

Therefore Lemma 2.4.6 applies.

Since CG1pCrq ‰ teu, we may assume CG1pCrq “ Cq by interchanging q and p if
necessary. Since Cr centralizes Cq and ZpGq X G1 “ teu (by Proposition 2.3.3 (2)),
this implies C2 inverts Cq. Thus,

pG “ pC2 ˆ Crq ˙ Cq – pC2 ˙ Cqq ˆ Cr “ D2q ˆ Cr.
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Now if pS is minimal, then Lemma 2.4.5 applies. Therefore we may assume pS is
not minimal. Choose a 2-element subset ta, bu of S that generates pG. From the
minimality of S, we see that xa, by “ D2q ˆ Cr after replacing a and b by conjugates.
The projection of pa, bq to D2q must be of the form pa2, γqq or pa2, a2γqq, where a2
is reflection and γq is a rotation. (Also note that pb ‰ γq because S X G1 “ H by
Assumption 3.0.1 (6).) Therefore pa, bq must have one of the following forms:

(1) pa2, arγqq,
(2) pa2, a2arγqq,
(3) pa2ar, a2γqq,
(4) pa2ar, amr γqq, where 1 ď m ď r ´ 1,
(5) pa2ar, a2amr γqq, where 1 ď m ď r ´ 1.

Let c be the third element of S. We may write c “ ai2a
j
rγ

k
q γp with 0 ď i ď 1,

0 ď j ď r ´ 1 and 0 ď k ď q ´ 1. Note since S X G1 “ H, we know that i and
j cannot both be equal to 0. Additionally, we have arγpa

´1
r “ γpτ

p where pτ r ” 1
pmod pq. Also, pτ ı 1 pmod pq since CG1pCrq “ Cq. Therefore, we conclude that
pτ r´1 ` pτ r´2 ` ¨ ¨ ¨ ` 1 ” 0 pmod pq. Note that this implies pτ ı ´1 pmod pq.

Case 3.1.1 Assume a “ a2 and b “ arγq.

Subcase 3.1.1.1 Assume i ‰ 0. Then c “ a2a
j
rγ

k
q γp. Thus, by Lemma 2.5.1 (4),

xb, cy “ G, which contradicts the minimality of S.

Subcase 3.1.1.2 Assume i “ 0. So, j ‰ 0. We have c “ ajrγ
k
q γp. We may assume

j is even by replacing c with its inverse and j with r ´ j if necessary. Consider
G “ C2 ˆ Cr. We have a “ a2, b “ ar and c “ ajr. We have

C1 “ pc, pa, bqr´j, b
j´1

, a, b
´pj´1qq

and

C2 “ pc, br´j´1
, c, b

´pj´2q
, a, b

r´1
, aq

and

C3 “ pc, a, br´j´1
, a, b

´pr´j´2q
, c´1, b

j´2
, a, b

´pj´1q
, aq

as Hamiltonian cycles in CaypG;Sq. Now since there is one occurrence of c in C1, by
Lemma 2.2.6 the subgroup generated by VpC1q contains Cp. Also,

VpC1q “ cpabqr´jbj´1ab´pj´1q

” γk
q ¨ pa2 ¨ γqqr´j ¨ γj´1

q ¨ a2 ¨ γ´pj´1q
q pmod Cr ˙ Cpq

“ γk
q a2γqγ

j´1
q a2γ

´j`1
q

“ γk´2j`1
q .
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We can assume this does not generate Cq, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0 ” k ´ 2j ` 1 pmod qq. (3.1.A)

Now we calculate the voltage of C2.

VpC2q “ cbr´j´1cb´pj´2qabr´1a

” ajrγp ¨ ar´j´1
r ¨ ajrγp ¨ a´pj´2q

r ¨ a2 ¨ ar´1
r ¨ a2 pmod Cqq

“ ajrγpa
´1
r γpa

´j`1
r

“ γpτ j´pτ j´1

p

“ γpτ j´1ppτ´1q
p ,

which generates Cp. Also, we have

VpC2q “ cbr´j´1cb´pj´2qabr´1a

” γk
q ¨ γr´j´1

q ¨ γk
q ¨ γ´pj´2q

q ¨ a2 ¨ γr´1
q ¨ a2 pmod Cr ˙ Cpq

“ γ2k´2j`2
q .

We may assume this does not generate Cq, for otherwise Factor Group Lemma 2.2.4
applies. Thus,

0 ” 2k ´ 2j ` 2 pmod qq.
Dividing by 2 yields

k ´ j ` 1 ” 0 pmod qq.
By replacing the above equation in (3.1.A), we have

j ” 0 pmod qq. (3.1.B)

Now we calculate the voltage of C3.

VpC3q “ cabr´j´1ab´pr´j´2qc´1bj´2ab´pj´1qa

” ajrγp ¨ a2 ¨ ar´j´1
r ¨ a2 ¨ a´pr´j´2q

r ¨ γ´1
p a´j

r ¨ aj´2
r ¨ a2 ¨ a´pj´1q

r ¨ a2 pmod Cqq
“ ajrγparγ

´1
p a´j´1

r

“ γpτ j´pτ j`1

p

“ γpτ jp1´pτ q
p ,

which generates Cp. Also, we have

VpC3q “ cabr´j´1ab´pr´j´2qc´1bj´2ab´pj´1qa

” γk
q ¨ a2 ¨ γr´j´1

q ¨ a2 ¨ γ´pr´j´2q
q ¨ γ´k

q ¨ γj´2
q ¨ a2 ¨ γ´pj´1q

q ¨ a2 pmod Cr ˙ Cpq
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“ γ4j´2r
q .

We can assume this does not generate Cq, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0 ” 4j ´ 2r pmod qq.
Dividing by 2 yields

2j ´ r ” 0 pmod qq.
By replacing (3.1.B) in the above equation, we have r ” 0 pmod qq, which contradicts
the assumption that q and r are distinct primes.

Case 3.1.2 Assume a “ a2 and b “ a2arγq.

Subcase 3.1.2.1 Assume j “ 0. Then i ‰ 0. If k ‰ 1, then c “ a2γ
k
q γp. Thus,

by Lemma 2.5.1 (1), xb, cy “ G, which contradicts the minimality of S. We may
therefore assume k “ 1. Then c “ a2γqγp.

Consider G “ C2ˆCr. Then a “ c “ a2 and b “ a2ar. We have C“pc, br´1
, a, b

´pr´1qq
as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of c in C, by
Lemma 2.2.6 the subgroup generated by VpCq contains Cp. Also,

VpCq “ cbr´1ab´pr´1q

” a2γq ¨ pa2γqqr´1 ¨ a2 ¨ pa2γqq´pr´1q pmod Cr ˙ Cpq
“ γ´1

q ,

which generates Cq. Therefore the subgroup generated by VpCq is G1. So Factor
Group Lemma 2.2.4 applies.

Subcase 3.1.2.2 Assume i ‰ 0 and j ‰ 0. If k ‰ 1, then c “ a2a
j
rγ

k
q γp. So, by

Lemma 2.5.1 (1), xb, cy “ G, which contradicts the minimality of S. Therefore we
may assume k “ 1. Then c “ a2a

j
rγqγp. We may also assume that j is odd by

replacing c with its inverse and j with r ´ j if necessary. Consider G “ C2 ˆ Cr.

Subsubcase 3.1.2.2.1 Assume j “ 1. Then c “ a2arγqγp. So b “ c “ a2ar. We
have C1 “ pc, a, pb, aqr´1q as a Hamiltonian cycle in CaypG;Sq. Since there is one
occurrence of c in C1, by Lemma 2.2.6 the subgroup generated by VpC1q contains Cp.
Also,

VpC1q “ capbaqr´1

” a2γq ¨ a2 ¨ pa2γq ¨ a2qr´1 pmod Cr ˙ Cpq
“ γ´r

q .

Since gcdpq, rq “ 1, this implies that γ´r
q generates Cq. Therefore the subgroup

generated by VpC1q is G1. So Factor Group Lemma 2.2.4 applies.
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Subsubcase 3.1.2.2.2 Assume j ě 3. Then a “ a2, b “ a2ar, and c “ a2a
j
r. We

have

C2 “ pc, pa, bqr´j´1, a, c, pa, b´1qj´1, aq
as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpC2q “ cpabqr´j´1acpab´1qj´1a

” a2γq ¨ pa2 ¨ a2γqqr´j´1 ¨ a2 ¨ a2γq ¨ pa2 ¨ γ´1
q a2qj´1 ¨ a2 pmod Cr ˙ Cpq

“ a2γqγ
r´j´1
q γqγ

j´1
q a2

“ a2γ
r
qa2

“ γ´r
q ,

which generates Cq, since gcdpq, rq “ 1. Also,

VpC2q “ cpabqr´j´1acpab´1qj´1a

” a2a
j
rγp ¨ pa2 ¨ a2arqr´j´1 ¨ a2 ¨ a2ajrγp ¨ pa2 ¨ a´1

r a2qj´1 ¨ a2 pmod Cqq
“ a2a

j
rγpa

´1
r γpa

´j`1
r a2

“ a2γ
pτ j`pτ j´1

p a2

“ γ˘pτ j´1ppτ´1q
p ,

which generates Cp. Therefore the subgroup generated by VpC2q is G1. So Factor
Group Lemma 2.2.4 applies.

Subcase 3.1.2.3 Assume i “ 0, then j ‰ 0. If k ‰ 0, then c “ ajrγ
k
q γp. Thus, by

Lemma 2.5.1(2.5.1) xb, cy “ G which contradicts the minimality of S. Therefore, we
may assume k “ 0. We may also assume j is odd, by replacing c with its inverse
and j with r ´ j if necessary. Then c “ ajrγp. Consider G “ C2 ˆ Cr, then a “ a2,
b “ a2ar, and c “ ajr.

Subsubcase 3.1.2.3.1 Assume j “ 1. Then c “ arγp.

Suppose, for the moment, that C2 centralizes Cp. We have C1 “ ppa, cqr´1, a, bq as
a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of b in C1, by
Lemma 2.2.6 the subgroup generated by VpC1q contains Cq. Also,

VpC1q “ pacqr´1ab

” parγpqr´1 ¨ ar pmod C2 ˙ Cqq
“ γpτ`pτ2`...`pτr´1

p

“ γ´1
p ,

which generates Cp. Therefore the subgroup generated by VpC1q is G1. So Factor
Group Lemma 2.2.4 applies.
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Now we assume C2 does not centralize Cp. We have

C2 “ pbr´2
, a, b

´pr´2q
, c´1, a, cq

as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpC2q “ br´2ab´pr´2qc´1ac

” pa2arqr´2 ¨ a2 ¨ pa2arq´pr´2q ¨ γ´1
p a´1

r ¨ a2 ¨ arγp pmod Cqq
“ a2a

r´2
r a2a

´r`2
r a2γ

´1
p a´1

r a2arγp

“ γ2
p ,

since gcdp2, pq “ 1, this implies γ2
p generates Cp. Also,

VpC2q “ br´2ab´pr´2qc´1ac

” pa2γqqr´2 ¨ a2 ¨ pa2γqq´pr´2q ¨ a2 pmod Cr ˙ Cpq
“ a2γqa2γ

´1
q a2a2

“ γ´2
q ,

since gcdp2, qq “ 1, this implies γ´2
q generates Cq. Therefore, the subgroup generated

by VpC2q is G1. So, Factor Group Lemma 2.2.4 applies.

Subsubcase 3.1.2.3.2 Assume j ‰ 1. We have

C3 “ pc, b´1
, a, b

2
, a, c´1, b

j´3
, a, b

´pr´4q
, a, b

r´j´2q
as a Hamiltonian cycle in CaypG;Sq. Considering the fact that C2 might centralize
Cp or not, we calculate the voltage of C3.

VpC3q “ cb´1ab2ac´1bj´3ab´pr´4qabr´j´2

” ajrγp ¨ a´1
r a2 ¨ a2 ¨ pa2arq2 ¨ a2 ¨ γ´1

p a´j
r

¨ pa2arqj´3 ¨ a2 ¨ pa2arq´pr´4q ¨ a2 ¨ pa2arqr´j´2 pmod Cqq
“ ajrγpa

´1
r a2ra2γ

´1
p a´j

r aj´3
r a2a2a

´r`4
r a2a

r´j´2
r

“ ajrγparγ
¯1
p a´j´1

r

“ γpτ j¯pτ j`1

p

“ γpτ jp1¯pτ q
p ,

which generates Cp. Also,
VpC3q “cb´1ab2ac´1bj´3ab´pr´4qabr´j´2

”γ´1
q a2 ¨a2 ¨pa2γqq2 ¨a2 ¨pa2γqqj´3 ¨ a2 ¨ pa2γqq´pr´4q ¨ a2 ¨ pa2γqqr´j´2 pmod Cr˙Cpq

“γ´2
q .

Since gcdp2, qq “ 1, this implies γ´2
q generates Cq. Therefore the subgroup generated

by VpC3q is G1. So Factor Group Lemma 2.2.4 applies.
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Case 3.1.3 Assume a “ a2ar and b “ a2γq. Since b “ a2γq is conjugate to a2 via an
element of Cq (which centralizes Cr), this implies ta, bu is conjugate to ta2arγm

q , a2u for
some nonzero m. So Case 3.1.2 applies (after replacing γq with γm

q , and interchanging
a and b).

Case 3.1.4 Assume a “ a2ar and b “ amr γq, where 1 ď m ď r ´ 1.

Subcase 3.1.4.1 Assume i ‰ 0. Then c “ a2a
j
rγ

k
q γp. Thus, by Lemma 2.5.1 (4),

xb, cy “ G, which contradicts the minimality of S.

Subcase 3.1.4.2 Assume i “ 0. Then j ‰ 0 and c “ ajrγ
k
q γp. If k ‰ 0, then

by Lemma 2.5.1 (3), xa, cy “ G which contradicts the minimality of S. So we may
assume k “ 0. Then c “ ajrγp. We may also assume m and j are even, by replacing
tb, cu with their inverses, m with r ´ m, and j with r ´ j if necessary. Consider
G “ C2 ˆ Cr. Then a “ a2ar, b “ amr , and c “ ajr.

Subsubcase 3.1.4.2.1 Assume m “ j. Then b “ c. We have

C1 “ pc´pr´1q, a´1, b
r´1

, aq
as a Hamiltonian cycle in CaypG;Sq. Since cr “ e, this implies c´pr´1q “ c “ ajrγp.
This is the only occurrence of γp in VpC1q. So the subgroup generated by VpC1q
contains Cp. Similarly, since br “ e, this implies br´1 “ b´1 “ γ´1

q a´m
r . This is

the only occurrence of γq in VpC1q. So the subgroup generated by VpC1q contains
Cq. Hence the subgroup generated by VpC1q contains G1. Therefore, Factor Group
Lemma 2.2.4 applies.

Subsubcase 3.1.4.2.2 Assume m ‰ j, and j “ 2. Then we have c “ a2rγp. We also
have

C2 “ pb, c´pm´2q{2, a´1, cm{2, a2r´m´1q
as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of b in C2, and
it is the only generator of G that contains γq, by Lemma 2.2.6 we conclude that the
subgroup generated by VpC2q contains Cq. Now by considering the fact that C2 might
centralize Cp or not, we have

VpC2q “ bc´pm´2q{2a´1cm{2a2r´m´1

” amr ¨ pa2rγpq´pm´2q{2 ¨ a´1
r a2 ¨ pa2rγpqm{2 ¨ pa2arq2r´m´1 pmod Cqq

“ amr pa2rγpq´pm´2q{2a´1
r a2pa2rγpqm{2a2a´m´1

r

“ amr pγpτ2`ppτ2q2`¨¨¨`ppτ2qpm´2q{2
p apm´2q

r q´1a´1
r a2pγpτ2`ppτ2q2`¨¨¨`ppτ2qm{2

p amr qa2a´m´1
r

“ amr a
´pm´2q
r γ´pτ2p1`pτ2`¨¨¨`ppτ2qpm´4q{2q

p a´1
r γ˘pτ2p1`pτ2`¨¨¨`ppτ2qpm´2q{2q

p amr a
´m´1
r .
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Since pτ 2 ´ 1 ı 0 pmod pq, this implies

VpC2q “ a2rγ
´pτ2ppτm´2´1q{ppτ2´1q
p a´1

r γ˘pτ2ppτm´1q{ppτ2´1q
p a´1

r

“ γ´pτ4ppτm´2´1q{ppτ2´1q˘pτ3ppτm´1q{ppτ2´1q
p

“ γpτ3p1¯pτ qp´pτm´1¯1q{ppτ2´1q
p .

We may assume that this does not generate Cp, for otherwise the Factor Group
Lemma 2.2.4 applies. Therefore pτ ” ˘1 pmod pq or pτm´1 ” ˘1 pmod pq. The
first case is impossible. So we may assume pτm´1 ” ˘1 pmod pq. Thus pτ 2pm´1q ” 1
pmod pq. We also know that pτ r ” 1 pmod pq. So we have pτd ” 1 pmod pq, where
d “ gcdp2pm ´ 1q, rq. Since gcdp2, rq “ 1 and 2 ď m ď r ´ 1, it follows that d “ 1,
which contradicts the fact that pτ ı 1 pmod pq.

Subsubcase 3.1.4.2.3 Assume m ‰ j, and j ‰ 2. We have

C3 “ pb, c, a, c´1, b
´1
, am´2, c, a´pj´3q, c, a2r´m´j´2q

as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpC3q “ bcac´1b´1am´2ca´pj´3qca2r´m´j´2

” γq ¨ a2 ¨ γ´1
q ¨ am´2

2 ¨ a´j`3
2 ¨ a2r´m´j´2

2 pmod Cr ˙ Cpq
“ γ2

q

which generates Cq. Also, by considering the fact that C2 might centralize Cp or not,
we have

VpC3q “ bcac´1b´1am´2ca´pj´3qca2r´m´j´2

” amr ¨ ajrγp ¨ a2ar ¨ γ´1
p a´j

r ¨ a´m
r ¨ pa2arqm´2

¨ ajrγp ¨ a´j`3
r a´j`3

2 ¨ ajrγp ¨ pa2arq2r´m´j´2 pmod Cqq
“ am`j

r γpa2arγ
´1
p a´2

r γpa
3
ra2γpa

´m´j´2
r

“ am`j
r γparγ

¯1
p a´2

r γ˘1
p a3rγpa

´m´j´2
r

“ γpτm`j¯pτm`j`1˘pτm`j´1`pτm`j`2

p

“ γpτm`j´1ppτ3¯pτ2`pτ˘1q
p .

We may assume this does not generate Cp, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0 ” pτ 3 ¯ pτ 2 ` pτ ˘ 1 pmod pq.
If C2 centralizes Cp, then

0 ” pτ 3 ´ pτ 2 ` pτ ` 1 pmod pq. (3.1.C)
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We can replace pτ with pτ´1 in the above equation after replacing ta, b, cu with their
inverses in the Hamiltonian cycle. Then

0 ” pτ´3 ´ pτ´2 ` pτ´1 ` 1 pmod pq.
Multiplying by pτ 3, we have

0 ” 1 ´ pτ ` pτ 2 ` pτ 3 pmod pq
“ pτ 3 ` pτ 2 ´ pτ ` 1.

Subtracting 3.1.C from the above equation we have

0 ” 2pτ 2 ´ 2pτ pmod pq
“ 2pτppτ ´ 1q

which is impossible, because pτ ı 1 pmod pq.
Now if C2 inverts Cp, then

0 ” pτ 3 ` pτ 2 ` pτ ´ 1 pmod pq. (3.1.D)

We can replace pτ with pτ´1 in the above equation after replacing ta, b, cu with their
inverses. Then

0 ” pτ´3 ` pτ´2 ` pτ´1 ´ 1 pmod pq.
Multiplying by pτ 3, then

0 ” 1 ` pτ ` pτ 2 ´ pτ 3 pmod pq
“ ´pτ 3 ` pτ 2 ` pτ ` 1.

By adding (3.1.D) and the above equation, we have

0 ” 2ppτ 2 ` pτ q pmod pq
“ 2pτppτ ` 1q

which is also impossible, because pτ ı ´1 pmod pq.
Case 3.1.5 Assume a “ a2ar, b “ a2a

m
r γq, where 1 ď m ď r ´ 1.

Subcase 3.1.5.1 Assume i ‰ 0. Then c “ a2a
j
rγ

k
q γp. If k ‰ 1, then, by Lemma

2.5.1 (1), xb, cy “ G, which contradicts the minimality of S. So we may assume
k “ 1. Then c “ a2a

j
rγqγp. Thus, by Lemma 2.5.1 (3), xa, cy “ G, which contradicts

the minimality of S.

Subcase 3.1.5.2 Assume i “ 0. Then j ‰ 0 and c “ ajrγ
k
q γp. If k ‰ 0, then by

Lemma 2.5.1 (2), xb, cy “ G, which contradicts the minimality of S. So we may
assume k “ 0. Then c “ ajrγp.

Consider G “ C2 ˆ Cr. Then a “ a2ar, b “ a2a
m
r , and c “ ajr. We may assume m is

odd by replacing b with b´1 (and m with r ´ m) if necessary. Note that this implies
b “ am. Also, we have |a| “ |b| “ 2r and |c| “ r.
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Subsubcase 3.1.5.2.1 Assume m “ 1. Then a “ b. We have

C1 “ pcr´1, b, c´pr´1q, a´1q
as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of b in C1,
and it is the only generator of G that contains γq, by Lemma 2.2.6 we conclude
that the subgroup generated by VpC1q contains Cq. Also, since cr “ e, this implies
cr´1 “ c´1 “ γ´1

p a´j
r , and c´pr´1q “ c “ ajrγp. Now by considering the fact that C2

might centralize Cp or not we have

VpC1q “ cr´1bc´pr´1qa´1

” γ´1
p a´j

r ¨ a2ar ¨ ajrγp ¨ a´1
r a2 pmod Cqq

“ γ´1
p arγ

˘1
p a´1

r

“ γ´1˘pτ
p ,

which generates Cp. Therefore, the subgroup generated by VpC1q is G1. So Factor
Group Lemma 2.2.4 applies.

Subsubcase 3.1.5.2.2 Assume m ‰ 1 and j “ 2. Then c “ a2rγp. We have

C2 “ pb, c´pm´1q{2, a, cpm´1q{2, a2r´m´1q
as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of b in C2, and
it is the only generator of G that contains γq, by Lemma 2.2.6 we conclude that
the subgroup generated by VpC2q contains Cq. Considering the fact that C2 might
centralize Cp or not we have

VpC2q “ bc´pm´1q{2acpm´1q{2a2r´m´1

” a2a
m
r ¨ pa2rγpq´pm´1q{2 ¨ a2ar ¨ pa2rγpqpm´1q{2 ¨ pa2arq2r´m´1 pmod Cqq

“ a2a
m
r pγpτ2`ppτ2q2`¨¨¨`ppτ2qpm´1q{2

p apm´1q
r q´1a2arpγpτ2`ppτ2q2`¨¨¨`ppτ2qpm´1q{2

p apm´1q
r qa´m´1

r

“ a2a
m
r a

´m`1
r γ´pτ2p1`pτ2`¨¨¨`ppτ2qpm´3q{2q

p a2arγ
pτ2p1`pτ2`¨¨¨`ppτ2qpm´3q{2q
p a´2

r

“ arγ
˘pτ2p1`pτ2`¨¨¨`pτ2qpm´3q{2
p arγ

pτ2p1`pτ2`¨¨¨`pτ2qpm´3q{2
p a´2

r

“ γ˘pτ3ppτm´1´1q{ppτ2´1q`pτ4ppτm´1´1q{ppτ2´1q
p

“ γpτ3ppτm´1´1qp˘1`pτ q{ppτ2´1q
p .

We may assume this does not generate Cp, for otherwise Factor Group Lemma 2.2.4
applies. Therefore, pτm´1 ” 1 pmod pq. We also know that pτ r ” 1 pmod pq. So
pτd ” 1 pmod pq, where d “ gcdpm ´ 1, rq. Since 2 ď m ď r ´ 1, this implies d “ 1,
which contradicts the fact that pτ ı 1 pmod pq.

Subsubcase 3.1.5.2.3 Assume m ‰ 1 and j ‰ 2. We may also assume j is an even
number, by replacing c with its inverse and j with r ´ j if necessary. This implies
that c “ aj . We have

C3 “ pb, c, a, c´1, b
´1
, am´2, c, a´pj´3q, c, a2r´m´j´2q
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as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpC3q “ bcac´1b´1am´2ca´pj´3qca2r´m´j´2

” a2γq ¨ a2 ¨ γ´1
q a2 ¨ am´2

2 ¨ a´pj´3q
2 ¨ a2r´m´j´2

2 pmod Cr ˙ Cpq
“ a2γqa2γ

´1
q

“ γ´2
q

which generates Cq. Also considering the fact that C2 might centralize Cp or not, we
have

VpC3q “ bcac´1b´1am´2ca´pj´3qca2r´m´j´2

” a2a
m
r ¨ ajrγp ¨ a2ar ¨ γ´1

p a´j
r ¨ a´m

r a2

¨ a2am´2
r ¨ ajrγp ¨ a´j`3

r a2 ¨ ajrγp ¨ a2a2r´m´j´2
r pmod Cqq

“ am`j
r γ˘1

p arγ
´1
p a´2

r γpa
3
rγ

˘1
p a´m´j´2

r

“ γ˘pτm`j´pτm`j`1`pτm`j´1˘pτm`j`2

p

“ γpτm`j´1p˘pτ3´pτ2˘pτ`1q
p .

So we may assume this does not generate Cp, for otherwise Factor Group Lemma 2.2.4
applies. Then we have

0 ” ˘pτ 3 ´ pτ 2 ˘ pτ ` 1 pmod pq.
Let t “ pτ if C2 centralizes Cp and t “ ´pτ if C2 inverts Cp. Then

0 ” t3 ´ t2 ` t ` 1 pmod pq. (3.1.E)

We can replace t with t´1 in the above equation after replacing ta, b, cu with their
inverses, then

0 ” t´3 ´ t´2 ` t´1 ` 1 pmod pq.
Multiplying by t3, we have

0 ” 1 ´ t ` t2 ` t3 pmod pq
“ t3 ` t2 ´ t ` 1.

By subtracting (3.1.E) from the above equation, we have

0 ” 2t2 ´ 2t pmod pq
“ 2tpt ´ 1q

This implies that t ” 1 pmod pq which contradicts the fact that pτ ı ˘1 pmod pq.
l
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3.2 Assume |S| “ 3 and pS is minimal

In this subsection we prove the part of Theorem 1.4 where |S| “ 3, and pS is

minimal. Recall that G “ G{G1 and pG “ G{Cp.
Proposition 3.2.1 Assume

• G “ pC2 ˆ Crq ˙ pCp ˆ Cqq,
• |S| “ 3,
• pS is minimal.

Then CaypG;Sq contains a Hamiltonian cycle.

Proof. Let S “ ta, b, cu. If CG1pCrq ‰ teu, then Proposition 3.1.1 applies. Hence we
may assume CG1pCrq “ teu. Then we have four different cases.

Case 3.2.1 Assume CG1pC2q “ Cp ˆCq; thus G “ C2 ˆpCr ˙Cpqq. Since pS is minimal,

it follows that all three elements of pS must have prime order. There is an element
pa P pS such that |pa| “ 2, otherwise all elements of S belong to a subgroup of index
2 of G, so xa, b, cy ‰ G, which is a contradiction. If |a| “ 2p, then Corollary 2.2.5

applies with s “ a and t “ a´1, because there is a Hamiltonian cycle in Cayp pG; pSq
(see Theorem 1.2 (3)) which uses at least one edge labeled pa because pS is minimal.

Now we may assume |a| “ 2. So xay “ C2. Thus xb, cy “ Cr˙Cpq. By Theorem 1.2 (3),
there is a Hamiltonian path L in CaypCr ˙ Cpq, tb, cuq. Therefore LaL´1a´1 is a
Hamiltonian cycle in CaypG;Sq.

Case 3.2.2 Assume CG1pC2q “ Cq. Therefore,
pG “ G{Cp “ C2r ˙ Cq – C2 ˆ pCr ˙ Cqq.

There is some a P S such that |pa| “ 2. Thus, we can assume |a| “ 2, for otherwise

Corollary 2.2.5 applies with s “ a and t “ a´1. (Note since pS is minimal, it follows

that pa must be used in any Hamiltonian cycle in Cayp pG; pSq.) We may assume a “ a2.

Since pS is minimal, S X G1 “ H (see Assumption 3.0.1(3.0.1)) and each element

belonging to pS has prime order, this implies |pb| “ |pc| “ r. We may assume pb “ ar
and pc “ ajrγq, where 1 ď j ď r ´ 1. We can also assume b “ arγp, and c “ ajrγqγ

k
p ,

where 0 ď k ď p ´ 1. Since CG1pCrq “ teu, we have arγpa
´1
r “ γpτ

p where pτ r ” 1
pmod pq and pτ ı 1 pmod pq. Thus pτ r´1 ` pτ r´2 ` . . .`1 ” 0 pmod pq. Note that this
implies pτ ı ´1 pmod pq. Also, we have arγqa

´1
r “ γqτ

q . By using the same argument
we can conclude that qτ ı 1 pmod qq and qτ r´1 ` qτ r´2 ` . . . ` 1 ” 0 pmod qq. Note
that this implies qτ ı ´1 pmod qq.
Consider G “ C2 ˆ Cr. Then a “ a2, b “ ar, and c “ ajr. We may assume j is odd by
replacing c with its inverse and j with r ´ j if necessary. We have

C1 “ pc, pa, b´1qj, b´pr´j´1q
, a, b

r´j´1q
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and

C2 “ pc, br´j´1
, a, b

´pr´j´1q
, pb´1

, aqjq
as Hamiltonian cycles in CaypG;Sq. Now we calculate the voltage of C1. Since there
is one occurrence of c in C1, and it is the only generator of G that contains γq, by
Lemma 2.2.6 we conclude that the subgroup generated by VpC1q contains Cq. Also,

VpC1q “ cpab´1qjb´pr´j´1qabr´j´1

” ajrγ
k
p ¨ pa2 ¨ γ´1

p a´1
r qj ¨ parγpq´pr´j´1q ¨ a2 ¨ parγpqr´j´1 pmod Cqq

“ ajrγ
k
p pγ1´pτ´1`pτ´2´¨¨¨`pτ´pj´1q

p a´j
r a2q

¨ pγpτ`pτ2`¨¨¨`pτr´j´1

p ar´j´1
r q´1a2pγpτ`pτ2`¨¨¨`pτr´j´1

p ar´j´1
r q

“ ajrγ
k`p1´pτ´1`pτ´2´¨¨¨`pτ´pj´1qq
p a´j

r aj`1
r γ2ppτ`pτ2`¨¨¨`pτr´j´1q

p a´j´1
r

“ γkpτ j`pτ jp1´pτ´1`pτ´2´¨¨¨`pτ´pj´1qq`2pτ j`1ppτ`pτ2`¨¨¨`pτr´j´1q
p .

We may assume this does not generate Cp, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0 ” kpτ j ` pτ jp1 ´ pτ´1 ` pτ´2 ´ ¨ ¨ ¨ ` pτ´pj´1qq`
2pτ j`1ppτ ` pτ 2 ` ¨ ¨ ¨ ` pτ r´j´1q pmod pq. (3.2.A)

Now we calculate the voltage of C2. Since there is one occurrence of c in C2, and it
is the only generator of G that contains γq, by Lemma 2.2.6 we conclude that the
subgroup generated by VpC2q contains Cq. Also,

VpC2q “ cbr´j´1ab´pr´j´1qpb´1aqj
” ajrγ

k
p ¨ parγpqr´j´1 ¨ a2 ¨ parγpq´pr´j´1q ¨ pγ´1

p a´1
r ¨ a2qj pmod Cqq

“ ajrγ
k
p pγpτ`pτ2`¨¨¨`pτr´j´1

p ar´j´1
r qa2

¨ pγpτ`pτ2`¨¨¨`pτr´j´1

p ar´j´1
r q´1pγ´1`pτ´1´pτ´2`¨¨¨´pτ´pj´1q

p a´j
r a2q

“ ajrγ
k`ppτ`pτ2`¨¨¨`pτr´j´1q
p a´j´1

r aj`1
r γpτ`pτ2`¨¨¨`pτr´j´1

p γ1´pτ´1`pτ´2´¨¨¨`pτ´pj´1q
p a´j

r

“ ajrγ
k`2ppτ`pτ2`¨¨¨`pτr´j´1q`p1´pτ´1`pτ´2´¨¨¨`pτ´pj´1qq
p a´j

r

“ γkpτ j`2pτ jppτ`pτ2`¨¨¨`pτr´j´1q`pτ jp1´pτ´1`pτ´2´¨¨¨`pτ´pj´1qq
p .

We can assume this does not generate Cp, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0 ” kpτ j ` 2pτ jppτ ` pτ 2 ` ¨ ¨ ¨ ` pτ r´j´1q ` pτ jp1 ´ pτ´1 ` pτ´2 ´ ¨ ¨ ¨ ` pτ´pj´1qq pmod pq.
(3.2.B)

Subtracting (3.2.B) from (3.2.A) we have

0 ” 2pτ j`1ppτ ` pτ 2 ` ¨ ¨ ¨ ` pτ r´j´1q ´ 2pτ jppτ ` pτ 2 ` ¨ ¨ ¨ ` pτ r´j´1q pmod pq
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“ 2pτ r ´ 2pτ j`1

“ 2p1 ´ pτ j`1q.
This implies that pτ j`1 ” 1 pmod pq. Since j is odd, and 1 ď j ď r ´ 1, this implies
gcdpj ` 1, rq “ 1. So pτ ” 1 pmod pq, which is not possible.

Case 3.2.3 Assume CG1pC2q “ Cp. Therefore,
qG “ G{Cq “ C2r ˙ Cp – C2 ˆ pCr ˙ Cpq.

Now since S X G1 “ H (see Assumption 3.0.1(3.0.1)) and Cr does not centralize Cp,
this implies for all a P S, we have |qa| P t2, r, 2r, 2pu. If |qa| “ 2r, then |pa| is divisible by
2r which contradicts the minimality of pS. (Note that every element of pS has prime

order.) If |qa| “ 2p, then |pa| “ 2 (because pS is minimal). Therefore, Corollary 2.2.5

applies with s “ a and t “ a´1 (Note that since pS is minimal, it follows that there

is a Hamiltonian cycle in Cayp pG; pSq that uses at least one labeled edge pa.) Thus,

|qa| P t2, ru for all a P S. This implies that qS is minimal, because we need an a2
and an ar to generate C2 ˆ Cr and two elements whose order is divisible by 2 or r to
generate Cp. So by interchanging p and q the proof in Case 3.2.2 applies.

Case 3.2.4 Assume CG1pC2q “ teu. Consider
pG “ G{Cp “ pC2 ˆ Crq ˙ Cq.

Now since pS is minimal, every element of pS has prime order. Since S X G1 “ H (see

Assumption 3.0.1(3.0.1)), this implies for every ps P pS, we have |ps| P t2, ru. Since
CG1pC2q “ teu and CG1pCrq “ teu, it follows that for every s P S, we have |s| P t2, ru.
From our assumption we know that S “ ta, b, cu. Now we may assume |a| “ 2 and
|b| “ r. Also, we know that |c| P t2, ru.

Subcase 3.2.4.1 Assume |c| “ 2. Then c “ aγ, where γ P G1.

Suppose, for the moment, that xγy ‰ G1. Since xγy Ÿ G, this implies we have

G “ xa, b, cy “ xa, b, γy “ xa, byxγy.
Now since pS is minimal, xa, by does not contain Cq. So this implies that xγy contains
Cq. Since xγy does not contain G1, it follows that xγy “ Cq. Thus, we may assume that
a “ a2 (by conjugation if necessary), b “ arγp and c “ a2γq. So xb, cy “ xarγp, a2γqy “
G (since arγp and a2γq clearly generate G and do not commute modulo Cp or modulo
Cq, they must generate G). This contradicts the minimality of S. Therefore xγy “ G1.

Consider G “ C2 ˆ Cr. Then a “ c. We have |a| “ |c| “ 2 and |b| “ r. We also

have C1 “ pc´1, b
´pr´1q

, a, b
r´1q and C2 “ pc, br´1

, a´1, b
´pr´1qq as Hamiltonian cycles

in CaypG;Sq. Now we calculate its voltage.

VpC1q “ c´1b´pr´1qabr´1 “ γ´1a´1b´pr´1qabr´1
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and

VpC2q “ cbr´1a´1b´pr´1q “ aγbr´1a´1b´pr´1q “ γ´1abr´1a´1b´pr´1q.

We have

ta´1b´pr´1qabr´1, abr´1a´1b´pr´1qu P G1.

Since xa, by ‰ G, this implies that a´1b´pr´1qabr´1 “ γj
p and abr´1a´1b´pr´1q “ γk

p

(perhaps after interchanging p and q), where 0 ď j, k ď p ´ 1. If j “ 0, then
a´1b´pr´1qabr´1 “ e, so a and br´1 commute. Thus a and b commute. Hence b “ ar,
so xb, cy “ G, a contradiction. A similar argument works for abr´1a´1b´pr´1q “ e.
So a´1b´pr´1qabr´1 “ γj

p, and abr´1a´1b´pr´1q “ γk
p , where 1 ď j, k ď p ´ 1. Thus

VpC1q “ γ´1γj
p and VpC2q “ γ´1γk

p . In this case, γj
p ‰ γk

p since a´1b´pr´1qabr´1 ‰
abr´1a´1b´pr´1q. Hence at least one of VpC1q or VpC2q generates G1. Therefore,
Factor Group Lemma 2.2.4 applies.

Subcase 3.2.4.2 Assume |c| “ r. Then c “ bjγ, where 1 ď j ď r ´ 1 and γ P
G1 (after replacing c with its conjugate if necessary).

Suppose, for the moment, that xγy ‰ G1. Since xγy Ÿ G, this implies we have

G “ xa, b, cy “ xa, b, γy “ xa, byxγy.
Now since pS is minimal, it follows that xa, by does not contain Cq. So this implies
that xγy contains Cq. Since xγy does not contain G1, this implies xγy “ Cq. Therefore,
we may assume that a “ a2γp (by conjugation if necessary), b “ ar and c “ ajrγq,
where 1 ď j ď r ´ 1. So xa, cy “ xa2γp, ajrγqy “ G (since a2γp and ajrγq clearly
generate G and do not commute modulo Cp or modulo Cq, they must generate G).
This contradicts the minimality of S. So xγy “ G1.

Consider G “ C2 ˆ Cr. Then c “ b
j
. We have |a| “ 2 and |b| “ |c| “ r. We may

assume a “ a2γp, b “ ar, and c “ ajrγqγ
k
p , where 1 ď j ď r´1, and 1 ď k ď p´1. We

may also assume j is odd by replacing c with its inverse and j with r´ j if necessary.

Since CG1pCrq “ teu, we have arγpa
´1
r “ γpτ

p where pτ r ” 1 pmod pq and pτ ı 1
pmod pq. Thus, pτ r´1 ` pτ r´2 ` . . . ` 1 ” 0 pmod pq. Note that this implies pτ ı ´1
pmod pq. Also, we have arγqa´1

r “ γqτ
q . By using the same argument we can conclude

that qτ ı 1 pmod qq and qτ r´1 ` qτ r´2 ` . . . ` 1 ” 0 pmod qq. Note that this implies
qτ ı ´1 pmod qq. Also, CG1pC2q “ teu, so C2 inverts Cp and it inverts Cq. We have

C1 “ pc, b´pj´1q
, c, b

r´j´2
, a, b

´pr´1q
, a´1q

and

C2 “ pc, br´j´1
, c, a, b

r´1
, a´1, b

´pj´2qq
as Hamiltonian cycles in CaypG;Sq. Now we calculate the voltage of C1.

VpC1q “ cb´pj´1qcbr´j´2ab´pr´1qa
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” ajrγq ¨ a´pj´1q
r ¨ ajrγq ¨ ar´j´2

r ¨ a2 ¨ a´pr´1q
r ¨ a2 pmod Cpq

“ ajrγqarγqa
´j´1
r

“ γqτ j`qτ j`1

q

“ γqτ jp1`qτ q
q ,

which generates Cq. Also,
VpC1q “ cb´pj´1qcbr´j´2ab´pr´1qa

” ajrγ
k
p ¨ a´pj´1q

r ¨ ajrγk
p ¨ ar´j´2

r ¨ a2γp ¨ a´pr´1q
r ¨ γ´1

p a2 pmod Cqq
“ ajrγ

k
parγ

k
pa

´j´2
r a2γparγ

´1
p a2

“ ajrγ
k
parγ

k
pa

´j´2
r γ´1

p arγp

“ γkpτ j`kpτ j`1´pτ´1`1
p .

We may assume this does not generate Cp, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0 ” kpτ j ` kpτ j`1 ´ pτ´1 ` 1 pmod pq
“ kpτ j`1 ` kpτ j ` 1 ´ pτ´1.

Multiplying by pτ , we have

0 ” kpτ j`2 ` kpτ j`1 ` pτ ´ 1 pmod pq. (3.2.C)

Now we calculate the voltage of C2.

VpC2q “ cbr´j´1cabr´1a´1b´pj´2q

” ajrγq ¨ ar´j´1
r ¨ ajrγq ¨ a2 ¨ ar´1

r ¨ a2 ¨ a´pj´2q
r pmod Cpq

“ ajrγqa
´1
r γqa

´j`1
r

“ γqτ j`qτ j´1

q

“ γqτ j´1pqτ´1q
q ,

which generates Cq. Also,
VpC2q “ cbr´j´1cabr´1a´1b´pj´2q

” ajrγ
k
p ¨ ar´j´1

r ¨ ajrγk
p ¨ a2γp ¨ ar´1

r ¨ γ´1
p a2 ¨ a´pj´2q

r pmod Cqq
“ ajrγ

k
pa

´1
r γk

pγ
´1
p a´1

r γpa
´j`2
r

“ γkpτ j`kpτ j´1´pτ j´1`pτ j´2

p .

We may assume this does not generate Cp, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0 ” kpτ j ` kpτ j´1 ´ pτ j´1 ` pτ j´2 pmod pq.



F. MAGHSOUDI/AUSTRALAS. J. COMBIN. 83 (3) (2022), 124–166 147

Multiplying by pτ 2, we have

0 ” kpτ j`2 ` kpτ j`1 ´ pτ j`1 ` pτ j pmod pq. (3.2.D)

Subtracting (3.2.D) from (3.2.C), we have

0 ” pτ j`1 ´ pτ j ` pτ ´ 1 pmod pq
“ ppτ j ` 1qppτ ´ 1q

This implies that pτ j ” ´1 pmod pq. Thus, by Lemma 2.5.3, pτ ” 1 pmod pq, which
is not possible.

l

3.3 Assume |S| “ 3 and CG1pC2q “ Cp ˆ Cq

In this subsection we prove the part of Theorem 1.4 where |S| “ 3, and CG1pC2q “
Cp ˆ Cq.

Proposition 3.3.1 Assume

• G “ pC2 ˆ Crq ˙ pCp ˆ Cqq,
• |S| “ 3,

• CG1pC2q “ Cp ˆ Cq.
Then CaypG;Sq contains a Hamiltonian cycle.

Proof. Let S “ ta, b, cu. If CG1pCrq ‰ teu, then Proposition 3.1.1 applies. So we may

assume CG1pCrq “ teu. Now if pS is minimal, then Proposition 3.2.1 applies. So we

may assume pS is not minimal. Consider

pG “ G{Cp “ pC2 ˆ Crq ˙ Cq – pCr ˙ Cqq ˆ C2.

Choose a 2-element subset ta, bu of S that generates pG. From the minimality of S,
we see that

xa, by “ pCr ˙ Cqq ˆ C2,

after replacing a and b by conjugates. The projection of pa, bq to Cr ˙ Cq must be

of the form par, γqq or par, amr γqq, where 1 ď m ď r ´ 1 (note that pb ‰ γq because
S X G1 “ H). Therefore pa, bq must have one of the following forms:

(1) par, a2γqq,
(2) par, a2amr γqq, where 1 ď m ď r ´ 1,
(3) pa2ar, amr γqq, where 1 ď m ď r ´ 1,
(4) pa2ar, a2γqq,
(5) pa2ar, a2amr γqq, where 1 ď m ď r ´ 1.
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Let c be the third element of S. We may write c “ ai2a
j
rγ

k
q γp with 0 ď i ď 1,

0 ď j ď r ´ 1 and 0 ď k ď q ´ 1. Note since S X G1 “ H, we know that i and
j cannot both be equal to 0. Additionally, we have arγpa

´1
r “ γpτ

p where pτ r ” 1
pmod pq and pτ ı 1 pmod pq. Thus pτ r´1 ` pτ r´2 ` . . .`1 ” 0 pmod pq. Note that this
implies pτ ı ´1 pmod pq. Also we have arγqa

´1
r “ γqτ

q . By using the same argument
we can conclude that qτ ı 1 pmod qq and qτ r´1 ` qτ r´2 ` . . . ` 1 ” 0 pmod qq. Note
that this implies qτ ı ´1 pmod qq.

Case 3.3.1 Assume a “ ar and b “ a2γq.

Subcase 3.3.1.1 Assume i “ 0. Then j ‰ 0 and c “ ajrγ
k
q γp. By part (1.2) of

Theorem 1.2 Cayp qG; qSq contains a Hamiltonian cycle. There must be an occurrence

of qb because it is the only generator that contains a2. So Corollary 2.2.5 applies with
s “ b and t “ b´1.

Subcase 3.3.1.2 Assume j “ 0. Then i ‰ 0 and c “ a2γ
k
q γp. If k ‰ 0, then by

Lemma 2.5.2(2.5.2) xa, cy “ G which contradicts the minimality of S.

So we may assume k “ 0. Then c “ a2γp. Consider G “ C2 ˆ Cr. Then a “ ar, and
b “ c “ a2. We have C “ pc, ar´1, b, a´pr´1qq as a Hamiltonian cycle in CaypG;Sq.
Since there is one occurrence of b in C, and it is the only generator of G that contains
γq, by Lemma 2.2.6 we conclude that the subgroup generated by VpCq contains Cq.
Similarly, since there is one occurrence of c in C, and it is the only generator of G
that contains γp, by Lemma 2.2.6 we conclude that the subgroup generated by VpCq
contains Cp. Therefore the subgroup generated by VpCq is G1. So Factor Group
Lemma 2.2.4 applies.

Subcase 3.3.1.3 Assume i ‰ 0 and j ‰ 0. Then c “ a2a
j
rγ

k
q γp. If k ‰ 0, then by

Lemma 2.5.2 (3), xa, cy “ G, which contradicts the minimality of S.

So we can assume k “ 0. Then c “ a2a
j
rγp. We may also assume j is odd by replacing

c with its inverse and j with r ´ j if necessary. Consider G “ C2 ˆ Cr. Then a “ ar,
b “ a2, and c “ a2a

j
r. We have

C1 “ pc, pb, aqr´j, aj´1, b, a´pj´1qq
as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of c in C1, and
it is the only generator of G that contains γp, by Lemma 2.2.6 we conclude that
the subgroup generated by VpC1q contains Cp. By the Factor Group Lemma 2.2.4

this implies that C1 lifts to C̃1 in Cayp qG; qSq. Since C1 contains an occurrence of b,
Corollary 2.2.5 applies with s “ b and t “ b´1.

Case 3.3.2 Assume a “ ar and b “ a2a
m
r γq, where 1 ď m ď r ´ 1.
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Subcase 3.3.2.1 Assume i ‰ 0 and j ‰ 0. Then c “ a2a
j
rγ

k
q γp. If k ‰ 0, then

by Lemma 2.5.2 (3), xa, cy “ G, which contradicts the minimality of S. So we can
assume k “ 0. Then c “ a2a

j
rγp. Thus, by Lemma 2.5.2(2.5.2) xb, cy “ G which

contradicts the minimality of S.

Subcase 3.3.2.2 Assume i “ 0. Then j ‰ 0 and c “ ajrγ
k
q γp. We may assume j is

odd by replacing c with its inverse and j with r ´ j if necessary. If k “ 0, then, by
Lemma 2.5.2 (4), xb, cy “ G, which contradicts the minimality of S. So, we may also
assume k ‰ 0. Consider G “ C2 ˆ Cr. Then a “ ar, b “ a2a

m
r and c “ ajr.

Subsubcase 3.3.2.2.1 Assume j “ 1. Then a “ c “ ar. We have C1 “ pc, ar´2, b,

a´pr´1q, b´1q and C2 “ pc2, ar´3, b, a´pr´1q, b´1q as Hamiltonian cycles in CaypG;Sq.
Since there is one occurrence of c in C1, and it is the only generator of G that contains
γp, by Lemma 2.2.6 we conclude that the subgroup generated by VpC1q contains Cp.
We also have

VpC1q “ car´2ba´pr´1qb´1

” arγ
k
q ¨ ar´2

r ¨ amr γq ¨ a´pr´1q
r ¨ γ´1

q a´m
r pmod C2 ˆ Cpq

“ arγ
k
q a

m´2
r γqarγ

´1
q a´m

r

“ γkqτ`qτm´1´qτm

q .

We can assume this does not generate Cq, for otherwise Factor Group Lemma 2.2.4
applies. So, we have

0 ” kqτ ` qτm´1 ´ qτm pmod qq. (3.3.A)

Now we calculate the voltage of C2.

VpC2q “ c2ar´3ba´pr´1qb´1

” arγparγp ¨ ar´3
r ¨ amr ¨ a´pr´1q

r ¨ a´m
r pmod C2 ˆ Cqq

“ arγparγpa
´2
r

“ γpτ`pτ2

p

“ γpτp1`pτq
p ,

which generates Cp. Also, we have

VpC2q “ c2ar´3ba´pr´1qb´1

” arγ
k
q arγ

k
q ¨ ar´3

r ¨ amr γq ¨ a´pr´1q
r ¨ γ´1

q a´m
r pmod C2 ˆ Cpq

“ arγ
k
q arγ

k
q a

m´3
r γqarγ

´1
q a´m

r

“ γkqτ`kqτ2`qτm´1´qτm

q .

We can assume this does not generate Cq, for otherwise Factor Group Lemma 2.2.4
applies. Thus, we have

0 ” kqτ ` kqτ 2 ` qτm´1 ´ qτm pmod qq.
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By subtracting (3.3.A) from the above equation, we have kqτ 2 ” 0 pmod qq; this is
not possible.

Subsubcase 3.3.2.2.2 Assume j ‰ 1. We have

C3 “ pb, c´1, aj´1, c´1, a´pr´j´2q, b´1
, ar´1q

and

C4 “ pc´1, a´pr´j´1q, c´1, b
´1
, a´pr´1q, b, aj´2q

as Hamiltonian cycles in CaypG;Sq. Now we calculate the voltage of C3.

VpC3q “ bc´1aj´1c´1a´pr´j´2qb´1ar´1

” amr ¨ γ´1
p a´j

r ¨ aj´1
r ¨ γ´1

p a´j
r ¨ a´pr´j´2q

r ¨ a´m
r ¨ ar´1

r pmod C2 ˆ Cqq
“ amr γ

´1
p a´1

r γ´1
p a´m`1

r

“ γ´pτm´pτm´1

p

“ γ´pτm´1ppτ`1q
p ,

which generates Cp. Also,
VpC3q “ bc´1aj´1c´1a´pr´j´2qb´1ar´1

” amr γq ¨ γ´k
q a´j

r ¨ aj´1
r ¨ γ´k

q a´j
r ¨ a´pr´j´2q

r ¨ γ´1
q a´m

r ¨ ar´1
r pmod C2 ˆ Cpq

“ amr γ
1´k
q a´1

r γ´k
q a2rγ

´1
q a´m´1

r

“ γp1´kqqτm´kqτm´1´qτm`1

q

“ γ´qτm´1ppk´1qqτ`k`qτ2q
q .

We can assume this does not generate Cq, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0 ” pk ´ 1qqτ ` k ` qτ 2 pmod qq
“ kpqτ ` 1q ` qτpqτ ´ 1q. (3.3.B)

Now we calculate the voltage of C4.

VpC4q “ c´1a´pr´j´1qc´1b´1a´pr´1qbaj´2

” γ´1
p a´j

r ¨ a´pr´j´1q
r ¨ γ´1

p a´j
r ¨ a´m

r ¨ a´pr´1q
r ¨ amr ¨ aj´2

r pmod C2 ˆ Cqq
“ γ´1

p arγ
´1
p a´1

r

“ γ´1´pτ
p ,

which generates Cp. Also,
VpC4q “ c´1a´pr´j´1qc´1b´1a´pr´1qbaj´2
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” γ´k
q a´j

r ¨ a´pr´j´1q
r ¨ γ´k

q a´j
r ¨ γ´1

q a´m
r ¨ a´pr´1q

r ¨ amr γq ¨ aj´2
r pmod C2 ˆ Cpq

“ γ´k´kqτ´qτ´j`1`qτ´j`2

q .

We may assume this does not generate Cq, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0 ” ´k ´ kqτ ´ qτ´j`1 ` qτ´j`2 pmod qq
“ ´kpqτ ` 1q ` qτ´j`1pqτ ´ 1q. (3.3.C)

Adding (3.3.B) and (3.3.C), we have

0 ” qτpqτ ´ 1q ` qτ´j`1pqτ ´ 1q pmod qq
“ qτpqτ ´ 1qp1 ` qτ´jq.

This implies that qτ´j ” ´1 pmod qq. So qτ j ” ´1 pmod qq. Thus, by Lemma 2.5.3,
qτ ” 1 pmod qq, which is not possible.

Subcase 3.3.2.3 Assume j “ 0. Then i ‰ 0 and c “ a2γ
k
q γp. If k ‰ 0, then by

Lemma 2.5.2 (3), xa, cy “ G, which contradicts the minimality of S.

So we may assume k “ 0. Then c “ a2γp. We may also assume m is odd by replacing
b with its inverse and m with r´m if necessary. Consider G “ C2 ˆCr. Then a “ ar,
b “ a2a

m
r , and c “ a2. We have

C1 “ pb, pc, aqr´m, am´1, c, a´pm´1qq
as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of b in C1, and
it is the only generator of G that contains γq, by Lemma 2.2.6 we conclude that the
subgroup generated by VpC1q contains Cq. By the Factor Group Lemma 2.2.4 this

implies that C1 lifts to a Hamiltonian cycle C̃1 in Cayp pG; pSq. Since C1 contains an
occurrence of c, Corollary 2.2.5 applies with s “ c and t “ c´1.

Case 3.3.3 Assume a “ a2ar and b “ amr γq, where 1 ď m ď r´1. Since b “ amr γq is
conjugate to amr via an element of Cq, this implies ta, bu is conjugate to ta2arγn

q , a
m
r u

for some nonzero n. So Case 3.3.2 applies (after replacing γq with γm
q and switching

ar with amr ).

Case 3.3.4 Assume a “ a2ar and b “ a2γq.

Subcase 3.3.4.1 Assume i “ 0. Then j ‰ 0 and c “ ajrγ
k
q γp. If k ‰ 0, then by

Lemma 2.5.2 (1), xa, cy “ G, which contradicts the minimality of S.

So we can assume k “ 0. Then c “ ajrγp. Consider G “ C2 ˆ Cr. Then a “ a2ar,
b “ a2, and c “ ajr. We have

C “ pc, pa´1, bqj´1, a´1, c, pa, bqr´j´1, aq
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as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpCq “ cpa´1bqj´1a´1cpabqr´j´1a

” ajrγp ¨ a´pj´1q
r ¨ a´1

r ¨ ajrγp ¨ ar´j´1
r ¨ ar pmod C2 ˆ Cqq

“ ajrγ
2
pa

´j
r

“ γ2pτ j

p ,

which generates Cp. By the Factor Group Lemma 2.2.4 this implies that C lifts to

a Hamiltonian cycle C̃ in Cayp qG; qSq. Since C contains an occurrence of b, Corol-
lary 2.2.5 applies with s “ b and t “ b´1.

Subcase 3.3.4.2 Assume j “ 0. Then i ‰ 0 and c “ a2γ
k
q γp. If k ‰ 0, then by

Lemma 2.5.2(2.5.2) xa, cy “ G which contradicts the minimality of S.

So we can assume k “ 0. Then c “ a2γp. Consider G “ C2 ˆ Cr. Then a “ a2ar, and

b “ c “ a2. We have C “ pc, ar´1, b
´1
, a´pr´1qq as a Hamiltonian cycle in CaypG;Sq.

Since there is one occurrence of b in C, and it is the only generator of G that contains
γq, by Lemma 2.2.6 we conclude that the subgroup generated by VpCq contains Cq.
Similarly, since there is one occurrence of c in C, and it is the only generator of G
that contains γp, by Lemma 2.2.6 we conclude that the subgroup generated by VpCq
contains Cp. Therefore, the subgroup generated by VpCq is G1. So Factor Group
Lemma 2.2.4 applies.

Subcase 3.3.4.3 Assume i ‰ 0 and j ‰ 0. Then c “ a2a
j
rγ

k
q γp. If k ‰ 0, then by

Lemma 2.5.2(2.5.2) xa, cy “ G which contradicts the minimality of S.

So we can assume k “ 0. Then c “ a2a
j
rγp. We may also assume j is odd by replacing

c with its inverse and j with r´j if necessary. Consider G “ C2 ˆCr. Then a “ a2ar,
b “ a2, and c “ a2a

j
r. We have

C “ pc, a´pj´1q, c, ar´j´2, b, a´pr´1q, bq
as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpCq “ ca´pj´1qcar´j´2ba´pr´1qb

” ajrγp ¨ a´pj´1q
r ¨ ajrγp ¨ ar´j´2

r ¨ a´pr´1q
r pmod C2 ˆ Cqq

“ ajrγparγpa
´j´1
r

“ γpτ j`pτ j`1

p

“ γpτ jp1`pτ q
p ,

which generates Cp. Also,

VpCq “ ca´pj´1qcar´j´2ba´pr´1qb

” ajr ¨ a´pj´1q
r ¨ ajr ¨ ar´j´2

r ¨ γq ¨ a´pr´1q
r ¨ γq pmod C2 ˆ Cpq



F. MAGHSOUDI/AUSTRALAS. J. COMBIN. 83 (3) (2022), 124–166 153

“ a´1
r γqarγq

“ γqτ´1`1
q ,

which generates Cq. Therefore the subgroup generated by VpCq is G1. So Factor
Group Lemma 2.2.4 applies.

Case 3.3.5 Assume a “ a2ar and b “ a2a
m
r γq, where 1 ď m ď r ´ 1. If k ‰ 0, then

by Lemma 2.5.2(2.5.2) xa, cy “ G which contradicts the minimality of S.

So we can assume k “ 0. Also, if j ‰ 0, then by Lemma 2.5.2 (4), xb, cy “ G, which
contradicts the minimality of S.

So we may also assume j “ 0. Then i ‰ 0. Therefore, c “ a2γp. So Case 3.3.4
applies, after interchanging b and c, and interchanging p and q. l

3.4 Assume |S| “ 3 and CG1pC2q ‰ teu
In this subsection we prove the part of Theorem 1.4 where |S| “ 3, and CG1pC2q

‰ teu.
Proposition 3.4.1 Assume

• G “ pC2 ˆ Crq ˙ pCp ˆ Cqq,
• |S| “ 3,
• CG1pC2q ‰ teu.

Then CaypG;Sq contains a Hamiltonian cycle.

Proof. Let S “ ta, b, cu. If CG1pCrq ‰ teu, then Proposition 3.1.1 applies. Therefore,
we may assume CG1pCrq “ teu. Now if CG1pC2q “ Cp ˆ Cq, then Proposition 3.3.1
applies. Since CG1pC2q ‰ teu, we may assume CG1pC2q “ Cq, by interchanging q

and p if necessary. This implies that C2 inverts Cp. Now if pS is minimal, then

Proposition 3.2.1 applies. So we may assume pS is not minimal. Consider

pG “ G{Cp “ pC2 ˆ Crq ˙ Cq “ C2 ˆ pCr ˙ Cqq.

Choose a 2-element subset ta, bu in S that generates pG. From the minimality of S,
we see that xa, by “ C2 ˆ pCr ˙ Cqq, after replacing a and b by conjugates. We may
assume |a| ě |b| and (by conjugating if necessary) a is an element of C2 ˆ Cr. Then
the projection of pa, bq to C2 ˆ Cr has one of the following forms.

• pa2ar, a2amr q, where 1 ď m ď r ´ 1,
• pa2ar, a2q,
• pa2ar, amr q, where 1 ď m ď r ´ 1,
• par, a2q.

So there are four possibilities for pa, bq:
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(1) pa2ar, a2amr γqq, where 1 ď m ď r ´ 1,
(2) pa2ar, a2γqq,
(3) pa2ar, amr γqq, where 1 ď m ď r ´ 1,
(4) par, a2γqq.
Let c be the third element of S. We may write c “ ai2a

j
rγ

k
q γp with 0 ď i ď 1,

0 ď j ď r ´ 1 and 0 ď k ď q ´ 1. Note since S X G1 “ H, we know that i and
j cannot both be equal to 0. Additionally, we have arγpa

´1
r “ γpτ

p where pτ r ” 1
pmod pq and pτ ı 1 pmod pq. Thus, pτ r´1 ` pτ r´2 ` . . .`1 ” 0 pmod pq. Note that this
implies pτ ı ´1 pmod pq. Also we have arγqa

´1
r “ γqτ

q . By using the same argument
we can conclude that qτ ı 1 pmod qq and qτ r´1 ` qτ r´2 ` . . . ` 1 ” 0 pmod qq. Note
that this implies qτ ı ´1 pmod qq.
Case 3.4.1 Assume a “ a2ar and b “ a2a

m
r γq, where 1 ď m ď r ´ 1. If k ‰ 0,

then by Lemma 2.5.2(2.5.2), xa, cy “ G which contradicts the minimality of S. So
we can assume k “ 0. Now if j ‰ 0, then by Lemma 2.5.2(2.5.2), xb, cy “ G which
contradicts the minimality of S.

Therefore, we may assume j “ 0. Then i ‰ 0 and c “ a2γp. We may also assume
m is odd by replacing b with its inverse and m with r ´ m if necessary. Consider
G “ C2 ˆ Cr. Then a “ a2ar, b “ a2a

m
r , and c “ a2. We have

C “ pb, a´pm´1q, b, ar´m´2, c, a´pr´1q, cq
as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpCq “ ba´pm´1qbar´m´2ca´pr´1qc

” amr γq ¨ a´pm´1q
r ¨ amr γq ¨ ar´m´2

r ¨ a´pr´1q
r pmod C2 ˙ Cpq

“ amr γqarγqa
´m´1
r

“ γqτm`qτm`1

q

“ γqτmp1`qτ q
q ,

which generates Cq. Also,
VpCq “ ba´pm´1qbar´m´2ca´pr´1qc

” a2a
m
r ¨ pa2arq´pm´1q ¨ a2amr ¨ pa2arqr´m´2 ¨ a2γp ¨ pa2arq´pr´1q ¨ a2γp pmod Cqq

“ a2a
m
r a

´m`1
r a2a

m
r a

´m´2
r a2γpara2γp

“ a´1
r γ´1

p arγp

“ γ´pτ´1`1
p ,

which generates Cp. Therefore, the subgroup generated by VpCq is G1. So Factor
Group Lemma 2.2.4 applies.

Case 3.4.2 Assume a “ a2ar and b “ a2γq. If k ‰ 0, then by Lemma 2.5.2 (1),
xa, cy “ G, which contradicts the minimality of S. So we can assume k “ 0. Then
c “ ai2a

j
rγp.
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Subcase 3.4.2.1 Assume i “ 0. Then j ‰ 0 and c “ ajrγp. We may also assume j is
odd by replacing c with its inverse and j with r´j if necessary. Consider G “ C2ˆCr.
Then a “ a2ar, b “ a2, and c “ ajr. We have

C “ pc, ar´j´1, b, a´pr´j´1q, c´1, aj´1, b, a´pj´1qq
as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpCq “ car´j´1ba´pr´j´1qc´1aj´1ba´pj´1q

” ajrγp ¨pa2arqr´j´1 ¨a2 ¨pa2arq´pr´j´1q ¨ γ´1
p a´j

r ¨pa2arqj´1 ¨a2 ¨ pa2arq´pj´1q pmod Cqq
“ ajrγpa2a

r´j´1
r a2a

´pr´j´1q
r a2γ

´1
p a´j

r aj´1
r a2a

´pj´1q
r

“ ajrγpa2γ
´1
p a´j

r a2

“ ajrγ
2
pa

´j
r

“ γ2pτ j

p ,

which generates Cp. Also,
VpCq “ car´j´1ba´pr´j´1qc´1aj´1ba´pj´1q

” ajr ¨ ar´j´1
r ¨ γq ¨ a´pr´j´1q

r ¨ a´j
r ¨ aj´1

r ¨ γq ¨ a´pj´1q
r pmod C2 ˙ Cpq

“ a´1
r γqa

j
rγqa

´j`1
r

“ γqτ´1`qτ j´1

q .

We can assume this does not generate Cq, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0 ” qτ´1 ` qτ j´1 pmod qq.
Multiplying by qτ , we have 0 ” 1 ` qτ j pmod qq, so qτ j ” ´1 pmod qq. Thus, by
Lemma 2.5.3, qτ ” 1 pmod qq, which is not possible.

Subcase 3.4.2.2 Assume j “ 0. Then i ‰ 0 and c “ a2γp. Consider G “ C2 ˆ Cr.
Then a “ a2ar, and b “ c “ a2. We have C “ pc, ar´1, b

´1
, a´pr´1qq as a Hamiltonian

cycle in CaypG;Sq. Since there is one occurrence of b in C, and it is the only generator
of G that contains γq, by Lemma 2.2.6 we conclude that the subgroup generated by
VpCq contains Cq. Similarly, since there is one occurrence of c in C, and it is the
only generator of G that contains γp, by Lemma 2.2.6 we conclude that the subgroup
generated by VpCq contains Cp. Therefore, the subgroup generated by VpCq is G1.
So Factor Group Lemma 2.2.4 applies.

Subcase 3.4.2.3 Assume i ‰ 0 and j ‰ 0. Then c “ a2a
j
rγp. We may also assume

j is odd by replacing c with its inverse and j with r ´ j if necessary. Consider
G “ C2 ˆ Cr. Then a “ a2ar, b “ a2, and c “ a2a

j
r. We have

C “ pc, a´pj´1q, c, ar´j´2, b, a´pr´1q, bq
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as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpCq “ ca´pj´1qcar´j´2ba´pr´1qb

” ajr ¨ a´pj´1q
r ¨ ajr ¨ ar´j´2

r ¨ γq ¨ a´pr´1q
r ¨ γq pmod C2 ˙ Cpq

“ a´1
r γqarγq

“ γqτ´1`1
q ,

which generates Cq. Also,
VpCq “ ca´pj´1qcar´j´2ba´pr´1qb

” a2a
j
rγp ¨ pa2arq´pj´1q ¨ a2ajrγp ¨ pa2arqr´j´2 ¨ a2 ¨ pa2arq´pr´1q ¨ a2 pmod Cqq

“ a2a
j
rγpa

´j`1
r a2a

j
rγpa

r´j´2
r a2a

´r`1
r a2

“ ajrγ
´1
p arγpa

´j´1
r

“ γ´pτ j`pτ j`1

p

“ γ´pτ jp1´pτq
p ,

which generates Cp. Therefore the subgroup generated by VpCq is G1. So Factor
Group Lemma 2.2.4 applies.

Case 3.4.3 Assume a “ a2ar and b “ amr γq, where 1 ď m ď r ´ 1. If k ‰ 0, then
by Lemma 2.5.2 (1), xa, cy “ G, which contradicts the minimality of S. So we may
assume k “ 0. Then c “ ai2a

j
rγp. If j ‰ 0, then by Lemma 2.5.2 (2), xb, cy “ G, which

contradicts the minimality of S. So we can assume j “ 0. Then i ‰ 0 and c “ a2γp.

Consider G “ C2 ˆ Cr. Then a “ a2ar, and b “ amr , and c “ a2. We may assume m
is odd by replacing b with its inverse and m with r ´ m if necessary. We have

C “ pb, pa´1, cqm´1, a´1, b, pa, cqr´m´1, aq
as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpCq “ bpa´1cqm´1a´1bpacqr´m´1a

” amr γq ¨ a´pm´1q
r ¨ a´1

r ¨ amr γq ¨ ar´m´1
r ¨ ar pmod C2 ˙ Cpq

“ amr γ
2
qa

´m
r

“ γ2qτm

q ,

which generates Cq. Also,
VpCq “ bpa´1cqm´1a´1bpacqr´m´1a

” amr ¨ pa´1
r a2 ¨ a2γpqm´1 ¨ a´1

r a2 ¨ amr ¨ pa2ar ¨ a2γpqr´m´1 ¨ a2ar pmod Cqq
“ amr pa´1

r γpqm´1am´1
r a2parγpqr´m´1a2ar

“ amr pγpτ´1`pτ´2`...`pτm´1

p a´pm´1q
r qam´1

r a2pγpτ`pτ2`...`pτr´m´1

p ar´m´1
r qa2ar

“ amr γ
pτ´1`pτ´2`...`pτm´1

p γ´ppτ`pτ2`...`pτr´m´1q
p a´m

r
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“ γpτmppτ´1`pτ´2`...`pτm´1´ppτ`pτ2`...`pτr´m´1qq
p

“ γppτ`1qp1´pτ´mq{ppτ´1q
p .

We can assume this does not generate Cp, for otherwise Factor Group Lemma 2.2.4
applies. Therefore 0 ” 1´ pτ´m pmod pq, which implies pτ´m ” 1 pmod pq. Multiply-
ing by pτm, we have pτm ” 1 pmod pq. Thus, by Lemma 2.5.3, pτ ” 1 pmod pq, which
is not possible.

Case 3.4.4 Assume a “ ar and b “ a2γq.

Subcase 3.4.4.1 Assume i “ 0. Then j ‰ 0 and c “ ajrγ
k
q γp. We show that

xb, cy “ G, which contradicts the minimality of S. We have xb, cy “ xa2, ajry “ G.

We also have tpb,pcu “ ta2γq, ajrγk
q u. Since C2 centralizes Cq, this implies

rpb,pcs “ ra2γq, ajrγk
q s “ rγq, ajrγk

q s “ γqa
j
rγ

k
q γ

´1
q γ´k

q a´j
r “ γqa

j
rγ

´1
q a´j

r “ γ1´qτ j

q .

We may assume this does not generate Cq, for otherwise pG contains Cq. Therefore
0 ” 1 ´ qτ j pmod qq, which implies qτ j ” 1 pmod qq. So by Lemma 2.5.3, qτ ” 1
pmod qq, which is not possible.

Also, we have tqb,qcu “ ta2, ajrγpu. Since C2 inverts Cp, this implies

rqb,qcs “ ra2, ajrγps “ a2a
j
rγpa2γ

´1
p a´j

r “ ajrγ
´2
p a´j

r “ γ´2pτ j

p ,

which generates Cp. Thus qG contains Cp. So G “ xb, cy.

Subcase 3.4.4.2 Assume j “ 0. Then i ‰ 0 and c “ a2γ
k
q γp. If k ‰ 0, then by

Lemma 2.5.2 (3), xa, cy “ G, which contradicts the minimality of S. So we may
assume k “ 0. Thus c “ a2γp.

Consider G “ C2 ˆ Cr. Then a “ ar, b “ c “ a2. We have C “ pc, ar´1, b
´1
, a´pr´1qq

as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of b in C, and
it is the only generator of G that contains γq, by Lemma 2.2.6 we conclude that the
subgroup generated by VpCq contains Cq. i Similarly, since there is one occurrence
of c in C, and it is the only generator of G that contains γp, by Lemma 2.2.6 we
conclude that the subgroup generated by VpCq contains Cp. Therefore the subgroup
generated by VpCq is G1. So Factor Group Lemma 2.2.4 applies.

Subcase 3.4.4.3 Assume i ‰ 0 and j ‰ 0. Then c “ a2a
j
rγ

k
q γp. If k ‰ 0, then by

Lemma 2.5.2 (3), xa, cy “ G, which contradicts the minimality of S.

So we can assume k “ 0. Then c “ a2a
j
rγp. We show that xb, cy “ G which

contradicts the minimality of S. We have xb, cy “ xa2, a2ajry “ G. Also, tpb,pcu “
ta2γq, a2ajru. Since C2 centralizes Cq, we have

rpb,pcs “ ra2γq, a2ajrs “ rγq, ajrs “ γqa
j
rγ

´1
q a´j

r “ γ1´qτ j

q .
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We may assume this does not generate Cq, for otherwise pG contains Cq. Therefore,
0 ” 1 ´ qτ j pmod qq, which implies qτ j ” 1 pmod qq. Thus, by Lemma 2.5.3, qτ ” 1

pmod qq, which is not possible. Additionally, tqb,qcu “ ta2, a2ajrγpu. Since C2 inverts
Cp, we have

rqb,qcs “ ra2, a2ajrγps “ a2a2a
j
rγpa2γ

´1
p a´j

r a2 “ ajrγ
2
pa

´j
r “ γpτ

p

which generates Cp. Thus qG contains Cp.
l

3.5 Assume |S| “ 3 and CG1pC2q “ teu
In this subsection we prove the part of Theorem 1.4 where |S| “ 3 and CG1pC2q “ teu.
Proposition 3.5.1 Assume

• G “ pC2 ˆ Crq ˙ pCp ˆ Cqq,
• |S| “ 3,
• CG1pC2q “ teu.

Then CaypG;Sq contains a Hamiltonian cycle.

Proof. Let S “ ta, b, cu. If CG1pCrq ‰ teu, then Proposition 3.1.1 applies. So we may

assume CG1pCrq “ teu. Now if pS is minimal, then Proposition 3.2.1 applies. So we

may assume pS is not minimal. Consider

pG “ G{Cp “ pC2 ˆ Crq ˙ Cq.

Choose a 2-element subset ta, bu in S that generates pG. From the minimality of S,
we see that xa, by “ pC2 ˆ Crq ˙ Cq, after replacing a and b by conjugates. We may
assume |a| ě |b| and (by conjugating if necessary) a is in C2ˆCr. Then the projection
of pa, bq to C2 ˆ Cr is one of the following forms.

• pa2ar, a2amr q, where 1 ď m ď r ´ 1,
• pa2ar, a2q,
• pa2ar, amr q, where 1 ď m ď r ´ 1,
• par, a2q.

There are four possibilities for pa, bq:
(1) pa2ar, a2amr γqq, where 1 ď m ď r ´ 1,
(2) pa2ar, a2γqq,
(3) pa2ar, amr γqq, where 1 ď m ď r ´ 1,
(4) par, a2γqq.
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Let c be the third element of S. We may write c “ ai2a
j
rγ

k
q γp with 0 ď i ď 1,

0 ď j ď r ´ 1 and 0 ď k ď q ´ 1. Note that since S X G1 “ H, we know that i
and j cannot both be equal to 0. Additionally, we have arγpa

´1
r “ γpτ

p , where pτ r ” 1
pmod pq and pτ ı 1 pmod pq. Thus pτ r´1 ` pτ r´2 ` . . .`1 ” 0 pmod pq. Note that this
implies pτ ı ´1 pmod pq. Also we have arγqa

´1
r “ γqτ

q . By using the same argument
we can conclude that qτ ı 1 pmod qq and qτ r´1 ` qτ r´2 ` . . . ` 1 ” 0 pmod qq. Note
that this implies qτ ı ´1 pmod qq.
Case 3.5.1 Assume a “ a2ar and b “ a2a

m
r γq, where 1 ď m ď r ´ 1. If k ‰ 0, then

by Lemma 2.5.2 (1), xa, cy “ G, which contradicts the minimality of S. So we can
assume k “ 0. Now if j ‰ 0, then by Lemma 2.5.2 (4), xb, cy “ G, which contradicts
the minimality of S. Therefore we may assume j “ 0. Then i ‰ 0 and c “ a2γp.

Now we show that xb, cy “ G, which contradicts the minimality of S. We have

xb, cy “ xa2amr , a2y “ G. Also, tpb,pcu “ ta2amr γq, a2u. Since C2 inverts Cq, this implies

rpb,pcs “ ra2amr γq, a2s “ a2a
m
r γqa2γ

´1
q a´m

r a2a2 “ amr γ
´2
q a´m

r “ γ´2qτm

q ,

which generates Cq. So pG contains Cq. We also have tqb,qcu “ ta2amr , a2γpu. Since C2
inverts Cp, this implies

rqb,qcs “ ra2amr , a2γps “ a2a
m
r a2γpa

´m
r a2γ

´1
p a2 “ amr γpa

´m
r γp “ γpτm`1

p .

We can assume this does not generate Cp, for otherwise qG contains Cp. Therefore
0 ” pτm `1 pmod pq, which implies pτm ” ´1 pmod pq. Thus, by Lemma 2.5.3, pτ ” 1
pmod pq, which is not possible.

Case 3.5.2 Assume a “ a2ar and b “ a2γq. If k ‰ 0, then by Lemma 2.5.2 (1),
xa, cy “ G, which contradicts the minimality of S. So we can assume k “ 0. Then
c “ ai2a

j
rγp.

If j ‰ 0, then we show that xb, cy “ G which contradicts the minimality of S. We

have xb, cy “ xa2, ai2, ajry “ G. Also, tpb,pcu “ ta2γq, ai2ajru. Since C2 inverts Cq, this
implies

rpb,pcs “ ra2γq, ai2ajrs “ a2γqa
i
2a

j
rγ

´1
q a2a

´j
r ai2 “ γ´1

q ai`1
2 ajrγ

´1
q a´j

r ai`1
2 “ γ´1¯qτ j

q .

We can assume this does not generate Cq, for otherwise pG contains Cq. Therefore
0 ” ´1¯ qτ j pmod qq, which implies qτ j ” ˘1 pmod qq. Thus, by Lemma 2.5.3, qτ ” 1

pmod qq, which is not possible. We also have tqb,qcu “ ta2, ai2ajrγpu. Since C2 inverts
Cp, this implies

rqb,qcs “ ra2, ai2ajrγps “ a2a
i
2a

j
rγpa2γ

´1
p a´j

r ai2 “ ai`1
2 ajrγ

2
pa

´j
r ai`1

2 “ γ¯2pτ j

p

which generates Cp. Thus qG contains Cp.
So we can assume j “ 0. Then i ‰ 0 and c “ a2γp. Consider G “ C2 ˆ Cr. Then

a “ a2ar, and b “ c “ a2. We have C “ pc, ar´1, b
´1
, a´pr´1qq as a Hamiltonian cycle
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in CaypG;Sq. Since there is one occurrence of b in C, and it is the only generator
of G that contains γq, by Lemma 2.2.6 we conclude that the subgroup generated by
VpCq contains Cq. Similarly, since there is one occurrence of c in C, and it is the
only generator of G that contains γp, by Lemma 2.2.6 we conclude that the subgroup
generated by VpCq contains Cp. Therefore the subgroup generated by VpCq is G1.
So Factor Group Lemma 2.2.4 applies.

Case 3.5.3 Assume a “ a2ar and b “ amr γq, where 1 ď m ď r ´ 1. If k ‰ 0, then
by Lemma 2.5.2 (1), xa, cy “ G, which contradicts the minimality of S. So we can
assume k “ 0.

If i ‰ 0, then c “ a2a
j
rγp. Now we show that xb, cy “ G, which contradicts the

minimality of S. We have xb, cy “ xamr , a2ajry “ G. Also tpb,pcu “ tamr γq, a2ajru. Since
C2 inverts Cq, this implies

rpb,pcs “ ramr γq, a2ajrs “ amr γqa2a
j
rγ

´1
q a´m

r a´j
r a2

“ amr γqa
j
rγqa

´m´j
r “ γqτm`qτm`j

q “ γqτmp1`qτ jq
q .

We may assume this does not generate Cq, for otherwise pG contains Cq. Therefore
0 ” 1 ` qτ j pmod qq, which implies qτ j ” ´1 pmod qq. Thus, by Lemma 2.5.3, qτ ” 1

pmod qq, which is not possible. We also have tqb,qcu “ tamr , a2ajrγpu. Since C2 inverts
Cp, this implies

rqb,qcs “ ramr , a2ajrγps “ amr a2a
j
rγpa

´m
r γ´1

p a´j
r a2 “ am`j

r γ´1
p a´m

r γpa
´j
r “ γ´pτ jppτm´1q

p .

We can assume this does not generate Cp, for otherwise qG contains Cp. Therefore
0 ” pτm ´ 1 pmod pq, which implies pτm ” 1 pmod pq. Thus, by Lemma 2.5.3, pτ ” 1
pmod pq, which is not possible.

So we may assume i “ 0. Then j ‰ 0 and c “ ajrγp. Consider G “ C2 ˆ Cr. Then
a “ a2ar, b “ amr , and c “ ajr.

Suppose, for the moment, that m “ j. Then b “ c. We have

C1 “ pc´pr´1q, a´1, b
r´1

, aq
as a Hamiltonian cycle in CaypG;Sq. Since cr “ e, this implies c´pr´1q “ c “ ajrγp.
This is the only occurrence of γp in VpC1q. So the subgroup generated by VpC1q
contains Cp. Similarly, since br “ e, it follows that br´1 “ b´1 “ γ´1

q a´m
r . This is

the only occurrence of γq in VpC1q. So the subgroup generated by VpC1q contains
Cq. Hence the subgroup generated by VpC1q contains G1. Therefore Factor Group
Lemma 2.2.4 applies.

So we may assume m ‰ j. We may also assume m and j are even, by replacing tb, cu
with their inverses, m with r ´ m, and j with r ´ j, if necessary.
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Subcase 3.5.3.1 Assume j “ 2. Then we have c “ a2rγp. We also have

C2 “ pb, c´pm´2q{2, a´1, cm{2, a2r´m´1q
as a Hamiltonian cycle in CaypG;Sq. Since there is one occurrence of b in C2, and
it is the only generator of G that contains γq, by Lemma 2.2.6 we conclude that the
subgroup generated by VpC2q contains Cq. Also,

VpC2q “ bc´pm´2q{2a´1cm{2a2r´m´1

” amr ¨ pa2rγpq´pm´2q{2 ¨ a´1
r a2 ¨ pa2rγpqm{2 ¨ pa2arq2r´m´1 pmod Cqq

“ amr pγpτ2`ppτ2q2`...`ppτ2qpm´2q{2
p am´2

r q´1a´1
r a2pγpτ2`ppτ2q2`...`ppτ2qm{2

p amr qa2a2r´m´1
r

“ a2rγ
´ppτ2`ppτ2q2`...`ppτ2qpm´2q{2q
p a´1

r γ´ppτ2`ppτ2q2`...`ppτ2qm{2q
p a´1

r

“ γ´pτ2ppτ2`ppτ2q2`...`ppτ2qpm´2q{2q´pτppτ2`ppτ2q2`...`ppτ2qm{2q
p

“ γ´pτ4p1`pτ2`...`ppτ2qpm´4q{2q´pτ3p1`pτ2`...`ppτ2qpm´2q{2q
p

“ γ´pτ3ppτ ppτm´2´1q{ppτ2´1q`ppτm´1q{ppτ2´1qq
p

“ γ´pτ3ppτm´1´pτ`pτm´1q{ppτ2´1q
p .

We can assume this does not generate Cp, for otherwise Factor Group Lemma 2.2.4
applies. Therefore, either 0 ” pτ 2 ´ 1 pmod pq or

0 ” pτm´1 ´ pτ ` pτm ´ 1 pmod pq.
The first case is not possible, so we may assume

0 ” pτm´1 ´ pτ ` pτm ´ 1 pmod pq
“ ppτm´1 ´ 1qppτ ` 1q,

which implies pτm´1 ” 1 pmod pq. We also know pτ r ” 1 pmod pq. So pτd ” 1 pmod pq,
where d “ gcdpm ´ 1, rq. Since 2 ď m ď r ´ 1, this implies d “ 1. Thus pτ ” 1
pmod pq, which is not possible.

Subcase 3.5.3.2 Assume j ‰ 2. We have

C3 “ pb, c, a, c´1, b
´1
, am´2, c, a´pj´3q, c, a2r´m´j´2q

as a Hamiltonian cycle in CaypG;Sq. Now we calculate its voltage.

VpC3q “ bcac´1b´1am´2ca´pj´3qca2r´m´j´2

” amr γq ¨ ajr ¨ a2ar ¨ a´j
r ¨ γ´1

q a´m
r ¨ pa2arqm´2

¨ ajr ¨ pa2arq´pj´3q ¨ ajr ¨ pa2arq2r´m´j´2 pmod Cpq
“ amr γqa

j
ra2ara

´j
r γ´1

q a´m
r am´2

r ajra
´j`3
r a2a

j
ra

2r´m´j´2
r

“ amr γqarγqa
´m´1
r
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“ γqτm`qτm`1

q

“ γqτmp1`qτ q
q ,

which generates Cq. Also,
VpC3q “ bcac´1b´1am´2ca´pj´3qca2r´m´j´2

” amr ¨ ajrγp ¨ a2ar ¨ γ´1
p a´j

r ¨ a´m
r ¨ pa2arqm´2 ¨ ajrγp

¨ pa2arq´pj´3q ¨ ajrγp ¨ pa2arq2r´m´j´2 pmod Cqq
“ am`j

r γpa2arγ
´1
p a´j´m

r am´2
r ajrγpa

´j`3
r a2a

j
rγpa

2r´m´j´2
r

“ am`j
r γparγpa

´2
r γ´1

p a3rγpa
´m´j´2
r

“ γpτm`j`pτm`j`1´pτm`j´1`pτm`j`2

p

“ γpτm`j´1ppτ3`pτ2`pτ´1q
p .

We can assume this does not generate Cp, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0 ” pτ 3 ` pτ 2 ` pτ ´ 1 pmod pq. (3.5.A)

We can replace pτ with pτ´1 in the above equation after replacing ta, b, cu with their
inverses in the Hamiltonian cycle. So we have

0 ” pτ´3 ` pτ´2 ` pτ´1 ´ 1 pmod pq.
Multiplying by pτ 3, we have

0 ” 1 ` pτ ` pτ 2 ´ pτ 3 pmod pq
“ ´pτ 3 ` pτ 2 ` pτ ` 1.

By adding (3.5.A) and the above equation, we have

0 ” 2pτ 2 ` 2pτ pmod pq
“ 2pτppτ ` 1q,

which implies pτ ” ´1 pmod pq, which is not possible.

Case 3.5.4 Assume a “ ar and b “ a2γq.

Subcase 3.5.4.1 Assume i “ 0. Then j ‰ 0 and c “ ajrγ
k
q γp.

Consider G “ C2 ˆ Cr. Then a “ ar, b “ a2, and c “ ajr. We may assume j is odd by
replacing c with its inverse and j with r ´ j if necessary. We have

C1 “ pc, ar´j´1, b, a´pr´j´1q, c´1, aj´1, b, a´pj´1qq
and

C2 “ par´j´1, c, a´pj´1q, b, aj´1, c´1, a´pr´j´1q, bq
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as Hamiltonian cycles in CaypG;Sq. Now we calculate the voltage of C1.

VpC1q “ car´j´1ba´pr´j´1qc´1aj´1ba´pj´1q

” ajrγp ¨ ar´j´1
r ¨ a2 ¨ a´pr´j´1q

r ¨ γ´1
p a´j

r ¨ aj´1
r ¨ a2 ¨ a´pj´1q

r pmod Cqq
“ ajrγpa

r´j´1
r a´pr´j´1q

r γpa
´j
r aj´1

r a´pj´1q
r

“ ajrγ
2
pa

´j
r

“ γ2pτ j

p ,

which generates Cp. Also,
VpC1q “ car´j´1ba´pr´j´1qc´1aj´1ba´pj´1q

” ajrγ
k
q ¨ ar´j´1

r ¨ a2γq ¨ a´pr´j´1q
r ¨ γ´k

q a´j
r ¨ aj´1

r ¨ a2γq ¨ a´pj´1q
r pmod Cpq

“ ajrγ
k
q a

´j´1
r γ´1

q aj`1
r γk

q a
´1
r γqa

´j`1
r

“ γkqτ j´qτ´1`kqτ j`qτ j´1

q

“ γ2kqτ j`qτ j´1´qτ´1

q .

We can assume this does not generate Cq, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0 ” 2kqτ j ` qτ j´1 ´ qτ´1 pmod qq.
Multiplying by qτ , we have

0 ” 2kqτ j`1 ` qτ j ´ 1 pmod qq. (3.5.B)

Now we calculate the voltage of C2.

VpC2q “ ar´j´1ca´pj´1qbaj´1c´1a´pr´j´1qb

” ar´j´1
r ¨ ajrγp ¨ a´pj´1q

r ¨ a2 ¨ aj´1
r ¨ γ´1

p a´j
r ¨ a´pr´j´1q

r ¨ a2 pmod Cqq
“ a´1

r γpa2γ
´1
p ara2

“ a´1
r γ2

par

“ γpτ´1

p ,

which generates Cp. Also,
VpC2q “ ar´j´1ca´pj´1qbaj´1c´1a´pr´j´1qb

” ar´j´1
r ¨ ajrγk

q ¨ a´pj´1q
r ¨ a2γq ¨ aj´1

r ¨ γ´k
q a´j

r ¨ a´pr´j´1q
r ¨ a2γq pmod Cpq

“ a´1
r γk

q a
´j`1
r a2γqa

j´1
r γ´k

q ara2γq

“ a´1
r γk

q a
´j`1
r γ´1

q aj´1
r γk

q arγq

“ γkqτ´1´qτ´j`kqτ´1`1
q

“ γ1`2kqτ´1´qτ´j

q .
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We may assume this does not generate Cq, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0 ” 1 ` 2kqτ´1 ´ qτ´j pmod qq
Multiplying by qτ j`2, we have

0 ” qτ j`2 ` 2kqτ j`1 ´ qτ 2 pmod qq.
By subtracting (3.5.B) from the above equation, we have

0 ” qτ j`2 ´ qτ j ´ qτ 2 ` 1 pmod qq
“ pqτ j ´ 1qpqτ 2 ´ 1q.

This implies that qτ j ” 1 pmod qq. Thus, by Lemma 2.5.3, qτ ” 1 pmod qq, which is
not possible.

Subcase 3.5.4.2 Assume i ‰ 0. Then c “ a2a
j
rγ

k
q γp. If k ‰ 0, then by Lemma

2.5.2 (3), xa, cy “ G, which contradicts the minimality of S. So we may assume
k “ 0, and then c “ a2a

j
rγp.

Suppose, for the moment, that j ‰ 0; then we show that xb, cy “ G, which contradicts

the minimality of S. We have xb, cy “ xa2, a2ajry “ G. We also have tpb,pcu “
ta2γq, a2ajru. Since C2 inverts Cq, this implies

rpb,pcs “ ra2γq, a2ajrs “ a2γqa2a
j
rγ

´1
q a2a

´j
r a2 “ γ´1

q ajrγ
´1
q a´j

r “ γ´1´qτ j

q .

We can assume this does not generate Cq, for otherwise pG contains Cq. Therefore,
0 ” ´1 ´ qτ j pmod qq which implies qτ j ” ´1 pmod qq. So by Lemma 2.5.3 qτ ” 1

pmod qq which is not possible. Also, we have tqb,qcu “ ta2, a2ajrγpu. Since C2 inverts
Cp, this implies

rqb,qcs “ ra2, a2ajrγps “ a2a2a
j
rγpa2γ

´1
p a´j

r a2 “ ajrγ
2
pa

´j
r “ γ2pτ j

p ,

which generates Cp. Thus, xb, cy “ G.

So we can assume j “ 0. Then c “ a2γp. Consider G “ C2 ˆ Cr. Then a “ ar, and
b “ c “ a2. We have C “ pb, ar´1, c´1, a´pr´1qq as a Hamiltonian cycle in CaypG;Sq.
Since there is one occurrence of b in C, and it is the only generator of G that contains
γq, by Lemma 2.2.6 we conclude that the subgroup generated by VpCq contains Cq.
Similarly, since there is one occurrence of c in C, and it is the only generator of G
that contains γp, by Lemma 2.2.6 we conclude that the subgroup generated by VpCq
contains Cp. Therefore, the subgroup generated by VpCq is G1. So, Factor Group
Lemma 2.2.4 applies.

The proof of Theorem 1.4 is now completed by applying Propositions 3.1.1, 3.2.1,
3.3.1 and 3.4.1.

l
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