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Abstract

Assume G is a finite group such that |G| = pgrs, where p, ¢, r and s are
distinct prime numbers, and let S be a minimal generating set of GG, such
that |S| = 3. We prove there is a Hamiltonian cycle in the corresponding
Cayley graph Cay(G; S).

1 Introduction

In 1878 Arthur Cayley [1] introduced the definition of a Cayley graph. All graphs in
this paper are undirected and simple. (The graphs have no loops or multiple edges
or directions on the edges.)

Definition 1.1 ([11, Definition 1.1], cf. [7, p.34]) Let S be a subset of a finite group
G. The Cayley graph Cay(G;S) is the graph whose vertices are elements of G, with
an edge joining g and gs, for every g € G and s € S.

The field of Cayley graphs has become a significant branch of algebraic graph
theory (see [10] for more information). Finding Hamiltonian cycles in Cayley graphs
is a fundamental question in graph theory, but in general it is extremely difficult.
There are many papers on the topic, but it is still an open question whether every
connected Cayley graph has a Hamiltonian cycle. (See survey papers [3, 12] for
more information.) In particular, a number of papers have shown that all connected
Cayley graphs of specific orders are Hamiltonian:

Theorem 1.2 ([11, 13, 16, 18]) Let G be a finite group. Every connected Cayley
graph on G has a Hamiltonian cycle if |G| has any of the following forms (where p,
q, and r are distinct primes):

(1) kp, where 1 < k < 47,

(2) kpq, where 1 <k <7,

(3) par,

(4) kp?, where 1

(5) kp?, where 1

(6) p*, where 1 < k < .

<k <4,
<k<?2

)
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By the following theorem, every connected Cayley graph of order the product of
four distinct odd primes has a Hamiltonian cycle.

Theorem 1.3 ([15, Theorem 1.3]) If p, q, r, and s are distinct odd primes, then
every connected Cayley graph of order pqrs has a Hamiltonian cycle.

The theorem above requires all four primes to be odd. The goal of this paper is to
make progress toward removing this restriction, by proving certain cases where one
of the primes is 2. However, we add the assumption that the generating set of the

group contains a minimal generating set whose cardinality is greater than or equal
to 3.

Theorem 1.4 Assume G is a finite group of order pqrs with the generating set S,
where p, q, v, and s are distinct primes. If no 2-element subset of S generates G,
then Cay(G;S) contains a Hamiltonian cycle.

Remark 1.5 The case where p, ¢, r, and s are not distinct primes is still an open
problem. For instance, it is not known whether all connected Cayley graphs of order
9p? or 3p* are Hamiltonian.

Remark 1.6 To remove the restriction on the generating set of our result (Theo-
rem 1.4) and to complete the proof of the following problem “Every connected Cayley
graph of order pgrs (where p, ¢, 7 and s are distinct primes) are Hamiltonian”, it
would suffice to show that every connected Cayley graph of order 2pgr (where p, g,
and r are distinct odd primes) which has a minimal generating set of order 2, has a
Hamiltonian cycle.

2 Preliminaries

The purpose of this section is to introduce terminology and notation and to establish
some results that will be used in the proof of Theorem 1.4.

2.1 Notation and definitions

Throughout the paper, we have used standard terminology of graph theory and group
theory that can be found in textbooks, such as [7, 8].
The following notation is used in the paper:

e The commutator ghg=*h™! of g and h is denoted by [g, h].

We will always let G’ = [G, G] be the commutator subgroup of G.

We define G = G/G', G = gG' forany g€ G, and S = {g;g € S} forany S < G.
We define G = G/N,G = gN for any g € G, and S = {g;g € S} for any S < G.
Ce/(S) denotes the centralizer of S in G'.

e (G x H denotes a semidirect product of groups G and H, where H is normal.

Dsy,, denotes the dihedral group of order 2n.
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e denotes the identity element of G.

e For S c G, asequence (sy, 5, ..., 5,) of elements of SUS™! specifies the walk in
the Cayley graph Cay(G;S) that visits the vertices: e, sy, 152, ...,5152 " Sp.
-1 -1 —1)

Also, (s1,82,...,8,) = (s, 80, ..., 8

e We use (51,53,...,8,) to denote the image of the walk (s1,s9,...,5,) in
Cay(G/G"; )
= Cay(G; S) which is a Cayley graph on the quotient group G/G’.

o For ke Z*, we use (s1, 8o, . ..,5,)" to denote the concatenation of k copies of
the sequence (s1, S, ..., Sm).

e p, ¢, and r are distinct prime numbers.

e C, denotes the cyclic group of order n.

e« G=0G /C,, when C, is a normal subgroup of G, we also let G = G/C, when C, is
a normal subgroup. Also, g = ¢C,, § = gC,, for any g € G, and S = {g,9 € S},
gz{ﬁ;geS} for any S < G.

o If G = (Cy xC,) x (C, xCy), we let asg, a,, 7, and 7y, be elements of G that
generate Cy, C,, C,, and C,, respectively.

2.2 Basic methods

In this subsection, we will see some of the key ideas used to prove Theorem 1.4 which
is our main result.

The following well-known result handles the case of Theorem 1.4 where G is
abelian.

Lemma 2.2.1 ([2, Corollary on p.257]) Assume G is an abelian group. Then every
connected Cayley graph on G has a Hamiltonian cycle.

Theorem 2.2.2 (Marusi¢ [14], Durnberger [4, 5], and Keating-Witte [9])  If the
commutator subgroup G’ of G is a cyclic p-group, then every connected Cayley graph
on G has a Hamiltonian cycle.

The following lemma (and its corollary) often provide a way to lift a Hamiltonian

cycle in Cay(G; S) to a Hamiltonian cycle in Cay(G;S). We introduce some useful
notation before stating the results.

Notation 2.2.3 Suppose N is a normal subgroup of G, and C' = (sy,S2,...,5,)
is a walk in Cay(G;S). If the walk (s1N,s:N,...,s,N) in Cay(G/N;SN/N) is
closed, then its voltage is the product V(C) = s183---s,. This is an element of

N. In particular, if C' = (3,3,...,5,) is a Hamiltonian cycle in Cay(ﬁ;?), then
V(C) = 5189+ Sp.

Factor Group Lemma 2.2.4 ([19, Section 2.2]) Suppose:

e S is a generating set of G,
e N is a cyclic normal subgroup of G,



F. MAGHSOUDI / AUSTRALAS. J. COMBIN. 83 (3) (2022), 124-166 127

o C = (51,52,...,5,) is a Hamiltonian cycle in Cay(i; ?), and
e the voltage V(C') generates N.

Then there is a Hamiltonian cycle in Cay(G;S).
Corollary 2.2.5 ([6, Corollary 2.3]) Suppose:

S is a generating set of G,
N is a normal subgroup of G, such that |N| is prime,
sN =tN for some s,t € S with s #t, and

there is a Hamiltonian cycle in Cay(G;S) that uses at least one edge labeled .

Then there is a Hamiltonian cycle in Cay(G;S).

Lemma 2.2.6 [13, Lemma 2.8] Assume G = H x (C, x C;), where G' = C, x C,,
and let S be a generating set of G. As usual, let G = G/G' =~ H. Assume there
is a unique element ¢ of S that is not in H x C,, and C is a Hamiltonian cycle in
Cay(G; S) such that c occurs precisely once in C. Then the subgroup generated by
V(C) contains C,.
Lemma 2.2.7 ([11, Lemma 2.27]) Let S generate the finite group G, and let s € S,
such that (s)y< G. If Cay(G/{s);S) has a Hamiltonian cycle, and either

(1) se Z(G), or

(2) Z(G) N (s) = {e},
then Cay(G;S) has a Hamiltonian cycle.

2.3 Facts from group theory

Throughout this subsection we state some facts in group theory, which are used to
prove our main result.

Lemma 2.3.1 ([17, Exercise 19 on page 43]) Assume |G| = 2k, where k is odd.
Then G has a subgroup of index 2.

Corollary 2.3.2 Assume |G| = 2k, where k is odd. Then |G'| is odd.

Proof. By Lemma 2.3.1, there is a normal subgroup H of G such that [G : H| = 2.
Now since G/H has order 2, it follows that GG/H is abelian, so G’ < H. Therefore,
|G’| is odd. O

Proposition 2.3.3 ([8, Theorem 9.4.3 on page 146, cf. [6, Lemma 2.11]) Assume
|G| is square-free. Then:
(1) G" and G/G" are cyclic,
(2) Z(G) 0 G = {e},
(3) G =C, x G, for someneZ",
(4) If b and ~ are elements of G such that (bG"y = G/G" and {y) = G', then
(b,v) = G, and there are integers m, n, and T, such that |y| = m, |b] = n,
b=l =~7, mn = |G|, ged(t —1,m) =1, and 7" =1 (mod m).

Notation 2.3.4 For 7 as defined in Proposition 2.3.3 (4),we use 77! to denote the
inverse of 7 modulo m (so 771 = 77! (mod m)).
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2.4 Cayley graphs that contain a Hamiltonian cycle

Within this subsection, we show that there exists a Hamiltonian cycle in some specific
Cayley graphs. The following proposition shows that in the proof of Theorem 1.4
we can assume |G| is square-free, because the cases where |G| is not square-free have
been already proved.

Proposition 2.4.1 Assume:

e |G| = 2pqr, where p, q and r are distinct prime numbers, and
e |G| is not square-free.

Then every connected Cayley graph on G has a Hamiltonian cycle.

Proof. Without loss of generality we may assume r = 2. Then |G| = 4pq. Therefore,
Theorem 1.2 (2) applies. O

Proposition 2.4.2 ([20, Proposition 5.5]) If n is divisible by at most three distinct
primes, then every connected Cayley graph on Ds, has a Hamiltonian cycle.

The following proposition demonstrates that we can assume |G’| in Theorem 1.4
is a product of two distinct prime numbers.

Proposition 2.4.3 [13, Proposition 2.22] Assume |G| = 2pqr, where p, q and r
are distinct odd prime numbers. Now if |G'| € {1,pqr} or |G'| is prime, then every
connected Cayley graph on G has a Hamiltonian cycle.

According to the following proposition we can assume |S| = 3 to prove Theo-
rem 1.4.

Proposition 2.4.4 ([13, Proposition 3.10]) Assume |G| is a product of four distinct
primes and S is a minimal generating set of G, where |S| = 4. Then Cay(G;.S)
contains a Hamiltonian cycle.

Lemma 2.4.5 (cf. [6, Case 2 of proof of Theorem 1.1, pp.3619-3620]) Assume

G = (Cy xCr)x (Cy, xCp),

S| =3, ~

S is a minimal generating set of G = G/C,,
C, centralizes Cy,

Cy inverts C,.

Then Cay(G; S) contains a Hamiltonian cycle.

Lemma 2.4.6 ([6, Lemma 2.9]) If G = Dy, x C,, where p,q and r are distinct odd
primes, then every connected Cayley graph on G has a Hamiltonian cycle.
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2.5 Specific sets that generate G

This subsection presents a few results that provide conditions under which certain
2-element subsets generate (G. Obviously, no 3-element minimal generating set can
contain any of these subsets.

Lemma 2.5.1 Assume G = (CoxC,)x G, and G' = C,xC,. Also, assume Ce(C,) =
C, and Cy & Cer(Cy). If (a,b) is one of the following ordered pairs

(1) (azalyq, azaivk~y,), where m # 0 (mod r) and k # 1 (mod g),
(2) (a2a]"vq, alnh~yy), where m 0 (mod r) and k # 0 (mod q),
(3) (aza,abalyi,), where m # 0 (mod r) and k # 0 (mod q),
(4) (a’:n’yéh G/QG’%’VZ;PYP)? where m gé 0 (mOd T)7

then {a,by = G.

Proof. Tt is easy to see that (a@,b) = G, so it suffices to show that {a,b) contains
C, and C,. Thus, it suffices to show that G and G are nonabelian, where G =
G/(C, MC):ngandG—G/C.

Since a, does not centralize C,, it is clear in each of (1)-(4) that @ does not centralize
vy (and 7, is one of the factors in b) so G is not abelian.

The pair (&,b) is (a27g, azy¥) where k # 1 (mod q), or (azyg, 7)) where k # 0
(mod q), or (ag,alyy) where k % 0 (mod q), or (7, azyh). Each of these is either a

reflection and a nontrivial rotation or two different reflections, and therefore generates
the (nonabelian) dihedral group Dy, = G. O

Lemma 2.5.2 Assume G = (CoxC,)x G, and G' = C,xC,. Also, assume Ce(C,) =
{e}. If (a,b) is one of the following ordered pairs:

(1) (asa,, asa Tdijp) where k # 0 (mod q),

(2) (a7, agaﬁp) where m % 0 (mod ), and j # 0 (mod r),
(3) (ar, aQaT”yq kv,), where k # 0 (mod q),

(4) (aza™y,, asalv,), where m # 0 (mod r) and j # 0 (mod r),

then {a,by = G.

Proof. Tt is easy to see that (a@,b) = G, so it suffices to show that {a,b) contains
C, and C,. We need to show that G and G are nonabelian, where G = G/C, and
G = G/C,, as usual.

As in the proof of Lemma 2.5.1, since a, does not centralize C,, it is clear in each of
(1)-(4) that @ does not centralize v, (and ~, is one of the factors in g), so G is not
abelian.

In (1)-(4), v, appears in one of the generators in (a,E), but not the other, and the
other generator does have an occurrence of a,. Since a, does not centralize v,, it
follows that G is not abelian. ]
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Lemma 2.5.3 Assume

o G=(Cy xC.)x (Cp xC,), where p, q, and r are distinct odd primes,
o a, 0, =7, where 7" =1 (mod p), and

o a,v,a;" =77, where 7 =1 (mod q).

If 79 = +1 (mod p) (or ¥¥ = 1 (mod q)), where 1 < j,k < r —1, then T = 1
(mod p) (or7=1 (mod q)).

Proof. Assume 7/ = £1 (mod p); then 7% =1 (mod p). We also know that 7" = 1
(mod p). So 7% =1 (mod p), where d = ged(24,7). Since 1 < j <r —1 and r is an
odd prime, it follows that d = 1. Thus 7 = 1 (mod p). A similar argument works
when ¥* = +1 (mod ¢) to show ¥ =1 (mod gq). O

3 Proof of the Main Result

In this section we prove Theorem 1.4, which is the main result. When p, ¢, r, and
s are distinct odd primes, then Theorem 1.3 applies. Therefore we may assume
without loss of generality that s = 2. We are given a generating set S of a finite
group G of order 2pqr, where p, g and r are distinct odd prime numbers, and |S| > 3
We prove that Cay(G;S) has a Hamiltonian cycle. The proof is a long case-by-case
analysis. (See Figure 1 for outlines of the cases that are considered.) Here are our
main assumptions.

Assumption 3.0.1 We assume:

(1) p,q,r =5, for otherwise Theorem 1.2 (2) applies.

(2) |G \ is square-free; otherwise Proposition 2.4.1 applies.

(3) G' n Z(G) = {e}, by Proposition 2.3.3 (2).

(4) G = C x G’, by Proposition 2.3.3 (3).

(5) |G'| is odd by Corollary 2.3.2. If |G’| = 1, then Lemma 2.2.1 applies. If

|G’| = pqr, then Proposition 2.4.2 applies. So we can assume |G’| € {pq, pr, qr}.
Without loss of generality we may assume |G'| = pg, so G' = C, x C,.

(6) For every element 5€ S, 3| # 1. Otherwise, if [3| = 1, then s € G/, s0 G’ = (s)
or |s| is prime. In each case Cay(G/(s);S) has a Hamiltonian cycle by part 2
or 3 of Theorem 1.2. By Assumption 3.0.1(3), (s)n Z(G) = {e}, and therefore
Lemma 2.2.7 (2) applies.

(7) S is a minimal generating set of G. (Note that S must generate G, for otherwise
Cay(G; S) is not connected. Also, in order to show that every connected Cayley
graph on G contains a Hamiltonian cycle, it suffices to consider Cay(G;S),
where S is a generating set that is minimal, i.e. removal of any element from
the generating set S leaves a set which does not generate G.)

(8) When |S| = 4, Proposition 2.4.4 applies, so we assume |S| = 3.
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S| = 3. 1. a=a, and b = ayy,.

A. Cer(C,) # {e} or S is minimal. 2. a=a, and b = axa;,.
a = aza, and b = a",.

i. Ce(C,) # {e} (Section 3.1). 0 = asay and b — ayy,.

L. a=az and b= a7, 5. a = asa, and b = aza]y,.
2. a = ay and b = asa,",.
3. a = aza, and b = ay7,. ii. Ce(Cy) # {e} (Section 3.4).
4. a = aza, and b = a;"v,. 1. a = aza, and b = asa;"y,.
5. a = aza, and b = axa,"v,. 2. a = aza, and b = ayy,.

ii. S is minimal (Section 3.2). 3. a = aza, and b = a*,.
1. Cer(Cy) = C, x Cy. 4. a=a, and b = asy,.
2. Ca(Cy) = q' ili. Cer(Ca) = {e} (Section 3.5).
3. Car(Cy) = .
4. Cer(Cy) = {e} 1. a = aza, and b = asa;"y,.

2. a = asa, and b = ayy,.
B. Ce(C,) = {e} and S is not minimal. 3. a = asa, and b = a™,.

i. Ce(Ce) = C, x Cy (Section 3.3). 4. a = a, and b = ayy,.
Figure 1: Outline of the cases in the proof of Theorem 1.4

3.1 Assume |S| =3 and Cu(C,) # {e}

In this subsection we prove the part of Theorem 1.4 where |S| = 3, and Cg/ (C,) #
{e}. Recall that G = G/G’, G = G/C, and G = G/C,,.

Proposition 3.1.1 Assume

o = (CyxCr)x (C, xCy),
e |S| =3,
o Car(C,) # fe).
Then Cay(G; S) contains a Hamiltonian cycle.

Proof. Let S = {a,b,c}. If Ce(C,) = C, x C,, then since G' n Z(G) = {e} (see
Proposition 2.3.3(2)), we conclude that Ce(C2) = {e}. So we have

G =C, x (Cy x Cpy) = Cp X Doy,

Therefore Lemma 2.4.6 applies.

Since Ce(C.) # {e}, we may assume C¢/(C,) = C, by interchanging ¢ and p if
necessary. Since C, centralizes C, and Z(G) n G’ = {e} (by Proposition 2.3.3(2)),
this implies Cy inverts C,. Thus,

G = (Cy x C) x Cg= (Ca x Cy) X Cp = Doy x Cy.
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Now if S is minimal, then Lemma 2.4.5 applies. Therefore we may assume S is
not minimal. Choose a 2-element subset {a,b} of S that generates G. From the
minimality of S, we see that {a,b) = Dy, x C, after replacing a and b by conjugates.
The projection of (a,b) to Dy, must be of the form (as,~,) or (as, asy,), where as
is reflection and ~, is a rotation. (Also note that b~ v, because S n G = J by
Assumption 3.0.1(6).) Therefore (a,b) must have one of the following forms:

(1) (a27 ar’}/q)g

(2) ((lg, a2ar7q)a

(3) (a2ar7 a2/7q),

(4) (aza,,ay,), where 1 <m <r —1,
(5) (aga,, azal™y,), where 1 <m <r — 1.

Let ¢ be the third element of S. We may write ¢ = aéa{;%jyp with 0 < 7 < 1,
0<j<r—1land0 <k < qg—1. Notesince S nG" = &, we know that i and
j cannot both be equal to 0. Additionally, we have a,y,a, ' = 7; where 77 = 1
(mod p). Also, 7 # 1 (mod p) since C(C,) = C,. Therefore, we conclude that
7771+ 772 4+ ...+ 1 =0 (mod p). Note that this implies 7 # —1 (mod p).

Case 3.1.1 Assume a = ay and b = a,7,.

Subcase 3.1.1.1 Assume ¢ # 0. Then ¢ = aga{;%’;yp. Thus, by Lemma 2.5.1(4),
(b, c) = G, which contradicts the minimality of S.

Subcase 3.1.1.2 Assume ¢ = 0. So, j # 0. We have ¢ = a{;’y(’;’yp. We may assume
J 1s even by replacing ¢ with its inverse and j with 7 — j if necessary. Consider

G =Cy xC,.. We have @ = ao, b = a, and ¢ = ai. We have
Ci=@@h =5 ar )
and

-r—j—1

Cy = (e,b

) E) 5_(j_2)7 ab
and

Cs=(eab’ay

as Hamiltonian cycles in Cay(G; S). Now since there is one occurrence of ¢ in Oy, by
Lemma 2.2.6 the subgroup generated by V(C}) contains C,. Also,

V(Cy) = c(ab) W tap= U=

(a2 . fyq)r_j . /yg_l S Qg - /yq_(J_l) (mod CT’ X Cp)
aﬂq_jH

k
Vg -

k j—1
,}/q a27q’7q
k—2j+1
q .



F. MAGHSOUDI / AUSTRALAS. J. COMBIN. 83 (3) (2022), 124-166 133

We can assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0=k—2j+1 (modq). (3.1.A)

Now we calculate the voltage of Cs.

V(Cy) = b7 teb U2 ab 1a

— i r—j-1_ j —(j—2 r—1

=aly,-al 7 aly, a9 cay-al ™t ay  (mod C,)
— -1 —Jj+1

= G;:Yply VpQy

_pi_gim1

o

A

- Vp )

which generates C,. Also, we have

V(Cy) = b7 teb U2 1a

= 7(’; . 7g—j—l ,75 : VJ(j_Q) Cay - 7;—1 ‘a3 (mod G, x C,)
_ A~ 2k—2j42
= /yq .

We may assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Thus,

0=2k—-2j+2 (mod q).
Dividing by 2 yields
k—j+1=0 (mod q).
By replacing the above equation in (3.1.A), we have

j=0 (mod q). (3.1.B)

Now we calculate the voltage of Cj.

V(CB) = Cabr_j_lab_(T_j—Q)c—lb_j—2ab_(j_1)a

_ J r—j—1 —(r—j3—2 -1 _—j j—2 —(j—1
:aifyp.a2.arj .0’2.0’7’( J )fyp a’rj.a"z‘ .a/z.a/r(] ).a2 (modcq)
—J -1 _—j-1
= ar'ypar’yp a,

7J_73+1

p

79 (1-7)

=7, 477,

which generates C,. Also, we have

V(C3) = cab™ I tab™ "Iy 2qp U g

= ’yg; Ay - ’y;‘_j_l s a9 /yq_(r_j_2) . /yq_k . 7‘(7]‘_2 S Qg - /yq_(]_l) © Qo (mod CT’ X Cp)



F. MAGHSOUDI / AUSTRALAS. J. COMBIN. 83 (3) (2022), 124-166 134

4j—2r
p .

We can assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0=4j—2r (mod q).
Dividing by 2 yields
2j—r=0 (mod q).

By replacing (3.1.B) in the above equation, we have r = 0 (mod ¢), which contradicts
the assumption that ¢ and r are distinct primes.

Case 3.1.2 Assume a = as and b = asa,7,.

Subcase 3.1.2.1 Assume j = 0. Then ¢ # 0. If £ # 1, then ¢ = agygyp. Thus,
by Lemma 2.5.1(1), {(b,c¢y = G, which contradicts the minimality of S. We may
therefore assume k& = 1. Then ¢ = asv,7,.

Consider G = CyxC,. Thena = T = apand b = asa,. We have C'= (c, Erfl, a, 57(“1))
as a Hamiltonian cycle in Cay(G;S). Since there is one occurrence of ¢ in C, by
Lemma 2.2.6 the subgroup generated by V(C) contains C,. Also,

V(C) = eb"tab~ Y
= G27q - (aQPYq)ril g - (aQ’Yq)i(Til) (mod C, x Cp)
-1
=,

which generates C,. Therefore the subgroup generated by V(C) is G'. So Factor
Group Lemma 2.2.4 applies.

Subcase 3.1.2.2 Assume ¢ # 0 and 7 # 0. If £ # 1, then ¢ = agaﬁ(’;’yp. So, by
Lemma 2.5.1(1), {(b,c) = G, which contradicts the minimality of S. Therefore we
may assume k = 1. Then ¢ = asalv,7,. We may also assume that j is odd by
replacing ¢ with its inverse and j with r — j if necessary. Consider G = Cy x C,..

Subsubcase 3.1.2.21 Assume j = 1. Then ¢ = a20:Yg Vp- _So b =7¢ = aya,. We
have C; = (¢, @, (b,a)""') as a Hamiltonian cycle in Cay(G;S). Since there is one
occurrence of ¢ in Cy, by Lemma 2.2.6 the subgroup generated by V(C}) contains C,,.
Also,

V(Cy) = ca(ba)™*
= ayy, - as - (agy, - az)"'  (mod C, x C,)
= fyq_r

Since ged(g,r) = 1, this implies that 7" generates C,. Therefore the subgroup
generated by V(C}) is G'. So Factor Group Lemma 2.2.4 applies.
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Subsubcase 3.1.2.2.2 Assume j > 3. Then a = as, b = asa,, and ¢ = agai. We
have

Cy = (¢, (a,b)" ' a,z (a, b

)y~ a)
as a Hamiltonian cycle in Cay(G;S). Now we calculate its voltage.
V(Cy) = c(ab)" 7 tac(ab™ ) ta
= ayy, - (ag - axy,) 7 ag - agy, - (ag - ’yq’lag)j’l ~ay  (mod C, x Cp)
= a27q7;7]717q7¢]171a2
= aw;“cm
=7,
which generates C,, since ged(gq,r) = 1. Also,
V(Cy) = c(ab)" 7 tac(ab™ ) ta

asalyy, - (ag - aza,) 7 ag - azaly, - (az - atan)’ T -ay (mod Cp)

i 1. —j+1
= 4y} Yp, Y,

o pigpil
- 0’2,71) a’2

+79-1(7-1)

p )

which generates C,. Therefore the subgroup generated by V(C5) is G'. So Factor
Group Lemma 2.2.4 applies.

Subcase 3.1.2.3 Assume ¢ = 0, then 7 # 0. If £ # 0, then ¢ = a{;”y(’;”yp. Thus, by
Lemma 2.5.1(2.5.1) (b, ¢) = G which contradicts the minimality of S. Therefore, we
may assume k£ = 0. We may also assume j is odd, by replacing ¢ with its inverse
and j with  — j if necessary. Then ¢ = al~,. Consider G = Cy x C,, then @ = ay,
b = asa,, and ¢ = a’.

Subsubcase 3.1.2.3.1 Assume j = 1. Then ¢ = a,7,.

Suppose, for the moment, that Cy centralizes C,. We have C = ((a@, ¢)"~',a,b) as
a Hamiltonian cycle in Cay(G;S). Since there is one occurrence of b in C, by
Lemma 2.2.6 the subgroup generated by V(C}) contains C,. Also,

V(Cy) = (ac)" ab

= (a,7,)" ' a, (mod Cy x C,)
7 7_2 7_'r71

— A

=1,

which generates C,. Therefore the subgroup generated by V(C)) is G'. So Factor
Group Lemma 2.2.4 applies.
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Now we assume C, does not centralize C,. We have

—r—2

Cy= (b

_7=(r=2) __ _ _
7a’ b 7C 7a’ C)

as a Hamiltonian cycle in Cay(G;S). Now we calculate its voltage.

V(Cy) = " 2ab~ "D Lae
= (aga,) % ay - (aga,) "2 'Vp_lar_l “ay - a7y, (mod Cy)

= aza,

2
= Yp»

42 —1 -1
aza,’ "Cagy, G, a2a:Yp

since ged(2,p) = 1, this implies v generates C,. Also,

V(Cy) = 0" 2ab~ "2 lace
= (aﬂq)’"_2 Qs - (aqu)_(r_m ~ay (mod C, x Cp)
= ay7Y,027, ' a2a2
=7,

since ged(2, ) = 1, this implies Yo % generates C,. Therefore, the subgroup generated
by V(Cs) is G'. So, Factor Group Lemma 2.2.4 applies.

Subsubcase 3.1.2.3.2 Assume j # 1. We have

—1

C3=(¢,b ,a

f=pll

as a Hamiltonian cycle in Cay(G;S). Considering the fact that C, might centralize
C, or not, we calculate the voltage of Cj.

V(C3) = cbtabac Y Bab Y g2
= alyy a0y 0y (a20,)° - an ey

j—3 —(r—4 r—j—2
(aga, )’ % - ag - (aza,) """ - ay - (aga,)" (mod C,)
g =12 1 -3 —rd,  r—j—2
= alypa, ayaxy, a.’al Caxaza, " asa,
— F1,—j—1
- ar/yPaT’yp a,
?—]’15—‘]’4—1
P
29 (177)

=9 T,

which generates C,. Also,

V(Cs) =cb~ab?ac™ b Bab= Y gbr I 2
E'yq_lag-ag-(ag'yq)Z'a2~(a2'yq)j_3 cas - (agfyq)_(’"_ll) cag - (agfyq)’"_j_2 (mod C, xCp)
:7;2_
Since ged(2, q) = 1, this implies v, 2 generates C,. Therefore the subgroup generated
by V(C3) is G'. So Factor Group Lemma 2.2.4 applies.
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Case 3.1.3 Assume a = asa, and b = ayy,. Since b = ay, is conjugate to as via an
element of C; (which centralizes C,), this implies {a, b} is conjugate to {aza,7}", as} for
some nonzero m. So Case 3.1.2 applies (after replacing v, with 47", and interchanging

a and b).

Case 3.1.4 Assume a = aza, and b = a]"vy,, where 1 <m <r — 1.

Subcase 3.1.4.1 Assume i # 0. Then ¢ = azalyfv,. Thus, by Lemma 2.5.1(4),
(b, c) = G, which contradicts the minimality of S.

Subcase 3.1.4.2 Assume ¢ = 0. Then 7 # 0 and ¢ = aivfyp. If £ # 0, then
by Lemma 2.5.1(3), {a,c¢) = G which contradicts the minimality of S. So we may
assume k = 0. Then ¢ = alv,. We may also assume m and j are even, by replacing
{b,c} with their inverses, m with r —m, and j with r — j if necessary. Consider
G =Cy xC,. Then @ = asa,, b= a", and ¢ = a’.

Subsubcase 3.1.4.2.1 Assume m = j. Then b = &. We have

—r—1

Cy=@E@"Daly a

as a Hamiltonian cycle in Cay(G;S). Since ¢ = e, this implies ¢~V = ¢ = alr,.
This is the only occurrence of v, in V(C}). So the subgroup generated by V(C)
contains Cp. Similarly, since b" = e, this implies o' = b~ = 7 "a; ™. This is
the only occurrence of 7, in V(C4). So the subgroup generated by V(C;) contains
C,. Hence the subgroup generated by V(C}) contains G'. Therefore, Factor Group

Lemma 2.2.4 applies.

Subsubcase 3.1.4.2.2 Assume m # j, and j = 2. Then we have ¢ = a27,. We also
have

Cy = (l_)’ E_(m_Q)ﬂ’ a—l’ Em/Q, EQT—m—l)

as a Hamiltonian cycle in Cay(G;S). Since there is one occurrence of b in Cy, and
it is the only generator of GG that contains v,, by Lemma 2.2.6 we conclude that the
subgroup generated by V(C5) contains C,. Now by considering the fact that Cy might
centralize C, or not, we have

V(Cy) = be—(m=2)/2 =1 m/2 ,2r—m—1

a - (a29) "2 artay - (a2y)™ - (aga,) ™ (mod €,)

m( 2 —(m—2)/2 —1 2 m/2 —m—1
= a, (ar/yp) ( 4 a, a’2(a’r/yp) / A2a,
_ om 2224 (R (M2 (2)\—1 1 F2L(ED 24 (F2)M2 m —m—1
= Q, (P)/p ) ) a’7(“ )) a, a (’Yp ) ) a, )G’QG’T

_ ,.m, —(m—2) 7?2(1+7A'2+---+(7A'2)(m*4)/2) —1 J_r?Q(1+?2+---+(?2)(m*2)/2) m , —m—1
- a’r a’r ’Yp ar ’Yp r r .



F. MAGHSOUDI / AUSTRALAS. J. COMBIN. 83 (3) (2022), 124-166 138

Since 72 — 1 # 0 (mod p), this implies

V(Cs) = ag,yg#(?m*271)/(?271)a;17;_r?2(?mfl)/(?hl)a;l
—FEMTEI-1) /(P27 (P -1) /(72 -1)

P

= 753(11?)(—?m‘1$1)/(?2—1)

We may assume that this does not generate C,, for otherwise the Factor Group

Lemma 2.2.4 applies. Therefore 7 = +1 (mod p) or 7! = +1 (mod p). The
first case is impossible. So we may assume 7' = +1 (mod p). Thus 720"~V = 1
(mod p). We also know that 7% = 1 (mod p). So we have 7¢ = 1 (mod p), where

d = ged(2(m — 1),r). Since ged(2,7) =1 and 2 < m < r — 1, it follows that d = 1,
which contradicts the fact that 7 1 (mod p).

Subsubcase 3.1.4.2.3 Assume m # j, and j # 2. We have

1 _m—2 = ——(j=3) = =2r—m—j—2
Y a 9 C? a )7 C? a )

Cs = (be,a,c b
as a Hamiltonian cycle in Cay(G; S). Now we calculate its voltage.
V<C3) = bcac_lb_1a,m_20a_(j_3)ca/27‘—m—j_2
=g a2y, cay e ay? a7 (mod G, x Cp)
= 73

which generates C,. Also, by considering the fact that Co might centralize C, or not,
we have

V(C3) = beac b ta™m 2eq=U3) pq2r—m—i—2

—_ . m  _j . PV e m m—2
=a," - alvy - aa, -7, a’ -a." - (agay)

Sl - a;j+3a2_j+3 ~aly - (azar) "2 (mod Cy)

_ . m+j -1 _-2 3 —m—j—2
= A TYpQ2r, A YpA,a2Ypa,
_ . m+j F1 -2 +1 3 —m—j—2
- ar ’ypa’f"yp a’r ’yp a’r,Ypar
;.m+jJ—r7A.m+j+lJ_r7A.m+j—l+7A-m+j+2
—p
N U e e e |
D .

We may assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

PBEPLTH1 (mod p).

0

If Cy centralizes Cp, then

0=7—-724+7+1 (mod p). (3.1.0)
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We can replace 7 with 77! in the above equation after replacing {a,b, ¢} with their
inverses in the Hamiltonian cycle. Then

A~

0=77"-72+7"141 (mod p).

Multiplying by 73, we have

0=1-7+724+7" (mod p)

=P+ -7+ 1
Subtracting 3.1.C from the above equation we have
0=272-27 (mod p)
=27(7—1)

which is impossible, because 7 # 1 (mod p).
Now if Cy inverts C,, then

0=7"+72+7—-1 (mod p). (3.1.D)

We can replace 7 with 77! in the above equation after replacing {a,b, c} with their
inverses. Then

0=72+724+7"1-1 (mod p).
Multiplying by 72, then
0=14+7+72-7°
=P+ 47+ 1

(mod p)

By adding (3.1.D) and the above equation, we have

0=2(7*+7) (mod p)
=27(T+1)

which is also impossible, because T # —1 (mod p).
Case 3.1.5 Assume a = asa,, b = asa*y,, where 1 <m <r — 1.

Subcase 3.1.5.1 Assume i # 0. Then ¢ = aga{ﬁgvp. If £ # 1, then, by Lemma
2.5.1(1), (b,cy = G, which contradicts the minimality of S. So we may assume
k = 1. Then ¢ = asalv,v,. Thus, by Lemma 2.5.1(3), {a,c) = G, which contradicts
the minimality of S.

Subcase 3.1.5.2 Assume ¢ = 0. Then j # 0 and ¢ = a{;’yfj’yp. If £ # 0, then by
Lemma 2.5.1(2), (b,c) = G, which contradicts the minimality of S. So we may

assume k = 0. Then ¢ = alvy,.

Consider G = Cy x C,. Then @ = asa,, b = asa™, and ¢ = al. We may assume m is
odd by replacing b with bt (gnd m with  —m) if necessary. Note that this implies
b =a". Also, we have |a| = |b| = 2r and [¢| = r.
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Subsubcase 3.1.5.2.1 Assume m = 1. Then @ = b. We have
Oy =@ e gt

as a Hamiltonian cycle in Cay(G;S). Since there is one occurrence of b in Cf,
and it is the only generator of G' that contains «,, by Lemma 2.2.6 we conclude
that the subgroup generated by V(C;) contains C,. Also, since ¢" = e, this implies
¢t =ct =7 ta7, and 7Y = ¢ = aly,. Now by considering the fact that C,
might centralize C, or not we have

V(Cy) = ¢ toe Yt

-1.-7J. P
Y, a7 - asay - aly, - a, ay  (mod Cy)
1

~ o

=y, 1,
which generates C,. Therefore, the subgroup generated by V(C) is G'. So Factor
Group Lemma 2.2.4 applies.

Subsubcase 3.1.5.2.2 Assume m # 1 and j = 2. Then ¢ = a?y,. We have

Cy = (B, =12 g gm0/ gor-m-1)

as a Hamiltonian cycle in Cay(G;S). Since there is one occurrence of b in Cy, and
it is the only generator of G that contains 7,, by Lemma 2.2.6 we conclude that
the subgroup generated by V(Cy) contains C,. Considering the fact that C; might
centralize C, or not we have

V(CZ) — e~ (m=1/2 4 (m=1)/2 2r—m—1

= aza,” - (af%)_(m_l)ﬂ a2y - (CLng)(m_l)/Q ~(aza,)” "1 (mod Cy)

T
L m ARk (B D2 (o 1)y—1 P24 (D)2t (GR)D/2 (mo1)\ —m—1
= (T ) g (T )

_ 2201422 .y (22)(m—3)/2 220107224 .1 (22Y(m=3)/2y _
_ CLQCLT@T m+1,yp7 (1472 4-+(7%) )CLQCLT’}/; (14+724-4(77) )ar2

7214724 72)(m=3)/2 22014724 32)(m=3)/2 _9

_ A ERETL1)/(F2 )R (BT -1 (2 1)
_ T ),

We may assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4

applies. Therefore, 77! = 1 (mod p). We also know that 77 = 1 (mod p). So

74 =1 (mod p), where d = ged(m — 1,7). Since 2 < m < r — 1, this implies d = 1,

which contradicts the fact that 7 1 (mod p).

Subsubcase 3.1.5.2.3 Assume m # 1 and j # 2. We may also assume j is an even
number, by replacing ¢ with its inverse and j with r» — j if necessary. This implies
that ¢ = @/. We have

-1 ) )
—m—2 = ——(j—3) = 2r—-m—j—2
@ G a )a G a )

Cs = (b,¢,a,c ',b
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as a Hamiltonian cycle in Cay(G;S). Now we calculate its voltage.

V(CB) = bCCLCilbilam72ca*(]’*3)ca2r*m7]’72

_ -1 m—2  _—(=3) 2r-m—j-2
=g A2, G20 Gy -Gy - a5
= A27qA27,

-2

(mod C, x C,)

141

which generates C,. Also considering the fact that C, might centralize C, or not, we

have

V(C3) = beac b ta™m 2cq= U3 pq2r—m—i—2

_ m b -1 _—j m
= 20, - G.Yp * A0y - ’)/p a,” - a, as

cdl~ - aT I Ban - Al

@, %Yp * Q, Q2 - .7p + A2
_ . m+j. %1 -1,_-2 3.1 —m—j5-2
= Q, ’}/p a,/yp a, ’ypar’yp a,
J_ra:erj73:m+j+1+3:m+j714_r5:m+j+2

p

FmEI—L (1737247 41)

' .

m—2

s A2,

-2 (1mod C,)

So we may assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4

applies. Then we have

Let t = 7 if Cy centralizes C, and t = —7 if C; inverts C,. Then

0=t*—~t*+t+1 (mod p).

(3.1.E)

We can replace ¢ with ¢! in the above equation after replacing {a,b,c} with their

inverses, then
0=t —t2+t'+1 (modp).
Multiplying by 3, we have

0=1—t+t*+t (mod p)
=P+t —t+1.

By subtracting (3.1.E) from the above equation, we have

0=2t"—2t (mod p)
=2t(t—1)

This implies that ¢ = 1 (mod p) which contradicts the fact that 7 £ +1 (mod p).

O
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3.2 Assume |S| =3 and S is minimal

In this subsection we prove the part of Theorem 1.4 where |S| = 3, and S is
minimal. Recall that G = G/G’ and G = G/C,,.

Proposition 3.2.1 Assume

o G=(CyxC)x(CyxC,),
.15 -5

e S is minimal.

Then Cay(G; S) contains a Hamiltonian cycle.

Proof. Let S = {a,b,c}. If Ce(C,) # {e}, then Proposition 3.1.1 applies. Hence we
may assume Ce(C,) = {e}. Then we have four different cases.

Case 3.2.1 Assume Cg(C2) = C, x Cy; thus G = Cy % (C, % Cpy). Since Sis minimal,
it follows that all three elements of S must have prime order. There is an element
a € S such that |a| = 2, otherwise all elements of S belong to a subgroup of index
2 of G, so {a,b,c) # G, which is a contradiction. If |a| = 2p, then Corollary 2.2.5
applies with s = @ and t = a~!, because there is a Hamiltonian cycle in Cay(@; §)
(see Theorem 1.2 (3)) which uses at least one edge labeled @ because S is minimal.
Now we may assume |a| = 2. So {(a) = Cy. Thus (b, c¢) = C, xC,,. By Theorem 1.2 (3),
there is a Hamiltonian path L in Cay(C, x Cpy, {b,c}). Therefore LaL 'a™! is a
Hamiltonian cycle in Cay(G;S).

Case 3.2.2 Assume C¢/(Cy) = C,. Therefore,
G =GJC) = Cyy x Cy=Cy x (Cr x Cp).

There is some a € S such that |a| = 2. Thus, we can assume |a| = 2, for otherwise
Corollary 2.2.5 applies with s = @ and ¢t = a~!. (Note since S is minimal, it follows
that @ must be used in any Hamiltonian cycle in Cay(@ ; S ).) We may assume a = as.
Since S is minimal, S N G’ = & (see Assumption 3.0.1(3.0.1)) and each element
belonging to S has prime order, this implies |B| = |¢] = r. We may assume b=a
and ¢ = al,, where 1 < j < r — 1. We can also assume b = a,7,, and ¢ = a{dq%’;,
where 0 < k < p— 1. Since Ce(C,) = {e}, we have a,7pa," = ) where 77 = 1
(mod p) and 7 # 1 (mod p). Thus 771 +772+... 41 =0 (mod p). Note that this
implies 7 # —1 (mod p). Also, we have a,7,a, ! = ’yg. By using the same argument
we can conclude that 7 # 1 (mod ¢) and 7'+ 772+ ...+ 1 =0 (mod ¢). Note
that this implies 7 # —1 (mod q).

Consider G = Cy x C,. Then @ = ay, b = a,, and ¢ = a/. We may assume j is odd by
replacing ¢ with its inverse and j with r — j if necessary. We have

—1

Ci=@ @0 ), o " g
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and
Co=0 " a7, 67 ay)

as Hamiltonian cycles in Cay(G; S). Now we calculate the voltage of C. Since there
is one occurrence of ¢ in Cf, and it is the only generator of G that contains 7,, by
Lemma 2.2.6 we conclude that the subgroup generated by V(C}) contains C,. Also,

V(Cy) = clab™t)p~ I Dgpr—i-1

= ai%l; - (az 'Vp_lar_l)j : (ar'yp)_(r_j_l) ~ay - (a,)" 7 (mod Cy)

Gk AT 2O
= @7 (Vp a, a2)
R e A | P72 I pj1
’ (’Yp Q, ) a’2<,)/p a, )
R N At ) WA S RS ) (T NN ot At I S |
- ar,yp ar ar ,)/p ar
_ ,yk?-hr?—j(17?*1+?*27---+?*(j*1))+2?j“(?+?2+---+?T*j*1)
» .

We may assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

A

0=kP + (1 —-71 472 ... 477004
27N (F 4 72 4 4 77 (mod p). (3.2.4)
Now we calculate the voltage of (5. Since there is one occurrence of ¢ in Cy, and it

is the only generator of G that contains v,, by Lemma 2.2.6 we conclude that the
subgroup generated by V(Cy) contains C,. Also,

V(Cy) = b tab~ I (b7 a)!

= ai%l; : (ar7p)r_j_1 g - (ar’Yp)_(r_j_l) : ('Vp_lar_l : a2)j (mod C,)

N B O e A S B |
= @7 (’Yp a, )a2
P42 gl N1 147 220D

’ (7;) a, ) (’Yp a, 0’2)
B B o e T A B B B T i e it S b |
= a7, a,’ " al » a,
B S A B (B it B kS il C At D) B
- a’T‘/Yp a,
_ KT 27) (R 42 g T I 2 (1 2 2 (D))

» .

We can assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0=k + 277 F+ 724 477 Y 191714+ 772 .4 770-D) (mod p).
(3.2.B)

Subtracting (3.2.B) from (3.2.A) we have

0=27 (F4+ 2 4. 7T N 29(F 4224 477 (mod p)
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= 27" — 279!

=2(1 — 7/,

This implies that 77t! = 1 (mod p). Since j is odd, and 1 < j < r — 1, this implies
ged(7 4+ 1,7) =1. So 7 =1 (mod p), which is not possible.

Case 3.2.3 Assume Cg/(Cy) = Cp,. Therefore,
G =G/Cy=Cop xCp=Cyx (Cr xCp).

Now since S n G' = J (see Assumption 3.0.1(3.0.1)) and C, does not centralize C,,
this implies for all a € S, we have |a| € {2, r, 2r, 2p}. If |a| = 2r, then |a] is divisible by
2r which contradicts the minimality of S. (Note that every element of S has prime
order.) If || = 2p, then [d| = 2 (because S is minimal). Therefore, Corollary 2.2.5
applies with s = a and ¢t = a~! (Note that since S is minimal, it follows that there
is a Hamiltonian cycle in Cay(G:S) that uses at least one labeled edge @.) Thus,
@ € {2,r} for all @ € S. This implies that S is minimal, because we need an as
and an a, to generate Cy x C,. and two elements whose order is divisible by 2 or r to
generate C,. So by interchanging p and ¢ the proof in Case 3.2.2 applies.

Case 3.2.4 Assume Cg/(Cy) = {e}. Consider
G =G/C,= (Cy xC) x C,.

Now since S is minimal, every element of S has prime order. Since S n G’ = & (see
Assumption 3.0.1(3.0.1)), this implies for every § € S, we have || € {2,7}. Since
Ce(Cy) = {e} and Ce (C,) = {e}, it follows that for every s € S, we have |s| € {2,7}.
From our assumption we know that S = {a, b, c}. Now we may assume |a| = 2 and
|b| = r. Also, we know that |c| € {2,r}.

Subcase 3.2.4.1 Assume |c| = 2. Then ¢ = av, where v € G'.
Suppose, for the moment, that {y) # G’. Since ()< G, this implies we have

G = <CL, b, C> = <CL, b, ’7> = <a’ b><7>

Now since S is minimal, {a, b) does not contain C,. So this implies that () contains
C,. Since () does not contain G, it follows that () = C,. Thus, we may assume that
a = ay (by conjugation if necessary), b = a,7y, and ¢ = as7y,. So (b, c) = {a,7,, a2Y,) =
G (since a,7, and ayy, clearly generate G and do not commute modulo C, or modulo
C,, they must generate ). This contradicts the minimality of S. Therefore () = G'.

Consider G = Cy x C,.. Then @ = ¢. We have |a| = [¢| = 2 and [b] = 7. We also
have Cl_z_(é’l,gf(rfl),a, 51_1) and Cy = (, 51_1,671’57(%1)) as Hamiltonian cycles
in Cay(G;S). Now we calculate its voltage.

V(Ol) _ C—lb—(r—l)abr—l _ /y—la—lb—(r—l)abr—l
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and
V(Cy) = b a1~ = gy —La~ 150D = 4~ lghr g 150D,
We have
{a” o Vay =t ab a0V e G

Since {a,b) # G, this implies that a 'b~""Yab"* = 47 and ab" 'a 1o "D = ¥
(perhaps after interchanging p and ¢), where 0 < j,k < p—1. If j = 0, then
a b~ Vabr—! = ¢, so a and b" ' commute. Thus a and b commute. Hence b = a,.,
so {(b,c) = G, a contradiction. A similar argument works for ab’'a='b="Y = .
So a b= Vah—! = yg, and ab”ta"'h 1) = 75, where 1 < 5,k < p—1. Thus
V(C1) = v7'9 and V(Cy) = !4}, In this case, 7] # 75 since a b~ Dabr—1 2
ab’~ta='b~""Y. Hence at least one of V(C}) or V(Cy) generates G’. Therefore,
Factor Group Lemma 2.2.4 applies.

Subcase 3.2.4.2 Assume |c| = 7. Then ¢ = b7, where 1 < j < r—1and v €
G’ (after replacing ¢ with its conjugate if necessary).

Suppose, for the moment, that {y) # G’. Since (7)< G, this implies we have
G ={a,b,c) =<a,b,v) = {a,b)).

Now since S is minimal, it follows that (a,b) does not contain C,. So this implies
that () contains C,. Since (7) does not contain G’, this implies () = C,. Therefore,
we may assume that a = ayy, (by conjugation if necessary), b = a, and ¢ = al,,
where 1 < j < r—1. So {a,¢) = {agy,,aly,y = G (since ayy, and alv, clearly
generate G and do not commute modulo C, or modulo C,, they must generate ).
This contradicts the minimality of S. So (y) = G".

Consider G = Cy x C,. Then ¢ = b’. We have [@l = 2 and |b] = |[¢| = . We may
assume a = as%,, b = a,, and c = a{;’yq’y]’;, where l <j<r—1l,and1 <k <p—1. We
may also assume j is odd by replacing ¢ with its inverse and j with r — j if necessary.

Since Ce(C;) = {e}, we have a,7,a,' = 7 where 77 = 1 (mod p) and 7 # 1
(mod p). Thus, 777! + 7772 + ...+ 1 =0 (mod p). Note that this implies 7 # —1
(mod p). Also, we have a,7,a,' = ’yg. By using the same argument we can conclude
that 7 £ 1 (mod q) and 7' + 72+ ...+ 1 =0 (mod ¢q). Note that this implies
7 # —1 (mod q). Also, Cer(Cy) = {e}, so Cy inverts C, and it inverts C,. We have

=@ Vet 7 e Y g

and

1’ afl’ b_(j_2))

—r—j—1

Cy = (¢,b .e.a,b

as Hamiltonian cycles in Cay(G;S). Now we calculate the voltage of C.

V(Cy) = cb™ U VeI 2ah~ Vg
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=l - a VD @iy cam 2 g (D
=alv, - a, alvy, - a, as - a, as (mod Cp)
— —Jj—1
= A YqAr gy

it

q

9 (147)

=7, 7,

which generates C,. Also,

V(Cy) = b UV =I72p~ Vg

= a[i/y}lj . a;(j_l) . a[i/y}lj . a:_j_2 . a2’7p . a;(r_l) . fyp_lal2 (mod Cq)

_ Ak k_ —j—2 -1
= Y p QrYp Qy 2Yplr Yy G2

_ ik k —j—2_ -1
- a’r/Ypa’T’/Ypa’r Vp aT‘Vp

kPl 4+k7IH—77141

v .
We may assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0=k7 + k7" =771+ 1 (mod p)

=k kT 1 -7
Multiplying by 7, we have

0=k + k77 +7 -1 (mod p). (3.2.C)

Now we calculate the voltage of Cs.

V(Cy) = b teabLa"p7 02

— i~ =Y g =l —(5-2)
= Ap%q - Ay g - A2 * Ay az - Q, (mOd Cp)
R S G I
= @ Yqy gy

FI4xi-1

q

FI-1(¥-1)

q )

which generates C,. Also,

V(Cy) = b teab Latp7 02
=l a0 (mod G

o J k-1 k. —1_ —1 —j+2
- ar’yp a, ’yp ,)/p a, ,)/par
I R A A

D .

We may assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0=k + k79! =771 12972 (mod p).
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Multiplying by 72, we have
0=k 4 gt 2 L2 (mod p). (3.2.D)
Subtracting (3.2.D) from (3.2.C), we have

0=7" -2 1+7 -1 (mod p)

—F+1(F-1)

This implies that 77 = —1 (mod p). Thus, by Lemma 2.5.3, 7 = 1 (mod p), which
is not possible.

]

3.3 Assume |S| =3 and Cu/(Cy) =C, x C,

In this subsection we prove the part of Theorem 1.4 where |S| = 3, and C/(Cy) =
C, x C,.

Proposition 3.3.1 Assume

o G=(CyxC)x(CyxCp),
e |S| =3,
o Car(C2) = Cp x Cy.

Then Cay(G; S) contains a Hamiltonian cycle.

Proof. Let S = {a,b,c}. If Ce/(C,) # {e}, then Proposition 3.1.1 applies. So we may

A~

assume C¢ (C,) = {e}. Now if S is minimal, then Proposition 3.2.1 applies. So we

may assume S is not minimal. Consider
G =G/Cp=(Ca xC) xCy=(Cr xCp) x Ca.

Choose a 2-element subset {a, b} of S that generates G. From the minimality of S,
we see that

<Cl,, b> = (CT X Cq) X C2>

after replacing a and b by conjugates. The projection of (a,b) to C, x C, must be
of the form (a,,,) or (a,,av,), where 1 < m < r —1 (note that b # v, because
S n G = ). Therefore (a,b) must have one of the following forms:

(1) (araa’2’}/q)7

(2) (ar, aﬂﬁ”%,), where 1 <m <r —1,
(3) (asar,a™y,), where 1 <m <r—1,
(4) (a2a7“7a2ﬁ)/q)7

(5) (aza,, azal™y,), where 1 <m <r — 1.
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Let ¢ be the third element of S. We may write ¢ = aéaﬂyﬁjyp with 0 < 7 < 1,
0<j<r—1land0<k<qg—1. Notesince SnG = @, weknowthatiand
j cannot both be equal to 0. Additionally, we have a,7y,a, " 7 where 7" =
(mod p) and 7 # 1 (mod p). Thus 7' +77 2+ ...+ 1 =0 (mod p) Note that thls
implies 7 # —1 (mod p). Also we have a,v,a, ' = ’yg. By using the same argument
we can conclude that 7 # 1 (mod ¢) and 7'+ 772+ ...+ 1 =0 (mod ¢). Note
that this implies 7 # —1 (mod q).

Case 3.3.1 Assume a = a, and b = ay7,.

Subcase 3.3.1.1 Assume i = 0. Then j # 0 and ¢ = alvty,. By part (1.2) of
Theorem 1.2 Cay(é; S ) contains a Hamiltonian cycle. There must be an occurrence

of b because it is the only generator that contains as. So Corollary 2.2.5 applies with
s=bandt =01

Subcase 3.3.1.2 Assume j = 0. Then ¢ # 0 and ¢ = awgvp. If £ # 0, then by
Lemma 2.5.2(2.5.2) {a, ¢y = G which contradicts the minimality of S.

So we may assume k = 0. Then ¢ = ayv,. Consider G = Cy x C,. Then @ = a,., and
b=7¢=ay Wehave C = (¢,a"',b,a ""Y) as a Hamiltonian cycle in Cay(G;S).
Since there is one occurrence of b in C, and it is the only generator of G that contains
vq> by Lemma 2.2.6 we conclude that the subgroup generated by V(C') contains C,.
Similarly, since there is one occurrence of ¢ in C, and it is the only generator of GG
that contains 7,, by Lemma 2.2.6 we conclude that the subgroup generated by V(C)
contains C,. Therefore the subgroup generated by V(C) is G'. So Factor Group
Lemma 2.2.4 applies.

Subcase 3.3.1.3 Assume ¢ # 0 and j # 0. Then ¢ = aQanyqup If £ # 0, then by
Lemma 2.5.2(3), {a,c) = G, which contradicts the minimality of S.

So we can assume k = 0. Then ¢ = asal7y,. We may also assume j is odd by replacing
¢ with its inverse and j with r — j if necessary. Consider G = Cy x C,. Then @ = a,,
b = ay, and ¢ = ayal. We have

Cy = (¢, (b,a) 4, @ " ba U

as a Hamiltonian cycle in Cay(G;S). Since there is one occurrence of ¢ in €}, and
it is the only generator of G that contains 7,, by Lemma 2.2.6 we conclude that
the subgroup generated by V(Cl) contains C,. By the Factor Group Lemma 2.2.4
this implies that C lifts to C’l in Cay(G S) Since ('] contains an occurrence of b,
Corollary 2.2.5 applies with s = b and ¢t = b~

Case 3.3.2 Assume a = a, and b = asa]'7y,, where 1 <m <r — 1.



F. MAGHSOUDI / AUSTRALAS. J. COMBIN. 83 (3) (2022), 124-166 149

Subcase 3.3.2.1 Assume i # 0 and j # 0. Then ¢ = agaivg%. If £ # 0, then
by Lemma 2.5.2(3), {a,c) = G, which contradicts the minimality of S. So we can
assume k = 0. Then ¢ = asal7y,. Thus, by Lemma 2.5.2(2.5.2) (b,c) = G which
contradicts the minimality of S.

Subcase 3.3.2.2 Assume i = 0. Then j # 0 and ¢ = aﬁvgyp. We may assume j is
odd by replacing ¢ with its inverse and j with r — j if necessary. If k£ = 0, then, by
Lemma 2.5.2 (4), (b,¢) = G, which contradicts the minimality of S. So, we may also
assume k # 0. Consider G = Cy x C,. Then @ = a,, b = asa™ and ¢ = a’.

Subsubcase 3.3.2.2.1 Assume j = 1. Then @ = ¢ = a,. We have C; = (¢,a" 2, b,
6’(’"’1),571) and Cy = (2%, @2, b, d’(’"’l),gfl) as Hamiltonian cycles in Cay(G;S).
Since there is one occurrence of ¢ in C', and it is the only generator of G that contains
Yp, by Lemma 2.2.6 we conclude that the subgroup generated by V(C}) contains C,,.
We also have

V(Cy) = ca" 2ba~ " Vpt
= a, 7,0 a0 e

kF45m—l_ym

2.4y, a; Y v, ar™  (mod Cy x C,)

_ k
=a,7, a "

We can assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. So, we have

0=k¥ +7" 1 —F" (mod q). (3.3.A)

Now we calculate the voltage of Cs.

V(Cy) = a"3ba~ Dyt

= a,7,0,% - al 2 -a™ a7V a;™ (mod Cy x C,)

r
_ -2
- aT,ypaTvpa’r

7472

p

_ 7;(1#)’

which generates C,. Also, we have

V(Cy) = 2a"3ba~ Dyt

= awfjar”yg a3 Ay, a0 v, a, ™ (mod Cy x Cp)

T
_ k k_m-—3 -1 _—m
= Y Y0 Vgl Ay

_ AT HRFE Tl _ym
p .

We can assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Thus, we have

0=FkF + kP2 + 7" =% (mod q).
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By subtracting (3.3.A) from the above equation, we have k7 = 0 (mod q); this is
not possible.

Subsubcase 3.3.2.2.2 Assume j # 1. We have

T =1 —j—1 =——1 —(r—j—2) 71 —r—1
Cy= e t@tetara2p ah

and
04 = (6_17 a—(r—j—l) ) E_la 571 ) a—(r—l) s E, aj_2)
as Hamiltonian cycles in Cay(a; F), Now we calculate the voltage of Cs.

V(Cs) = betad e a1

—om = el 1 —f —(r—j=2)  _—m  r—1
=a" 7, a’ a7y, a7 a a’ ™ a, (mod Cy x Cy)

—m+1

. m_ —1_—-1_-1
_ar/Yp Q,. /Yp a

o 75:77175:717,71
—pm=l(p41)
Tp )

which generates C,. Also,

V(O?)) = bC_laj_lc_la_(r—j—Q)b—lar—l

o oma k=i i1 ko —j —(r—j=2)  .—1_—m -1

=a," Vg @7 al e - a, Vg G a (mod Cy x C,)
_om 1k —1 -k 2 —1_ —m-1
= a, ’yq a, ’yq a’r’yq a,
_(—k)Fm—frmo1_pmtl
_%S

—FM(k—1)F+k+72)
Yq :

We can assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0=(k—1)F+k+7 (mod q)
=k(T+1)+7(7T-1). (3.3.B)

Now we calculate the voltage of Cj.

V(Cy) = R A G A Pt kAl GOl 7 A

m

=1, ad a0 ’y;la;j car™-a "V g™ a7 (mod Cy x C,)

-1 -1 -1

which generates C,. Also,

V(Cy) = ¢t iD= g =2
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=, a7 a I

q
—h—kF—F It 2
. .

a,” - 7;1a;m : a;(Pl) Ay g al~?  (mod Cy x Cp)

We may assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0=—k—k7F—F 7"+ 577 (mod q)
= —k(F+1)+77"(F-1). (3.3.0)
Adding (3.3.B) and (3.3.C), we have

0=FF-1)+7F7"(F-1) (modq)

(F—1)(1+F9).

I
S

This implies that 77 = —1 (mod ¢). So ¥ = —1 (mod ¢). Thus, by Lemma 2.5.3,
7 =1 (mod ¢), which is not possible.

Subcase 3.3.2.3 Assume j = 0. Then ¢ # 0 and ¢ = awgvp. If £ # 0, then by
Lemma 2.5.2(3), {a,c) = G, which contradicts the minimality of S.

So we may assume k = 0. Then ¢ = ay,. We may also assume m is odd by replacing
b with its inverse and m with r —m if necessary. Consider G = Cy x C,. Then a = a,,
b= asa)’, and ¢ = ay. We have

Cy = (b, (¢a) ™ amt¢a m)

as a Hamiltonian cycle in Cay(G;S). Since there is one occurrence of b in O}, and
it is the only generator of GG that contains +,, by Lemma 2.2.6 we conclude that the
subgroup generated by V(C) contains C,. By the Factor Group Lemma 2.2.4 this
implies that C; lifts to a Hamiltonian cycle C; in Cay(@; g) Since C'; contains an

occurrence of ¢, Corollary 2.2.5 applies with s = ¢ and t = ¢ 1.

Case 3.3.3 Assume a = asa, and b = a]'v,, where 1 < m < r—1. Since b = a"v, is
conjugate to a;" via an element of Cg, this implies {a, b} is conjugate to {aa,7;, a;"}
for some nonzero n. So Case 3.3.2 applies (after replacing v, with 7" and switching
a, with a).

Case 3.3.4 Assume a = asa, and b = ay,.

Subcase 3.3.4.1 Assume ¢ = 0. Then 7 # 0 and ¢ = a{dﬁjvp. If £ # 0, then by
Lemma 2.5.2 (1), {a,c) = G, which contradicts the minimality of S.

§0 we can assume k = 0. Then ¢ = a{yp. Consider G = Cy x C,. Then @ = asa,,
b = ay, and ¢ = a/. We have

C=(c@"'vy ' a'e (@b ' a)
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as a Hamiltonian cycle in Cay(G;S). Now we calculate its voltage.

V(C) = c(a b)Y’ ra " e(ab)" 7 a

(e S B Y s it
_a’r’.}/p a’r ar a’r’yp a

; a, (mod Cy x C,)
— I~N2qd
- ar")/pa’r

277

P )

which generates C,. By the Factor Group Lemma 2.2.4 this implies that C lifts to
a Hamiltonian cycle C' in Cay(G;S). Since C' contains an occurrence of b, Corol-
lary 2.2.5 applies with s = b and ¢t = b~ L.

Subcase 3.3.4.2 Assume j = 0. Then i # 0 and ¢ = aﬂ(’;”yp. If & # 0, then by
Lemma 2.5.2(2.5.2) {a, ¢y = G which contradicts the minimality of S.

So we can assume k = 0. Then ¢ = ayy,. Consider G = Cy xC,. Then @ = asa,, and
b=7¢=ay, Wehave C = (¢, 1,5 ',a V) as a Hamiltonian cycle in Cay(G;3).
Since there is one occurrence of b in €', and it is the only generator of G that contains
Vg, by Lemma 2.2.6 we conclude that the subgroup generated by V(C') contains C,.
Similarly, since there is one occurrence of ¢ in C, and it is the only generator of GG
that contains 7,, by Lemma 2.2.6 we conclude that the subgroup generated by V(C)
contains C,. Therefore, the subgroup generated by V(C) is G'. So Factor Group
Lemma 2.2.4 applies.

Subcase 3.3.4.3 Assume ¢ # 0 and j # 0. Then ¢ = G,QG,‘Z")/(I;"YP. If £ # 0, then by
Lemma 2.5.2(2.5.2) {a, ¢y = G which contradicts the minimality of S.

So we can assume k = 0. Then ¢ = azaly,. We may also assume j is odd by replacing
c with its inverse and j with r — j if necessary. Consider G = Cy x C,.. Then @ = asa,.,
b = ay, and ¢ = ayal. We have

C=(caVbeai2ba by
as a Hamiltonian cycle in Cay(G;S). Now we calculate its voltage.

V(C) = ca ¥ VYea" I 2pa=Vp

= gl UYL iN 2 (1)
= @GYp - Ay . Yp - Ay a, (HlOd CQ X Cf])
— d —j—1
= @G plrYply

747+l

p

9(147)

= )

which generates C,. Also,

V(C) = ca Y Vea" 77 2ha= "V

=al-a; UV al am 7% a7, (mod Gy x C)
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—1
= Q. YqQrYq
Fritl
q

I

which generates C,. Therefore the subgroup generated by V(C) is G'. So Factor
Group Lemma 2.2.4 applies.

Case 3.3.5 Assume a = aza, and b = asa)'y,, where 1 <m <r — 1. If £ # 0, then
by Lemma 2.5.2(2.5.2) {(a,c) = G which contradicts the minimality of S.

So we can assume k = 0. Also, if j # 0, then by Lemma 2.5.2 (4), (b, ¢) = G, which
contradicts the minimality of S.

So we may also assume j = 0. Then ¢ # 0. Therefore, ¢ = asy,. So Case 3.3.4
applies, after interchanging b and ¢, and interchanging p and q. O

3.4 Assume |S| =3 and Cu (Cs) # {e}

In this subsection we prove the part of Theorem 1.4 where |S| = 3, and C¢/(C2)
# {e}.

Proposition 3.4.1 Assume

o G=(CyxC)x(CyxCy),
e |S| =3,
o Cer(Ca) # {e}.

Then Cay(G; S) contains a Hamiltonian cycle.

Proof. Let S = {a,b,c}. If Cer(C,) # {e}, then Proposition 3.1.1 applies. Therefore,
we may assume Ce (C.) = {e}. Now if Ce(Cy) = C, x C,, then Proposition 3.3.1
applies. Since Ce/(C2) # {e}, we may assume C¢ (Cy) = C,, by interchanging ¢
and p if necessary. This implies that Cy inverts C,. Now if S is minimal, then
Proposition 3.2.1 applies. So we may assume S is not minimal. Consider

G =G/C,)=(Cy xC) % Cy=Cy x (CrxCp).

Choose a 2-element subset {a, b} in S that generates G. From the minimality of S,
we see that (a,b) = Cy x (C, x C,), after replacing a and b by conjugates. We may
assume |a@| = |b| and (by conjugating if necessary) a is an element of Co x C,. Then
the projection of (a,b) to Cy x C, has one of the following forms.

asay, asa)’), where 1 <m <r —1,
a2y, az),
asay,a), where 1 <m <r—1,
A, as).

P Py

So there are four possibilities for (a, b):
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(1) (a2ar,a2a;”7q), where 1< m<r—1,
(2) (aQG’T)(IQ/y(])a

(3) (azay,ay,), where 1 <m <r —1,
(4) (araa’2’yq)-

Let ¢ be the third element of S. We may write ¢ = aéa{;%jyp with 0 < 7 < 1,
0<j<r—1land0<k<qg—1. Notesince S nG = ¢J, we know that i and
j cannot both be equal to 0. Additionally, we have a,y,a, ' = 7; where 7" =
(mod p) and 7 # 1 (mod p). Thus, 7' +7"2+...41 =0 (mod p). Note that this
implies 7 # —1 (mod p). Also we have a,v,a, ' = 'yg. By using the same argument
we can conclude that ¥ # 1 (mod ¢) and 7'+ 72+ ... +1 =0 (mod ¢). Note
that this implies 7 # —1 (mod q).

Case 3.4.1 Assume a = aza, and b = aza)’y,, where 1 < m <r —1. If k # 0,
then by Lemma 2.5.2(2.5.2), {a,c¢) = G which contradicts the minimality of S. So
we can assume k = 0. Now if j # 0, then by Lemma 2.5.2(2.5.2), (b,¢) = G which
contradicts the minimality of S.

Therefore, we may assume j = 0. Then ¢ # 0 and ¢ = ayy,. We may also assume
m is odd by replacing b with its inverse and m with 7 — m if necessary. Consider
G = Cy x C,.. Then @ = asa,, b = asa)’, and ¢ = ay. We have

C=(ba "V ba"?ea " 7e)
as a Hamiltonian cycle in Cay(G;S). Now we calculate its voltage.

V(C) = ba™ M Vba" ™ 2ca= " Ve

S gmy a2 g 7Y (mod Gy x Cy)

= Ay Vg Yq, "
FmopymEl
q

_ L FT(14)
q

— m
:ar’yq'a,
1

?

which generates C,. Also,

V(C) = ba~ M Vpa" " 2cq= Ve

— m —(m—1 m r—m—2 —(r—1
= aya™ - (aza,)” "™V - aya™ - (asay) “ayyy - (aza,) "7V -ayy,  (mod C,)
m —m+1 m_—m—2
= asa,'a, " aga) a, ™ agy,ara2Y,
~1, -1
= Q. Yy Qrp
77141

=% )
which generates C,. Therefore, the subgroup generated by V(C) is G'. So Factor
Group Lemma 2.2.4 applies.

Case 3.4.2 Assume a = asa, and b = agy,. If &k # 0, then by Lemma 2.5.2(1),
{a,cy = G, which contradicts the minimality of S. So we can assume k& = 0. Then
¢ = abaly,.
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Subcase 3.4.2.1 Assume i = 0. Then j # 0 and ¢ = al7,. We may also assume j is
odd by replacing ¢ with its inverse and j with r— j if necessary. Consider G = Cy xC,.
Then @ = asa,, b = ay, and ¢ = a/. We have

C=(ca " ba Ve @ hat)
as a Hamiltonian cycle in Cay(G;S). Now we calculate its voltage.

V(C) = ca" I pg(rmim D e lgi—1pg— (1)

= aly, - (aza,) !

= ajpaza;

aga;(Tfjfl)ag'ypfla;jai*laga;(jfl)
= a{;'ypagfygla;jag
= alyya,’
= 427,

which generates C,. Also,

V() = ca” I g~ I gi T gm0

r e Y @l a0 (mod Cp x Cy)

= J .
=a. - a
_ -1 7 —7+1
- ar P)/qa’rfyqar

_ o Flgril

q

We can assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0=7F"1+#"1 (mod q).

Multiplying by ¥, we have 0 = 1 + 7 (mod ¢), so ¥ = —1 (mod ¢). Thus, by
Lemma 2.5.3, 7 = 1 (mod ¢), which is not possible.

Subcase 3.4.2.2 Assume j = 0. Then i # 0 and ¢ = ayy,. Consider G = Cy x C,.
Then @ = asa,, and b = € = ay. We have C' = (E,Er_l,g_l,ﬁ_(’"_l)) as a Hamiltonian
cycle in Cay(G; S). Since there is one occurrence of b in C, and it is the only generator
of G that contains v,, by Lemma 2.2.6 we conclude that the subgroup generated by
V(C) contains C,. Similarly, since there is one occurrence of ¢ in C, and it is the
only generator of G that contains v,, by Lemma 2.2.6 we conclude that the subgroup
generated by V(C') contains C,. Therefore, the subgroup generated by V(C') is G'.
So Factor Group Lemma 2.2.4 applies.

Subcase 3.4.2.3 Assume i # 0 and j # 0. Then ¢ = asal~y,. We may also assume
J is odd by replacing ¢ with its inverse and j with r — j if necessary. Consider
G = Cy x C,. Then @ = asa,, b = as, and ¢ = asal. We have

C=@aVYea2ba "0
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as a Hamiltonian cycle in Cay(G;S). Now we calculate its voltage.

V(C) = ca ¥ Vea" " 2pa= Vb
=al-a;VVal ;7,0 07V (mod Gy x Cp)
= a, 70,

Fl41
q Y

which generates C,. Also,

V(C) = ca U Vea" 7 2pa= Y

=1 asaly, - (aza,) 7% - ag - (agar)’(’"’l) ~ay  (mod C,)

r] 2aar 1&2

= ayaly, - (axa,)”

= aQaJ'ypa I agalyyal

J —Jj—1
=a Vp a,ﬁpa

_T]+7-J+1

p

_ 71?—?7'(1—%)’

which generates C,. Therefore the subgroup generated by V(C) is G'. So Factor
Group Lemma 2.2.4 applies.

Case 3.4.3 Assume a = aga, and b = a]"y,, where 1 <m <r —1. If £k # 0, then
by Lemma 2.5.2 (1), {a,c) = G, which contradicts the minimality of S. So we may
assume k = 0. Then ¢ = abal~,. If j # 0, then by Lemma 2.5.2 (2), (b, ¢) = G, which
contradicts the minimality of S. So we can assume j = 0. Then ¢ # 0 and ¢ = as7,.

Consider G = Cy x C,. Then @ = asa,, and b = a)’, and ¢ = ay. We may assume m
is odd by replacing b with its inverse and m with » — m if necessary. We have

C=( @' e a’b@e) " " a)
as a Hamiltonian cycle in Cay(G;S). Now we calculate its voltage.

V(C) =bla o)™ ta (ac)" ™ ta
=a,"g - a;(m_l) caytaly " e, (mod Gy x Cy)
— a2

27m

q )

which generates C,. Also,

V(C) = b(a_lc)m_la_lb(ac)’"_m_la

=a, (aflaz cagyy)" T - a, Yag - a - (asa, - azfyp)“m*1 -aza, (mod C,)
al(a,; )" el ag(ay) lagar

_ :‘TL( 1+7’72+ 4T 1 _(m 1)) (’y;+7— St T 1a£_m_1)al2alr

= Tfy; Lppm24 47me 17p (F4+724.. 77— m— 1)ar_m
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F(FTL4R 24 ALl (R4R2 4 par ML)
p
_ ,Yz(erl)(lf?*m)/(?fl) )

We can assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Therefore 0 = 1—7""" (mod p), which implies 77" =1 (mod p). Multiply-
ing by 7, we have 7 = 1 (mod p). Thus, by Lemma 2.5.3, 7 = 1 (mod p), which
is not possible.

Case 3.4.4 Assume a = a, and b = ay,.

Subcase 3.4.4.1 Assume ¢ = 0. Then j # 0 and ¢ = ai’y(’;’yp. We show that
(b,c) = G, which contradicts the minimality of S. We have (b,¢) = (as,al) = G.
We also have {b, ¢} = {asv,, alnk}. Since Cy centralizes Cy, this implies

[0,2] = [azyg, alvg] = [, alg] = vgadvgng g har? = valyg tar? =47

We may assume this does not generate C,, for otherwise G contains Cq. Therefore
0 =1-7 (mod q), which implies 77 = 1 (mod ¢). So by Lemma 2.5.3, ¥ = 1
(mod ¢), which is not possible.

Also, we have {5, ¢} = {ag,alv,}. Since Cy inverts C,, this implies

A — J — J ~1.—j _ =2, — 27
[b’\C/J - [a27ar,yp] = W2;7pa27, Ap” = A7y, Ap” =Y,

which generates C,. Thus G contains Cp. So G = (b, c).

Subcase 3.4.4.2 Assume j = 0. Then ¢ # 0 and ¢ = awgvp. If £ # 0, then by
Lemma 2.5.2(3), {a,c¢) = G, which contradicts the minimality of S. So we may
assume k = 0. Thus ¢ = as,.

Consider G = Cy x C,. Then @ = a,, b = ¢ = ay. We have C = (¢, 6’"’1,571,6’(“1))

as a Hamiltonian cycle in Cay(G;S). Since there is one occurrence of b in C, and
it is the only generator of GG that contains v,, by Lemma 2.2.6 we conclude that the
subgroup generated by V(C) contains C,. i Similarly, since there is one occurrence
of cin C, and it is the only generator of G that contains v,, by Lemma 2.2.6 we
conclude that the subgroup generated by V(C') contains C,. Therefore the subgroup
generated by V(C) is G'. So Factor Group Lemma 2.2.4 applies.

Subcase 3.4.4.3 Assume i # 0 and j # 0. Then ¢ = agaify(’;’yp. If £ # 0, then by
Lemma 2.5.2(3), {a,c) = G, which contradicts the minimality of S.

So we can assume k = 0. Then ¢ = asaly,. We show that {(b,c) = G which
contradicts the minimality of S. We have (b,¢) = {ay,asal) = G. Also, {b,¢} =
{az7,, azal}. Since Cy centralizes C,, we have

[b,¢] = [ag'yq,agaf;] = [%’aﬂ = vqaiyq_lar_j = Vé_ﬂ
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We may assume this does not generate C,, for otherwise G contains Cq. Therefore,
0=1-7% (mod q), which implies ¥ = 1 (mod ¢). Thus, by Lemma 2.5.3, ¥ = 1
(mod ¢), which is not possible. Additionally, {5,5} = {ag, asalv,}. Since Cy inverts
Cp, we have

T — J — J 1 =G, — 40~2,"T — AT
[ba\é] - [a2>a2aﬂp] = QG2 YpQ2"p Ay~ A2 = @0 = 7))

which generates C,. Thus G contains Cp.

3.5 Assume |S| =3 and Cq/(Cy) = {e}
In this subsection we prove the part of Theorem 1.4 where |S| = 3 and C/(Cy) = {e}.
Proposition 3.5.1 Assume

o G =(CyxC,)x (Cp x Cq)f
e |S| =3,
e Cg(Co) = {e}.

Then Cay(G; S) contains a Hamiltonian cycle.

Proof. Let S = {a,b,c}. If Cer(C,) # {e}, then Proposition 3.1.1 applies. So we may

A~

assume Cg(C,) = {e}. Now if S is minimal, then Proposition 3.2.1 applies. So we

may assume S is not minimal. Consider
G =GJC, = (Cy xC,) % C,.

Choose a 2-element subset {a,b} in S that generates G. From the minimality of S,
we see that (a,b) = (Cy x C,) x C,, after replacing a and b by conjugates. We may
assume |a| > |b| and (by conjugating if necessary) a is in Co x C,.. Then the projection
of (a,b) to Cy x C, is one of the following forms.

asay, asal’), where 1 <m <r —1,

asa,, as),

asay,a), where 1 <m <r—1,

e o o o
P N L

There are four possibilities for (a,b):
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Let ¢ be the third element of S. We may write ¢ = aéaﬂyﬁjyp with 0 < 7 < 1,
0<j<r—1land0 <k < qg—1. Note that since S n G' = &, we know that 7
and j cannot both be equal to 0. Additionally, we have a,v,a, ' = 7; , where 77 =1
(mod p) and 7 # 1 (mod p). Thus 7' +7"2+...+1 =0 (mod p). Note that this
implies 7 # —1 (mod p). Also we have a,v,a, ' = ’yg. By using the same argument
we can conclude that 7 # 1 (mod ¢) and 7'+ 772+ ...+ 1 =0 (mod ¢). Note
that this implies 7 # —1 (mod q).

Case 3.5.1 Assume a = aza, and b = asa]'y,, where 1 <m <r — 1. If k£ # 0, then
by Lemma 2.5.2 (1), (a,c) = G, which contradicts the minimality of S. So we can
assume k = 0. Now if j # 0, then by Lemma 2.5.2(4), {b,c¢) = G, which contradicts
the minimality of S. Therefore we may assume j = 0. Then 7 # 0 and ¢ = ag7,.

Now we show that (b,c¢) = G, which contradicts the minimality of S. We have
(b, = {axa™, ay) = G. Also, {b,¢} = {asa™v,, as}. Since Cy inverts C,, this implies

I~ m m -1 _—-m m_—2 _ —m —27™m
[0,¢] = [a20;"7q, az] = aza,"v4a27, a, "agay = a" v, a, " =,

which generates C,. So G contains C,. We also have (6,8} = {asa™, as7y,}. Since Cy
inverts C,, this implies

o o m o m -m —1 . m —-m T4
[b,¢] = [aza)", axy,] = asa,asypa, ™agy, as = a;"va, "y, =, T

We can assume this does not generate C,, for otherwise G contains C,. Therefore
0=7"+1 (mod p), which implies 7 = —1 (mod p). Thus, by Lemma 2.5.3, 7 = 1
(mod p), which is not possible.

Case 3.5.2 Assume a = asa, and b = agy,. If &k # 0, then by Lemma 2.5.2(1),
{a,cy = G, which contradicts the minimality of S. So we can assume k& = 0. Then
¢ dai,

If j # 0, then we show that (b,c) = G which contradicts the minimality of S. We
have (b,2) = {ay,ay,aly = G. Also, {b,¢} = {agy,, abal}. Since Cy inverts C,, this
implies

[b,¢] = a7y, abal] = aquaéaf;yq_laga;jag = yq_lagﬂaqu_la;ja?l = %—11%7'.

We can assume this does not generate C,, for otherwise G contains C,. Therefore
0=—1F7 (mod q), which implies ¥/ = +1 (mod ¢). Thus, by Lemma 2.5.3, ¥ = 1
(mod ¢), which is not possible. We also have {b, &} = {as, asal~y,}. Since Cy inverts
Cp, this implies

b7 = i = avata —1 =i _ i+l i 20— ikl _ T2
[b’\C/J - [a’2’a’2ar’7/p] - a2a2a’r717a27p a,"ay = Gy arvpar ay - /Yp

which generates C,. Thus G contains Cp.

So we can assume j = 0. Then i # 0 and ¢ = ay7y,. Consider G = C; x C,. Then

@ = asa,, and b = ¢ = ay. We have C = (G, E’"_l,l_)_l,ﬁ_(’"_l)) as a Hamiltonian cycle
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in Cay(G;S). Since there is one occurrence of b in C, and it is the only generator
of G that contains v,, by Lemma 2.2.6 we conclude that the subgroup generated by
V(C) contains C,. Similarly, since there is one occurrence of ¢ in C, and it is the
only generator of G that contains v,, by Lemma 2.2.6 we conclude that the subgroup
generated by V(C) contains C,. Therefore the subgroup generated by V(C) is G'.
So Factor Group Lemma 2.2.4 applies.

Case 3.5.3 Assume a = asa, and b = a]'vy,, where 1 <m <r —1. If £ # 0, then
by Lemma 2.5.2(1), {a,c¢) = G, which contradicts the minimality of S. So we can
assume k = 0.

If i # 0, then ¢ = asaly,. Now we show that (b,c) = G, which contradicts the
minimality of S. We have (b,¢) = {(a™, azal)y = G. Also {b,¢} = {a™y,, azal}. Since
C, inverts C,, this implies

[b7 /C\] = [a:%yéh aQaj] = amfyf]a@a’]’yq r JGQ

m —m— FmopFmt 7
= Al ygalyga, " = AT = AT,

We may assume this does not generate C,, for otherwise G contains Cq. Therefore
0=1+7 (mod q), which implies ¥ = —1 (mod ¢). Thus, by Lemma 2.5.3, 7 = 1
(mod q), which is not possible. We also have {b, ¢} = {a™, asalv,}. Since Cy inverts
Cp, this implies

—7I(Fm—1)

mAja g —me =
Vp a’r Vpar /Yp

[0,7] = [a]", azajn,] = @ asalypa, ™, a0y = af

We can assume this does not generate C,, for otherwise G contains Cp. Therefore
0=7"—1 (mod p), which implies 7™ = 1 (mod p). Thus, by Lemma 2.5.3, 7 = 1
(mod p), which is not possible.

So we may assume i = 0. Then j # 0 and ¢ = al7y,. Consider G = Cy x C,. Then
a—agar,b—a andc-a]

Suppose, for the moment, that m = j. Then b = & We have

Cy= (e Va b a
as a Hamiltonian cycle in Cay(G;S). Since ¢” = e, this implies ¢ "~V = ¢ = al,.
This is the only occurrence of v, in V(C}). So the subgroup generated by V(C)
contains C,. Similarly, since 0" = e, it follows that 0"" = b~' = 7 a,; ™. This is
the only occurrence of 7, in V(Cy). So the subgroup generated by V(C;) contains

C,. Hence the subgroup generated by V(C}) contains G’. Therefore Factor Group
Lemma 2.2.4 applies.

So we may assume m # j. We may also assume m and j are even, by replacing {b, c}
with their inverses, m with r —m, and j with r» — j, if necessary.
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Subcase 3.5.3.1 Assume j = 2. Then we have ¢ = a?7,. We also have
Cy = (b,e =22 gt g2 gt

as a Hamiltonian cycle in Cay(G;S). Since there is one occurrence of b in Cy, and
it is the only generator of GG that contains v,, by Lemma 2.2.6 we conclude that the
subgroup generated by V(C3) contains C,. Also,

V(Cy) = be— (Mm=2)/2 =1 m/2 ;2r—m—1

=a," - (az’Yp)i(miz)/Q ) a;1a2 : (a?ﬁp)m/z : (a2ar)2T7m71 (mod Cq)

”
m T2+ (F2) 24 (72)(m=2)/2 ooy —1 1 F2L(F2) 24 (F2)m/2
r (’Yp Q, ) a, aQ(’Vp

3 _(?QJF(?Q)Q+"'+(?2)(m_Q)/Q)aT_lvp_(?Q+(?2)2+“'+(?2)m/2)a_1

= a7, r

—P2(F24+(72)2 ..+ (F2) (M= D/2) _2(F2 4 (F2)2 4+ (FH)™/2)
p

— AT 4 A (FR) (MDY 23 (14724 L4 (72)(m—2)/2)

— ’yp
;?3(?(?m‘Q71)/(?271)+(?m71)/(?271))
—FFEml_peam_1)/(72-1)

. .

2r—m—1
r

=a a)asa

We can assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Therefore, either 0 = 72 — 1 (mod p) or

0=7""1-7+7" -1 (mod p).
The first case is not possible, so we may assume

0

7l 247 — 1 (mod p)
- 1)+ 1)

which implies 77! = 1 (mod p). We also know 7" =1 (mod p). So 7@ =1 (mod p),
where d = ged(m — 1,7). Since 2 < m < r — 1, this implies d = 1. Thus 7 = 1
(mod p), which is not possible.

Subcase 3.5.3.2 Assume j # 2. We have

T ===-171com-2 = ——(j-3) = =2r—-m—j—2
Cy = (b,¢,a, e Lo ,am 2 ¢al ) ¢, a I

as a Hamiltonian cycle in Cay(G;S). Now we calculate its voltage.

V(C3) = beac b~ a™ 2ca= U= gq?r—m—172
= @y agay @ e (asa)
-a? - (aza,) Y - ad - (aga,)? ™72 (mod Cp)

_.m J —J—1 —m m-2 35 —j4+3 i
= A, V¢ A20,Q, ’}/q a, a, a,a, a2a;.a

2r—m—j—2
r

_.m —m—1
= Ay YqlrYqly
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}’m+5:m+1

/g
_ L F(147)
=, ,

which generates C,. Also,

V(CB) = bCGCilbilamfzca*(j*@Ca?rfmfjfz

=a™ . gl . A= m m—2  _j
=a," a7 aa, -7, a,” -a," - (axa,) alyp

) (%%)70’73) : ai'Yp ) (a2ar)2rimij72 (mod Cq)

] 2r—m—j—2

m=2 ]~ ,—i+3
T T

_m+j -1 _—j—m
= Ap "YpQ2Gr, G, a,. apYp

— ,mt]
=a,

20,7y
VpQrYpQy. 27p 1a§7pa’r mea
Fmtj pmtj+l_pmtj—1y smajt2
p
FmAI=L (7347247 1)
Tp :

We can assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0=7+724+7~-1 (mod p). (3.5.A)

We can replace 7 with 77! in the above equation after replacing {a,b, ¢} with their
inverses in the Hamiltonian cycle. So we have

0=72+724+7"1—-1 (mod p).
Multiplying by 73, we have
1+74+72-78

=P+ 4741

o
Il

(mod p)

By adding (3.5.A) and the above equation, we have

0=272+27 (mod p)
=27(T + 1),

which implies 7 = —1 (mod p), which is not possible.
Case 3.5.4 Assume a = a, and b = ay,.

Subcase 3.5.4.1 Assume i = 0. Then j # 0 and ¢ = a{dﬁjvp.

Consider G = Cy x C,. Then @ = a,, b = ay, and ¢ = aJ. We may assume j is odd by
replacing ¢ with its inverse and j with r — j if necessary. We have

Cy=(ea L pa I e @ ha i)
and

Cy= (@ ea U ba ! et a =i
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as Hamiltonian cycles in Cay(G;S). Now we calculate the voltage of C.

V(Cl) _ Carfjflbaf(rfjfl)Cflajflba*(jfl)
= el @ Y a0 (mod 6
Jj—

_ a I g =i =i gi—1q—01)
- 7p ar ’ypa’r ar ar

= a’r /Yp a’r
279

p )

which generates C,. Also,

V() = ca” I I e gi T gm0

_ aJ'Vq : J=t. aq a_(r_j_l) ’V_kar_j ) ai_l Ca2%q - ar_(j_l) (mOd Cp)
= aquar] 17 ﬁl%’;ar Y,

- %i]w_T Lk 4FIt

kAR

We can assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0=2k7 +¥1 -5 (mod q).
Multiplying by 7, we have

0=2k7" +7 -1 (mod q). (3.5.B)

Now we calculate the voltage of Cs.

V(Cy) = a7 Lea™ U Vbad e ta= I
Lt P (e ) oy At T D Bl G e I
ar alvy, - a, ag-al” -, a’ - a, as (mod Cy,)
-1 -1
a’T‘ PYPGQ’yp a’T‘a’2
—1,.2
= a’ VpaT‘

—1

=,

which generates C,. Also,

V(Cs) = a" I eq U N pgd e g (i D

_ -1 gk (-1 J=1 k. -  —(r—j—1
=a, -aﬂq'aT( )~a27q'ar v, ay -aT( )'awq (mod C,)

~1.k, —j+1 j—1.—k
Ap VqQr™ Q2% Yy Ara27q

a,; a7y el T
_ A RFTIF k41

142k7 157

p .
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We may assume this does not generate C,, for otherwise Factor Group Lemma 2.2.4
applies. Therefore,

0=1+2k7¥"'—%7 (mod q)
Multiplying by 772, we have
0=+ 427 —F  (mod q).

By subtracting (3.5.B) from the above equation, we have

0=F"?_-F -7 4+1 (modq)

—(F-1)F 1)

This implies that 7 = 1 (mod ¢). Thus, by Lemma 2.5.3, ¥ = 1 (mod ¢), which is
not possible.

Subcase 3.5.4.2 Assume i # 0. Then ¢ = agaquyp If £ # 0, then by Lemma
2.5.2(3), {a,cy = G, which contradicts the minimality of S. So we may assume
k =0, and then ¢ = azaly,.

Suppose, for the moment, that j # 0; then we show that (b, ¢) = G, which contradicts
the minimality of S. We have (b,¢) = {a,asa’) = G. We also have {b,¢} =
{aa7,, azal}. Since Cy inverts C,, this implies

[0, 2] = [azyy, a20)] = azyga20l7,  aza, ay = 3, aly tay ) = 4

We can assume this does not generate C,, for otherwise G contains Cq. Therefore,
0= —-1-—7 (mod q) which implies ¥/ = —1 (mod ¢). So by Lemma 2.5.3 ¥ = 1
(mod ¢) which is not possible. Also, we have {b,¢} = {az,azal~,}. Since Cy inverts
Cp, this implies

T — Ja 1 — j - ] _ 274
(b, €] = [a2, azaly,] = a2a2aﬂpaﬂp 2 = @ Vp =% >

which generates C,. Thus, (b,c) = G.

So we can assume j = 0. Then ¢ = ayy,. Consider G =Cy xC,. Then @ = a,, and
b=7¢=ay Wehave C = (b,a"~ !, },a ") as a Hamiltonian cycle in Cay(G;S).
Since there is one occurrence of b in €', and it is the only generator of G that contains
Vg, by Lemma 2.2.6 we conclude that the subgroup generated by V(C') contains C,.
Similarly, since there is one occurrence of ¢ in C, and it is the only generator of GG
that contains 7,, by Lemma 2.2.6 we conclude that the subgroup generated by V(C)
contains C,. Therefore, the subgroup generated by V(C) is G’. So, Factor Group
Lemma 2.2.4 applies.

The proof of Theorem 1.4 is now completed by applying Propositions 3.1.1, 3.2.1,
3.3.1 and 3.4.1.

]
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