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Abstract

In this paper, we show that almost resolvable k-cycle decompositions of
(Ku×Kg)(λ) (where × represents the tensor product of graphs) exist for
all odd k ≥ 15 with only a few possible exceptions.

1 Introduction

Throughout this paper all the graphs considered are finite. Specifically, if the graphG
is simple then, for any λ ≥ 1, we use G(λ) (respectively, λG), to represent the multi-
graphs obtained from G by replacing each edge of G with uniform edge-multiplicity
λ (respectively, λ edge-disjoint copies of G). Let Cs, Ks and K̄s denote the cy-
cle, complete graph and complement of the complete graph on s vertices, respec-
tively. A complete bipartite graph with bipartition (U, V ) is denoted by Ks,s, where
U = {u0, u1, . . . , us−1} and V = {v0, v1, . . . , vs−1}. The edge set of Fi(U, V ) ⊂ Ks,s

is defined as {ujvj+i : 0 ≤ j ≤ s − 1}, for 0 ≤ i ≤ s − 1, where addition in the
subscripts is taken modulo s. Clearly Fi(U, V ) is a 1-factor of Ks,s with distance i
from U to V . Also ⊕s−1

i=0Fi(U, V ) = Ks,s, where ⊕ denotes the edge-disjoint union of
graphs.

For two graphs A and B, their lexicographic product A⊗B has vertex set V (A⊗
B) = V (A) × V (B) and edge set E(A ⊗ B) = {(a1, b1)(a2, b2)|a1a2 ∈ E(A) or a1 =
a2 and b1b2 ∈ E(B)}. Similarly, the tensor product A × B of two graphs A and
B has vertex set V (A) × V (B) and edge set E(A × B) = {(a1, b1)(a2, b2) | a1a2 ∈
E(A) and b1b2 ∈ E(B)}. One can easily observe that Ku ⊗ K̄g

∼= Kg,g,...,g, the
complete u-partite graph in which each partite set has g vertices. Hereafter we
denote a complete u-partite graph, with g vertices in each partite set, as Ku ⊗ K̄g. It
is clear that (Ku ⊗ K̄g) − gKu

∼= Ku × Kg, where gKu denotes g disjoint copies of
Ku. For more details about product graphs, the reader is referred to [11].

We say that the graph G has an H-decomposition if G can be partitioned into
H1, H2, . . . , Hr for some integer r ≥ 1 and each Hi

∼= H where H1, H2, . . . , Hr are
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pairwise edge-disjoint subgraphs of G. A Ck-decomposition of H is a partition of
H into edge-disjoint cycles of length k, and the existence of such a decomposition
is denoted as Ck|H . A k-factor (respectively, near k-factor) of H is a k-regular
spanning subgraph ofH (respectively, H\{v}, for some v ∈ V (H)). A k-factorization
(respectively, near k-factorization) ofH is a partition ofH into edge-disjoint k-factors
(respectively, near k-factors). Note that a 2-factor (respectively, near 2-factor) of H
can also be called a Ck-factor of H (respectively, H \ {v}, for some v ∈ V (H)), when
the components are cycles of length k. A Ck-factorization of H is a partition of H
into edge-disjoint Ck-factors, denoted by Ck‖H . A near Ck-factorization of H is a
partition of H into edge-disjoint near Ck-factors.

A partial k-factor of (Ku ⊗ K̄g)(λ) is a k-factor of (Ku ⊗ K̄g)(λ) \ Vi, for some
i ∈ {1, 2, 3, . . . , u}, where V1, V2, V3, . . . , Vu are the partite sets of (Ku ⊗ K̄g)(λ).
A partial k-factorization (respectively, partial Ck-factorization) of (Ku ⊗ K̄g)(λ) is a
decomposition of (Ku⊗K̄g)(λ) into partial k-factors (respectively, partial Ck-factors).

Let K be a set of integers. A resolvable K-cycle decomposition, briefly K-RCD
(respectively, almost resolvable K-cycle decomposition, briefly K-ARCD) of (Ku ⊗
K̄g)(λ) is a decomposition of (Ku ⊗ K̄g)(λ) into 2-factors (respectively, partial 2-
factors) consisting of cycles of lengths from K. When K = {k}, we write K-RCD
as k-RCD, and K-ARCD as k-ARCD. A (k, λ)-modified cycle frame, briefly (k, λ)-
MCF, of (Ku ⊗ K̄g)(λ) is a decomposition of (Ku ⊗ K̄g)(λ) − gKu(λ) into partial
Ck-factors. It is appropriate to mention that a k-ARCD of (Ku ×Kg)(λ) is nothing
but a (k, λ)-modified cycle frame.

Studies on RCD/ARCD have a direct relationship with various kinds of cycle
frames. Cycle frames have been studied by many researchers (e.g. Stinson [18],
Cao et al. [6], Niu et al. [17], Chitra et al. [7], Muthusamy et al. [16], Buratti et
al. [4]), due to their applicability in many well-known combinatorial problems such
as the Oberwolfach problem, the Hamilton-Waterloo problem, etc. The above facts
motivated us to do some work on RCD/ARCD in the present paper.

Cao et al. [6] proved that there exists a 3-ARCD of (Ku×Kg)(λ). Duraimurugan
et al. [8] proved that there exists a k-ARCD of (Ku ×Kg)(λ) for all even k ≥ 6 with
a few possible exceptions. In this paper we prove that, for all odd k ≥ 15, u ≥ 4 and
g ≥ 3, there exists a k-ARCD of (Ku×Kg)(λ) if and only if λ(g−1) ≡ 0 (mod 2) and
g(u − 1) ≡ 0 (mod k), except possibly for (λ, u, g) ∈ {(2m, u, kx), (2m, 5, g) | x ≡
2(mod 4) and m ≥ 1}, and (λ, u) ∈ {(2m+1, {16, 2r+1, 4(2s+1), 4t+2, kx+ 1}) |
x ∈ {2t+ 1, 4, 6}, m, t ≥ 0, for even r, s and odd s < 15}.

For all odd k ≥ 3, the necessary conditions for the existence of a k-ARCD of
(Ku ×Kg)(λ) are shown in the following theorem.

Theorem 1.1. For all odd integers k ≥ 3, if (Ku ×Kg)(λ) has a k-ARCD, then

(i) u ≥ 4 and g ≥ 3,

(ii) g(u− 1) ≡ 0 (mod k),

(iii) λ(g − 1) ≡ 0 (mod 2).

Proof. Since k ≥ 3 is an odd integer, it is clear from the definition of a k-ARCD that
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u ≥ 4 and g ≥ 3. As the existence of k-ARCD gives the edge disjoint union of partial
Ck-factors of (Ku × Kg)(λ), the number of vertices in (Ku × Kg)(λ) \ Vi, for some
i ∈ {1, 2, . . . , u}, where V1, V2, . . . , Vu are the partite sets of (Ku ×Kg)(λ), must be
divisible by k; so g(u−1) ≡ 0 (mod k). Since each partial Ck-factor of (Ku×Kg)(λ)
consists of g(u− 1) edges, the number of partial Ck-factors in (Ku ×Kg)(λ) is

λ
u(u−1)

2
g2 − u(u−1)

2
g

(u− 1)g
= λ

u(g − 1)

2
.

Hence there are precisely λ(g−1)
2

partial Ck-factors corresponding to each missing
partite set Vi, i ∈ {1, 2, . . . , u}.

2 Preliminaries

To prove our results we need the following:

Theorem 2.1. [2] For any odd integer t ≥ 3, if u ≡ t (mod 2t), then Ct||Ku.

Theorem 2.2. [9] For any odd m ≥ 3, there exists a near Cm-factorization of
K2m+1(2).

Theorem 2.3. [2] Let k and t be odd integers such that 3 ≤ k ≤ t. Then Ct‖Ck⊗K̄t.

Theorem 2.4. [17] There exists a near {C3, C5}-factorization of Ku(2) for u ≥ 4
and u �= 5, 8.

Theorem 2.5. [13] For m �= 2, odd integers k ≥ 5 and r ≥ 3, we have Ck‖Ck×Km,
Ck‖Kk × C5 and Cr‖Kr × C3.

Theorem 2.6. [9] For any odd m ≥ 3 and for any s > 0, there exists a near
Cm-factorization of Kms+1(2).

Theorem 2.7. [12] The graph Cm ⊗ K̄n has a Hamilton decomposition.

Theorem 2.8. [15] If Ck‖G and n|m, then Ckn‖G × Km, where m �≡ 2 (mod 4),
when k is odd.

Theorem 2.9. [4] Let g be an even integer and let k ≥ 15 be a divisor of g. Then
there exists a k-ARCD of Ku ⊗ K̄g for any u ≥ 4.

Theorem 2.10. [4] There exists an r-ARCD of Ks+1 ⊗ K̄4, s ∈ {r, 2r}, for all odd
r ≥ 15.

Theorem 2.11. [10] Kt,t,t has a Ct-factorization
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3 Basic Constructions

Theorem 3.1. ([1] Walecki’s Construction.) There exists a Hamilton cycle decom-
position of Kk for all k ≥ 3.

Proof. We break this theorem into two cases.

Case (i): k = 2t+ 1, t ≥ 1.
Let V (K2t+1) = {y0, y1, . . . , y2t} and H = (y0y1y2y2ty3y2t−1y4y2m−2 . . . yt+3ytyt+2yt+1)
be the Hamilton cycle. Let σ be the permutation (y0)(y1y2y3 · · · y2t−1y2t). Then H0 =
H , H1 = σ(H), H2 = σ2(H), . . . , Ht−1 = σt−1(H) is a Hamilton cycle decomposition
of K2t+1.

Case (ii): k = 2t, t ≥ 2.
By using a similar procedure to the previous case, we can get t − 1 edge disjoint
Hamilton cycles H0 = H , H1 = σ(H), H2 = σ2(H), . . . , Ht−2 = σt−2(H). The
remaining edges y0yt, yt−1yt+1, yt−2yt+2, . . . , y1y2t−1 form a 1-factor of Kk.

Lemma 3.1. There exists a Cks-factorization of Ck×Cs, for all odd integers s, k ≥ 3.

Proof. Let V (Ck) = {y0, y1, . . . , yk−1}. Then V (Ck × Cs) =
⋃

i∈Zk
Yi, where Yi =

{yji | j ∈ Zs}. Let

(i) C1 =

k−1
2⋃

i=0

F1(Y2i, Y2i+1)⊕
k−3
2⋃

i=0

Fs−1(Y2i+1, Y2i+2) and

(ii) C2 =

k−1
2⋃

i=0

Fs−1(Y2i, Y2i+1)⊕
k−3
2⋃

i=0

F1(Y2i+1, Y2i+2),

where the subscripts of Y are taken modulo k. One can check that both C1 and C2

are Cks-factors of Ck × Cs.

Lemma 3.2. There exists a C3-factorization of C3 ×K2t+1, for all t ≥ 1.

Proof. Let V (C3) = {y0, y1, y2} and V (C3 ×K2t+1) = ∪i∈Z3Yi, where Yi = {yji | j ∈
Z2t+1}. Let Gi = Fi(Y0, Y1) ⊕ Fi(Y1, Y2) ⊕ F2(t−i)+1(Y2, Y0), 1 ≤ i ≤ 2t, where the
subscripts of F are taken modulo (2t+ 1). One can check that each Gi, 1 ≤ i ≤ 2t,
is a C3-factor of C3 ×K2t+1 and

⋃2t
i=1Gi gives a C3-factorization of C3 ×K2t+1.

Lemma 3.3. There exists a Ck-factorization of Cs × Kk, for all odd integers s, k
with k ≥ s ≥ 3.

Proof. We break this lemma into two cases.

Case (i): s = k
Let V (Ck) = {y0, y1, . . . , yk−1} and V (Ck ×Kk) = ∪i∈Zk

Yi, where Yi = {yji | j ∈ Zk}.
Let Gj =

⋃
i∈Zk

Fj(Yi, Yi+1), 1 ≤ j ≤ k − 1, where the subscripts of Y are taken
modulo k. One can check that each Gj, 1 ≤ j ≤ k− 1, is a Ck-factor of Ck ×Kk and⋃k−1

j=1 Gj gives a Ck-factorization of Ck ×Kk.
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Case (ii): s < k
We can write

Cs ×Kk
∼= Cs × {C1

k ⊕ C2
k ⊕ · · · ⊕ C

k−1
2

k }, by Theorem 3.1

∼= ⊕
k−1
2

i=1 (Cs × C i
k)

∼= ⊕
k−1
2

i=1 (C
i
k × Cs). (1)

Now we consider C i
k × Cs

∼= Ck × Cs and find its Ck-factors as follows:

Let V (Ck) = {y0, y1, . . . , yk−1} and V (Ck × Cs) =
⋃

i∈Zk
Yi, where Yi = {yji | j ∈

Zs}. Let

(1) C1 =

k+s
2

−1⋃

i=0

F1(Yi, Yi+1)⊕
k−s
2

−1⋃

i=0

Fs−1(Y k+s
2

+i, Y k+s
2

+i+1) and

(2) C2 =

k+s
2

−1⋃

i=0

Fs−1(Yi, Yi+1)⊕
k−s
2

−1⋃

i=0

F1(Y k+s
2

+i, Y k+s
2

+i+1),

where the subscripts of Y are taken modulo k. One can check that both C1 and
C2 are Ck-factors of Ck × Cs and together give a Ck-factorization of C i

k × Cs. Thus
each Cs × C i

k has two Ck-factors and hence together they give a Ck-factorization of
Cs ×Kk.

Lemma 3.4. There exists a Ck-factorization of Ck×Ks, for all odd integers s, k ≥ 3.

Proof. Let V (Ck) = {y0, y1, . . . , yk−1}. Then V (Ck × Ks) =
⋃

i∈Zk
Yi, where Yi =

{yji | j ∈ Zs}.
Case (i): k = s and s < k.
The proof follows from Lemma 3.3.

Case (ii): s > k.
Let

(1) Gi =

k−3
2⋃

j=0

Fi(Y2j, Y2j+1)⊕
k−5
2⋃

j=0

Fs−i(Y2j+1, Y2j+2)⊕Fi(Yk−2, Yk−1)⊕Fs−2i(Yk−1, Y0)

and

(2) Hi =

k−3
2⋃

j=0

Fs−i(Y2j , Y2j+1)⊕
k−5
2⋃

j=0

Fi(Y2j+1, Y2j+2)⊕Fs−i(Yk−2, Yk−1)⊕F2i(Yk−1, Y0),

where 1 ≤ i ≤ s−1
2
. One can check that both Gi and Hi, 1 ≤ i ≤ s−1

2
, are Ck-factors

of Ck ×Ks. Thus
⋃ s−1

2
i=1 (Gi ⊕Hi) together gives a Ck-factorization of Ck ×Ks.

Lemma 3.5. There exists a partial C5-factorization of K7 ×K5.
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Proof. To prove this lemma we consider the near C3-factorization of K7(2), which
exists by Theorem 2.2. Hence we write

K7(2)×K5
∼= (G0 ⊕G1 ⊕ · · · ⊕G6)×K5 by Theorem 2.2
∼= ⊕i∈Z7(Gi ×K5),

where each Gi
∼= {(x6+i x5+i x3+i), (x1+i x2+i x4+i)}, i ∈ Z7, (where the subscripts

of x are taken modulo 7) is a near C3-factor of K7(2).

Now we write

Gi ×K5
∼= (C3 ⊕ C3)×K5

∼= (C3 ×K5)⊕ (C3 ×K5)
∼= C3 × (C5 ⊕ C5)⊕ C3 × (C5 ⊕ C5) by Theorem 3.1
∼= (C3 × C5)⊕ (C3 × C5)⊕ (C3 × C5)⊕ (C3 × C5).

From the proof of case (ii) of Lemma 3.3, each C3 × C5 (∼= C5 × C3) has two C5-
factors, namely C1 and C2, and hence each Gi ×K5 has a C5-factorization. Now the
collection of all the C1 from the C5-factorization of each Gi ×K5, i ∈ Z7, together
gives two partial C5-factors of K7 ×K5; see Figures 1–4. Also, the collection of all
the C2 from the C5-factorization of each Gi ×K5, i ∈ Z7, together gives another two
partial C5-factors of K7 ×K5; see Figures 1–4.

Finally, the collection of either C1 (or C2) gives the required partial C5-factoriz-
ation of K7 ×K5; see Figure 5.
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Fig.5.
— denotes the edge set of C1 . . . denotes the edge set of C2

Theorem 3.2. There exists a partial Ck-factorization of K4 ×Kk for all odd k ≥ 3.

Proof. Let V (K4) = {x0, x1, x2, x3}. The near C3-factor Gi = (x1+ix2+ix3+i), with
missing vertex xi, 0 ≤ i ≤ 3, where the subscripts of x are taken modulo 4, generate
the near C3-factorization of K4(2). Now we can write

K4(2)×Kk
∼= {C0

3 ⊕ · · · ⊕ C3
3} ×Kk

∼= (C0
3 ×Kk)⊕ · · · ⊕ (C3

3 ×Kk)
∼= ⊕i∈Z3(C

i
3 ×Kk), (2)

where each Ci
3 is a near C3-factor of K4(2). Now we consider Ci

3 × Kk
∼= C3 × Kk

and find its C3-factors as follows:

Case (i): k = 3
By the proof of case (i) of Lemma 3.3, the collection of all C3-factors of C3 × K3

generated by G1 (respectively, G2) together give the required partial C3-factorization
of K4 ×K3.

Case (ii) k > 3

Using (1) of Lemma 3.3, we have Ci
3 ×Kk

∼= ⊕
k−1
2

j=1 (C
j
k ×C3), i ∈ Z3. By the proof of

case (ii) of Lemma 3.3, each Cj
k ×C3 has two Ck-factors, namely C1 and C2. Now the

collection of all the C1 from Ci
3 ×Kk, i = 0, 2, and the collection of all the C2 from

Ci
3 ×Kk, i = 1, 3 together give a partial Ck-factorization of K4 ×Kk. In a similar

manner, we can also have another partial Ck-factorization of K4 ×Kk by taking all
the C1 from Ci

3×Kk, i = 1, 3, and C2 from Ci
3×Kk, i = 0, 2. One of the above gives

the required partial Ck-factorization of K4 ×Kk.
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Theorem 3.3. There exists a partial C3-factorization of K4 ×Kk for all odd k ≥ 3.

Proof. Using (2) of Theorem 3.2, we have K4(2)×Kk
∼= ⊕i∈Z3(C

i
3×Kk), where each

Ci
3, 0 ≤ i ≤ 3, is a near C3-factor of K4(2). Hence we write Ci

3 ×Kk
∼= C3 ×Kk and

by the proof of Lemma 3.2, the collection of all C3-factors of C3 ×Kk generated by
Gi, 1 ≤ i ≤ k−1

2
(respectively, Gi,

k+1
2

≤ i ≤ k − 1) together give a required partial
C3-factorization of K4 ×Kk.

Theorem 3.4. There exists a partial Ck-factorization of K2s+1 × Kk, for all odd
integers s, k with k ≥ s ≥ 3.

Proof. By Theorem 2.2, K2s+1(2) has a near Cs-factorization. Now we write

K2s+1(2)×Kk
∼= {C0

s ⊕ C1
s ⊕ · · · ⊕ C2s

s } ×Kk, by Theorem 2.2
∼= (C0

s ×Kk)⊕ · · · ⊕ (C2s
s ×Kk)

∼= ⊕i∈Z2s+1(C
i
s ×Kk), (3)

where each Ci
s, 0 ≤ i ≤ 2s, is a near Cs-factor of K2s+1(2), and each near Cs-factor

contains two cycles of length s.

Hence we write Ci
s ×Kk

∼= 2(Cs ×Kk) and find its Ck-factors as follows:

Case (i): s = k
By the proof of case (i) of Lemma 3.3, the collection of all Ck-factors of Ci

k × Kk

generated by Gl, 1 ≤ l ≤ k−1
2

(respectively, Gl,
k+1
2

≤ l ≤ k − 1) together give a
required partial Ck-factorization of K2k+1 ×Kk.

Case (ii): s < k
By the proof of case (ii) of Lemma 3.3, the collection of all C1 (respectively, C2) from
Ci
s ×Kk together give a required partial Ck-factorization of K2s+1 ×Kk.

Theorem 3.5. There exists a partial Ck-factorization of K2k+1 × Ks, for all odd
integers s, k ≥ 3.

Proof. Using (3) of Theorem 3.3, we have K2k+1(2)×Ks
∼= ⊕i∈Z2k+1

(Ci
k×Ks), where

each Ci
k, 0 ≤ i ≤ 2k, is a near Ck-factor of K2k+1(2), and each near Ck-factor contains

two cycles of length k.

Now we consider Ci
k ×Ks

∼= 2(Ck ×Ks), and find its Ck-factors as follows:

Case (i): k = s and s < k.
The proof follows from Theorem 3.4.

Case (ii): s > k.
By the proof of case (ii) of Lemma 3.4, the collection of all Ck-factors of Ci

k × Ks

generated by Gl (respectively, Hl), 1 ≤ l ≤ s−1
2
, together give a required partial

Ck-factorization of K2k+1 ×Ks.

Theorem 3.6. There exists a partial Cks-factorization of K2k+1 × Ks, for all odd
integers s, k ≥ 3.
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Proof. Using (3) of Theorem 3.3, we have K2k+1(2)×Ks
∼= ⊕i∈Z2k+1

(Ci
k×Ks), where

each Ci
k, 0 ≤ i ≤ 2k, is a near Ck-factor of K2k+1(2), and each near Ck-factor contains

two cycles of length k.

Now we consider Ci
k ×Ks

∼= 2(Ck ×Ks), and find its Cks-factors as follows:

By using (1) of Lemma 3.3, we can write Ck × Ks
∼= ⊕

s−1
2

j=1(Ck × Cj
s ). By the

proof of Lemma 3.1, each Ck × Cj
s (∼= Ck × Cs) has two Cks-factors, namely C1 and

C2. Now the collection of all the C1 from Ci
k × Cs together gives a required partial

Cks-factorization of K2k+1 ×Ks. Similarly, the collection of all the C2 from Ci
k × Cs

together also gives another partial Cks-factorization of K2k+1 ×Ks.

Construction 1. If there exists a near 2-factorization of Ku(2) (a near 2-factor F
can contain different cycle lengths with V (F ) = u− 1, and the set of cycle lengths is
denoted by J), a Ct-factorization of Ct × Kx, a Ck-factorization of Ct ⊗ K̄k and a
Ck-factorization of Ct×Kk for any t ∈ J , then there exists a partial Ck-factorization
of (Ku ×Kkx)(2).

4 k-ARCD of (Ku ×Kg)(λ)

In this section we investigate the existence of a k-ARCD of the tensor product of
complete graphs with edge multiplicity λ.

Theorem 4.1. For all odd k ≥ 5, u ≥ 4 and g ≡ 0 (mod k), there exists a k-ARCD
of (Ku ×Kg)(2), except possibly when (u, g) ∈ {(u, kx), (5, g) | x ≡ 2 (mod 4)}.

Proof. Let g = kx, where x ≥ 1.

By Theorems 2.4 and 2.6, let F = {F0, F2, . . . , Fu−1} be the near 2-factorization
of Ku(2) (each near 2-factor Fi, 0 ≤ i ≤ u − 1, may contain different cycle lengths
with V (Fi) = u − 1, and the set of all of cycle lengths is denoted by J = {3, 5, 7}).
A Ct-factorization of Ct × Kx and a Ck-factorization Ct ⊗ K̄k, for any t ∈ J , can
be obtained by Theorems 2.8 and 2.3, respectively. Furthermore, Ct × Kk has a
Ck-factorization by Theorem 2.5 and Lemma 3.3. Then by using construction 1,
we get a required partial Ck-factorization of (Ku ×Kg)(2). Therefore a k-ARCD of
(Ku ×Kg)(2) exists.

Theorem 4.2. For all odd integers s, k with 3 ≤ s ≤ k, u = 2s + 1 and g ≡
k (mod 2k), there exists a k-ARCD of Ku ×Kg.

Proof. Let g = k(2t+ 1), t ≥ 1. We can write

Ku ×Kg
∼= K2s+1 ×Kk(2t+1)

∼= {(K2s+1 ×K2t+1)⊗ K̄k} ⊕ (2t+ 1)(K2s+1 ×Kk). (4)

The right-hand side of (4) can be obtained by making 2t + 1 holes of type K2s+1 ×
Kk and identifying each k-subset of Kk(2t+1) (in the resulting graph) into a single
vertex, with two of them being adjacent if the corresponding k-subsets form a Kk,k
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in K2s+1×Kk(2t+1). The resulting graph is isomorphic to K2s+1×K2t+1. Expand the
identified vertices into k-subsets and two k-subsets, to form a Kk,k whenever their
corresponding vertices are adjacent in K2s+1 ×K2t+1. Thus the resulting expanded
graph will be isomorphic to the first graph of (4).

Now we construct the partial Ck-factors of the right-hand side of (4) as follows:

Consider (K2s+1 ×K2t+1)⊗ K̄k
∼= {C0

s ⊕ · · · ⊕ C2s
s } ⊗ K̄k, by Theorem 3.5

∼= (C0
s ⊗ K̄k)⊕ · · · ⊕ (C2s

s ⊗ K̄k)
∼= ⊕i∈Z2s+1(C

i
s ⊗ K̄k).

Note that each Ci
s, 0 ≤ i ≤ 2s, contains t partial Cs-factors of K2s+1 × K2t+1, and

each partial Cs-factor contains 2(2t+1) cycles of length s. Hence we write Ci
s⊗K̄k

∼=
t{2(2t+1)(Cs ⊗ K̄k)} and by Theorem 2.3, each Cs ⊗ K̄k has k Ck-factors. Thus we
have obtained kt partial Ck-factors of (K2s+1 ×K2t+1) ⊗ K̄k corresponding to each
Ci
s⊗ K̄k. When i varies, we get (2s+1)kt partial Ck-factors of (K2s+1×K2t+1)⊗ K̄k.

Furthermore, by Theorem 3.4, the second graph (2t + 1)(K2s+1 × Kk) has
(2s+1)k−1

2
partial Ck-factors. Finally, the partial Ck-factors of the two graphs of the

right-hand side of (4) obtained above together give a required partial Ck-factorization
of K2s+1 ×Kk(2t+1)

∼= Ku ×Kg.

Theorem 4.3. For all odd integers r, k with 15 ≤ r ≤ k, u = 4(s + 1), s ∈ {r, 2r}
and g ≡ k (mod 2k), there exists a k-ARCD of Ku ×Kg.

Proof. Let g = k(2t+ 1), t ≥ 1. We can write

Ku ×Kg
∼= K4(s+1) ×Kg

∼= {(Ks+1 ⊗ K̄4)⊕ (s+ 1)K4} ×Kg

∼= {(Ks+1 ⊗ K̄4)×Kg} ⊕ (s+ 1)(K4 ×Kg). (5)

Now we construct the partial Ck-factors of the right-hand side of (5) as follows:

Consider (Ks+1 ⊗ K̄4)×Kg
∼= {C0

r ⊕ · · · ⊕ Cs
r} ×Kg, by Theorem 2.10

∼= (C0
r ×Kg)⊕ · · · ⊕ (Cs

r ×Kg)
∼= ⊕i∈Zs+1(C

i
r ×Kg).

We know that Ci
r ×Kg

∼= Ci
r ×Kk(2t+1), i ∈ Zs+1

∼= 2
{4s
r
(Cr ×Kk(2t+1))

}
,

where each Ci
r, 0 ≤ i ≤ s, contains two partial Cr-factors of Ks+1 ⊗ K̄4, in which

each partial Cr-factor contains 4s/r cycles of length r.

We write Cr ×Kk(2t+1)
∼= Cr × {K2t+1 ⊗ K̄k ⊕ (2t+ 1)Kk}
∼= {(Cr ×K2t+1)⊗ K̄k} ⊕ (2t+ 1)(Cr ×Kk). (6)

By applying a similar procedure to (4) we get the right-hand side of (6). By The-
orems 2.5 and 2.3, (Cr × K2t+1) ⊗ K̄k has 4tk

2
Ck-factors of Cr × Kk(2t+1). By
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Theorem 3.3, (2t+1)(Cr×Kk) has (k−1) Ck-factors of Cr×Kk(2t+1). Put together

we get 2(g−1)
2

Ck-factors of Cr ×Kk(2t+1). Thus we have obtained 4(g−1)
2

partial Ck-
factors of (Ks+1⊗K̄4)×Kg corresponding to each missing partite set of size 4g which
makes a hole K4 × Kg of Ku ×Kg. Note that corresponding to each partite set of
(Ks+1⊗ K̄4)×Kg we have a hole K4×Kg of Ku×Kg in (5). To complete the proof,
it is enough to find the partial Ck-factors of the hole K4 ×Kg corresponding to the
missing partite set, and this put together to get the required partial Ck-factors of
Ku ×Kg.

Now consider the second graph of (5), that is,

K4 ×Kg
∼= K4 ×Kk(2t+1)

∼= K4 × {K2t+1 ⊗ K̄k ⊕ (2t+ 1)Kk}
∼= {(K4 ×K2t+1)⊗ K̄k} ⊕ (2t+ 1)(K4 ×Kk). (7)

By applying a similar procedure to (4) we get the right-hand side of (7).

Now we construct the partial Ck-factors of the right-hand side of (7) as follows:

By Theorem 3.3, K4 ×K2t+1 has 4(2t)
2

partial C3-factors, and by Theorem 2.11,

each C3 ⊗ K̄k (∼= Kk,k,k) has k Ck-factors. Thus we have obtained 4(2tk)
2

partial Ck-
factors of K4×Kg, corresponding to the first graph (K4×K2t+1)⊗K̄k. Furthermore,

by Theorem 3.2, (2t + 1)(K4 × Kk) has 4(k−1)
2

partial Ck-factors of K4 × Kg. Put

together, we have 4(g−1)
2

partial Ck-factors ofK4×Kg. Finally, the combination of the
4(g−1)

2
partial Ck-factors of the first graph of the right-hand side of (5) corresponds

to one missing partite set of size 4g and the 4(g−1)
2

partial Ck-factors of the hole

K4 ×Kg, which correspond to that missing partite set, together gives 4(g−1)
2

partial
Ck-factors of Ku×Kg. Repeat the process s+1 times (as there are s+1 holes) to get
4(s+ 1) g−1

2
partial Ck-factors of Ku ×Kg. Thus a k-ARCD of Ku ×Kg exists.

Theorem 4.4. For all odd k ≥ 5, u ≡ 1 (mod k) and g ≥ 3, there exists a k-ARCD
of (Ku ×Kg)(2).

Proof. Let u = kx+ 1, x ≥ 1. We can write

(Ku ×Kg)(2) ∼= Ku(2)×Kg

∼= (C0
k ⊕ C1

k ⊕ · · · ⊕ Cu−1
k )×Kg, by Theorem 2.6

∼= (C0
k ×Kg)⊕ (C1

k ×Kg)⊕ · · · ⊕ (Cu−1
k ×Kg)

∼= ⊕i∈Zu(C
i
k ×Kg),

where each Ci
k, 0 ≤ i ≤ u − 1 is a near Ck-factor of Ku(2), and each near Ck-factor

contains x cycles of length k. Hence we write Ci
k×Kg

∼= x(Ck×Kg). By Theorem 2.5,
each Ck × Kg has g − 1 Ck-factors. The collection of all Ck-factors from Ci

k × Kg

together gives some partial Ck-factors of (Ku×Kg)(2). Thus, in total, we get u(g−1)
partial Ck-factors of (Ku ×Kg)(2). Therefore a k-ARCD of (Ku ×Kg)(2) exists.

Theorem 4.5. For all u = 2k+1, with odd integers k, g ≥ 3, there exists a k-ARCD
of Ku ×Kg.
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Proof. The proof follows from Theorem 3.5.

Theorem 4.6. For all u = 2kx + 1, with odd integers k and g with k ≥ 5, g ≥ 3,
and for x ≥ 4, there exists a k-ARCD of Ku ×Kg.

Proof. Given that u = 2kx+ 1 and g ≥ 3 is odd, where x ≥ 4, we can write

K2kx+1 ×Kg
∼= {(Kx ⊗ K̄2k)⊕ xK2k+1} ×Kg (8)
∼= {(Kx ⊗ K̄2k)×Kg} ⊕ x(K2k+1 ×Kg). (9)

The right-hand side of (8) can be obtained by making x holes of type K2k in K2kx+1

and adjoining the omitted vertex, say ∞, to each hole K2k to get x copies of K2k+1.

Now we construct the partial Ck-factors of the right-hand side of (9) as follows.
Consider

(Kx ⊗ K̄2k)×Kg
∼= {C0

k ⊕ · · · ⊕ Cx−1
k } ×Kg, by Theorem 2.9 (10)

∼= (C0
k ×Kg)⊕ · · · ⊕ (Cx−1

k ×Kg),

where each Ci
k, 0 ≤ i ≤ x− 1, contains 2k

2
partial Ck-factors of (Kx ⊗ K̄2k), and each

partial Ck-factor contains 2(x − 1) cycles of length k. Hence we write Ci
k × Kg

∼=
2k
2
{2(x−1)(Ck×Kg)} and each Ck×Kg has g−1 Ck-factors by Theorem 2.5. Thus

we have obtained 2k(g−1)
2

partial Ck-factors of (Kx⊗K̄2k)×Kg corresponding to each
missing partite set of size 2kg which makes a hole K2k+1×Kg of Ku×Kg. Note that
corresponding to each partite set of (Kx ⊗ K̄2k)×Kg we have a hole K2k+1 ×Kg of
Ku × Kg in (9). To complete the proof, it is enough to find the partial Ck-factors
of the hole K2k+1 ×Kg corresponding to the missing partite set and put together to
get the required partial Ck-factors of Ku ×Kg.

By Theorem 4.5,K2k+1×Kg has
2k(g−1)

2
partial Ck-factors with missing partite sets

corresponding to the vertices of K2k and g−1
2

partial Ck-factors with missing partite

set corresponding to the vertex ∞. The combination of the 2k(g−1)
2

partial Ck-factors
of (Kx⊗K̄2k)×Kg corresponding to one missing partite set of size 2kg together with
2k(g−1)

2
partial Ck-factors of K2k+1 × Kg, which correspond to that missing partite

set of (Kx ⊗ K̄2k) × Kg, gives
2k(g−1)

2
partial Ck-factors of K2kx+1 × Kg. As there

are x holes, repeating the above process x times, we get 2kx(g−1)
2

partial Ck-factors

of K2kx+1 × Kg. Further, the collection of all g−1
2

partial Ck-factors of each of the
x copies of K2k+1 ×Kg with missing partite set that corresponds to the vertex ∞,
together gives g−1

2
partial Ck-factors ofK2kx+1×Kg. Therefore a k-ARCD ofKu×Kg

exists.

Theorem 4.7. Let k = q1q2 . . . qk ≥ 9 be odd, where q1, q2, . . . , qk ≥ 3 are odd
and not necessarily distinct. If u ≡ 1 (mod q1q2 . . . qi) and g = (qi+1qi+2 . . . qk)y,
1 ≤ i ≤ k − 1, then there exists a k-ARCD of (Ku × Kg)(2), except possibly when
y ≡ 2 (mod 4).
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Proof. Let u = mx+1, g = ny and k = mn where m = q1q2 . . . qi, n = qi+1qi+2 . . . qk,
and x, y ≥ 1. We can write

(Ku ×Kg)(2) ∼= Kmx+1(2)×Kny

∼= {C0
m ⊕ C1

m ⊕ · · · ⊕ Cmx
m } ×Kny

∼= (C0
m ×Kny)⊕ · · · ⊕ (Cmx

m ×Kny)
∼= ⊕j∈Zmx+1(C

j
m ×Kny),

where each Cj
m, 0 ≤ j ≤ mx, is a near Cm-factor of Kmx+1(2), and each near Cm-

factor contains x cycles of length m. Hence we write Cj
m ×Kny

∼= x(Cm ×Kny) and
by applying a similar procedure to (4) we get the following:

Cm ×Kny
∼= Cm × {(Ky ⊗ K̄n)⊕ yKn}
∼= {(Cm ×Ky)⊗ K̄n} ⊕ y(Cm ×Kn). (11)

By Theorem 2.8, Cm×Ky has (y−1) Cm-factors, and Cm⊗K̄n has n Cmn-factors by
Theorem 2.7. Thus we have obtained n(y−1) Cmn-factors of Cm×Kny corresponding
to the first graph (Cm×Ky)⊗K̄n. Furthermore, by Theorem 3.1, y(Cm×Kn) has n−1
Cmn-factors. Finally, the Cmn-factors of the two graphs of the right-hand side of (11)
together give (ny− 1) Cmn-factors of Cm×Kny. The collection of all Cmn-factors of
Cj
m ×Kny together gives a required partial Cmn-factorzation of (Ku ×Kg)(2).

Theorem 4.8. Let k = q1q2 . . . qk ≥ 9 be odd, where q1, q2, . . . , qk ≥ 3 are odd
and not necessarily distinct. If u = 2(q1q2 . . . qi) + 1 and g ≡ (qi+1qi+2 . . . qk)
(mod 2qi+1qi+2 . . . qk), 1 ≤ i ≤ k − 1, then there exists a k-ARCD of Ku ×Kg.

Proof. Let u = 2m + 1, g = (2x + 1)n, and k = mn, where m = q1q2 . . . qi, n =
qi+1qi+2 . . . qk, and x ≥ 1. We can write

K2m+1 ×K(2x+1)n
∼= {(K2m+1 ×K2x+1)⊗ K̄n} ⊕ (2x+ 1)(K2m+1 ×Kn). (12)

By applying a similar procedure to (4) we get the right-hand side of (12).

We construct a partial Cmn-factorization of the right-hand side of (12) as follows.
First we consider

(K2m+1 ×K2x+1)⊗ K̄n
∼= {C0

m ⊕ · · · ⊕ C2m
m } ⊗ K̄n, by Theorems 3.5

∼= (C0
m ⊗ K̄n)⊕ · · · ⊕ (C2m

m ⊗ K̄n)
∼= ⊕i∈Z2m+1(C

i
m ⊗ K̄n),

where each Cj
m, 0 ≤ j ≤ 2m, contains x partial Cm-factors of K2m+1 × K2x+1, in

which each partial Cm-factor contains 2(2x+ 1) cycles of length m. Hence we write
Cj
m × K̄n

∼= x{2(2x+1)(Cm⊗ K̄n)}, and by Theorem 2.7, each Cm ⊗ K̄n has n Cmn-
factors. Thus we have obtained xn partial Cmn-factors of (K2m+1 × K2x+1) ⊗ K̄n

corresponding to one missing partite set of size (2x + 1)n. By taking the union of
all partial Cmn-factors corresponding to all the missing partite sets together gives
(2m+ 1)xn partial Cmn-factors of (K2m+1 ×K2x+1)⊗ K̄n.
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Furthermore, by Theorem 3.6 we get n−1
2

partial Cmn-factors of the second graph
(2x+1)(K2m+1 ×Kn) corresponding to one missing partite set. Taking the union of
all the partial Cmn-factors together corresponding to all the missing partite sets, we
get (2m + 1)n−1

2
partial Cmn-factors of (2x + 1)(K2m+1 ×Kn). Finally, the partial

Cmn-factors of the two graphs of the right-hand side of (12) obtained above together
gives a required partial Cmn-factorization of Ku ×Kg.

Theorem 4.9. Let k = q1q2 . . . qk ≥ 45 be odd, where q1, q2, . . . , qi ≥ 15, qi+1, qi+2,
. . . , qk ≥ 3 and q1, q2, . . . , qk are odd and not necessarily distinct. If u = 2(q1q2 . . . qi)x
+1, where x ≥ 4, and g ≡ (qi+1qi+2 . . . qk) (mod 2qi+1qi+2 . . . qk), 1 ≤ i ≤ k−1, then
there exists a k-ARCD of Ku ×Kg.

Proof. Let u = 2mx+1, g = (2y+1)n and k = mn ≥ 45, where m = q1q2 . . . qi ≥ 15,
n = qi+1qi+2 . . . qk ≥ 3, and x ≥ 4, y ≥ 1. By using (9), we can write

K2mx+1 ×Kg
∼= {(Kx ⊗ K̄2m)⊕ xK2m+1} ×Kg (13)
∼= {(Kx ⊗ K̄2m)×Kg} ⊕ x(K2m+1 ×Kg). (14)

Now, we construct the partial Cmn-factors of the right-hand side of (14) as follows.
First we consider

(Kx ⊗ K̄2m)×Kg
∼= {C0

m ⊕ · · · ⊕ Cx−1
m } ×Kg, by Theorem 2.9

∼= (C0
m ×Kg)⊕ · · · ⊕ (Cx−1

m ×Kg)
∼= ⊕l∈Zx(C

l
m ×Kg) (15)

where each Cl
m, 0 ≤ l ≤ x− 1, contains 2m

2
partial Ck-factors of Kx ⊗ K̄2m, and each

partial Ck-factor contains 2(x − 1) cycles of length k. Hence we write Ci
m × Kg

∼=
2m
2
{2(x− 1)(Cm ×K(2y+1)n)}.

Cm ×K(2y+1)n
∼= Cm × {C1

n ⊕ · · · ⊕ C

g−1
2

n }, by Theorem 2.1

∼= (Cm × C
1
n)⊕ · · · ⊕ (Cm × C

g−1
2

n )

Cm × C
j
n

∼= (2y + 1)(Cm × Cn),

where each Cj
n, 1 ≤ j ≤ g−1

2
, is a Cn-factor of K(2y+1)n, and each Cn-factor contains

(2y + 1) cycles of length n. By Theorem 3.1, each Cm × Cn has two Cmn factors.

Thus we have obtained 2m(g−1)
2

partial Cmn-factors of (Kx⊗K̄2m)×Kg corresponding
to one missing partite set of size 2mg which makes a hole K2m+1 ×Kg of Ku ×Kg.
Note that corresponding to each partite set of (Kx ⊗ K̄2m) × Kg we have a hole
K2m+1 × Kg of Ku × Kg in (14). To complete the proof, it is enough to find the
partial Cmn-factors of the hole K2m+1 ×Kg corresponding to the missing partite set
and put together to get the required partial Cmn-factors of Ku ×Kg.

Now we consider

K2m+1 ×Kg
∼= K2m+1 ×K(2y+1)n

∼= {(K2m+1 ×K2y+1)⊗ K̄n} ⊕ (2y + 1)(K2m+1 ×Kn) (16)
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By Theorems 3.5 and 2.7, (K2m+1 × K2y+1) ⊗ K̄n has 2m(yn) partial Cmn-factors
with missing partite sets corresponding to the vertices of K2m and yn partial Cmn-
factors with missing partite sets corresponding to the vertex ∞. Furthermore, by
Theorem 3.6, (2y+1)(K2m+1 ×Kn) has (2m)(n−1

2
) partial Cmn-factors with missing

partite sets corresponding to the vertices of K2m, and
n−1
2

partial Cmn-factors with
missing partite sets corresponding to the vertex ∞. Adding all the partial Cmn-
factors of the two graphs in the right-hand side of (16), we get (2m)(g−1)

2
partial

Cmn-factors of K2m+1 × Kg with missing partite sets corresponding to the vertices
of K2m, and

g−1
2

partial Cmn-factors with missing partite sets corresponding to the
vertex ∞.

Finally, the combination of 2m(g−1)
2

partial Cmn-factors of (Kx⊗ K̄2m)×Kg corre-

sponding to the one missing partite set of size 2mg, together with the 2m(g−1)
2

partial
Cmn-factors of K2m+1 × Kg with missing partite sets corresponding to the vertices

of K2m, gives
2mx(g−1)

2
partial Cmn-factors of K2mx+1 × Kg. As there are x holes,

repeat the process x times, and we get 2mx(g−1)
2

partial Cmn-factors of Ku × Kg.

Furthermore, the collection of all g−1
2

partial Cmn-factors of each of the x copies of
K2m+1 ×Kg with missing partite set corresponding to the vertex ∞, together gives
g−1
2

partial Cmn-factors of K2mx+1×Kg. Therefore a k-ARCD of Ku×Kg exists.

Theorem 4.10. For all odd k ≥ 15, there exists a k-ARCD of (Ku × Kg)(λ) if
and only if u ≥ 4, g ≥ 3, λ(g − 1) ≡ 0 (mod 2), g(u − 1) ≡ 0 (mod k), except
possibly for (λ, u, g) ∈ {(2m, u, kx), (2m, 5, g) | x ≡ 2 (mod 4) and m ≥ 1}, and
(λ, u) ∈ {(2m+ 1, {16, 2r + 1, 4(2s+ 1), 4t + 2, kx+ 1}) | x ∈ {2t + 1, 4, 6}, m, t ≥
0, for even r, s and odd s < 15}.

Proof. Necessity follows from Theorem 1.1. Sufficiency can be divided into two cases.

Case (i): When λ = 1, the values of u and g fall into one of the following cases:

(a) u = 2s+ 1, g ≡ k (mod 2k), where s ≥ 3 is odd and s ≤ k;

(b) u = 4(s+1), s ∈ {r, 2r}, g ≡ k (mod 2k), where r, k ≥ 15 are odd integers and
r ≤ k;

(c) u = 2k + 1, and g ≥ 3 is odd;

(d) u = 2kx+ 1, x ≥ 4 and g ≥ 3 is odd.

Case (ii): When λ = 2, the values of u and g fall into one of the following cases:

(e) u ≥ 4, u �= 5 and g ≡ 0 (mod k);

(f) u = kx+ 1, x ≥ 1 and g ≥ 3.

The proofs for (a), (b), (c), (d), (e), and (f) follow from Theorems 4.2, 4.3, 4.5, 4.6,
4.1, and 4.4, respectively. If λ > 2 is even (respectively, odd), then the values for u
and g are the same as in cases (i) and (ii) (respectively, case (i)). Hence a k-ARCD
of (Ku ×Kg)(λ) exists.
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Theorem 4.11. Let k = q1q2 . . . qk ≥ 9 be odd, where q1, q2, . . . , qk ≥ 3 are odd
integers and not necessarily distinct. There exists a k-ARCD of (Ku×Kg)(λ) if and
only if u ≥ 4, g ≥ 3, λ(g−1) ≡ 0 (mod 2), g(u−1) ≡ 0 (mod k), except possibly for
(λ, u, g, k) ∈ {(2m, rx+ 1, sy, rs) | m ≥ 1, y ≡ 2 (mod 4)} and (λ, u, g, k) ∈ {(2m+
1, rx+ 1, s(2t+ 1), rs), (2m+ 1, u, g, n) | x ∈ {4, 6, 2t+ 1}, m, t ≥ 0, n < 45 is odd}.

Proof. Necessity follows from Theorem 1.1. We prove the sufficiency as follows:

The values of u, g and λ fall into one of the following cases:

(a) u = 2(q1q2 . . . qi) + 1, g ≡ (qi+1qi+2 . . . qk) (mod qi+1qi+2 . . . qk), 1 ≤ i ≤ k − 1,
when λ = 1;

(b) u = 2(q1q2 . . . qi)x+ 1, g ≡ (qi+1qi+2 . . . qk) (mod qi+1qi+2 . . . qk), 1 ≤ i ≤ k − 1
for any x ≥ 4 and k ≥ 45, when λ = 1;

(c) u ≡ 1 (mod q1q2 . . . qi), g ≡ 0 (mod qi+1qi+2 . . . qk), 1 ≤ i ≤ k − 1, when λ = 2.

The proofs for (a), (b), and (c) follow from Theorems 4.8, 4.9, and 4.7, respectively.
If λ > 2 is even (respectively, odd), the values for u and g are the same as in (a), (b),
and (c) (respectively, (a) and (b)). Hence a k-ARCD of (Ku ×Kg)(λ) exists.

5 Conclusion

In this paper, we have established the existence of a k-ARCD of (Ku×Kg)(λ), for all
odd k ≥ 15 with a few possible exceptions. Our results also provide a partial solution
to the existence of modified cycle frames of complete multipartite multigraphs.
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