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Abstract

In this paper, we show that almost resolvable k-cycle decompositions of
(K, x K,)(A) (where x represents the tensor product of graphs) exist for
all odd k£ > 15 with only a few possible exceptions.

1 Introduction

Throughout this paper all the graphs considered are finite. Specifically, if the graph G
is simple then, for any A > 1, we use G(A) (respectively, AG), to represent the multi-
graphs obtained from G by replacing each edge of G with uniform edge-multiplicity
A (respectively, \ edge-disjoint copies of G). Let C,, K, and K, denote the cy-
cle, complete graph and complement of the complete graph on s vertices, respec-
tively. A complete bipartite graph with bipartition (U, V') is denoted by K, s, where
U = {up,uy,...,us—1} and V = {vg,v1,...,vs_1}. The edge set of F;(U,V) C K
is defined as {u;vj; : 0 < j < s—1}, for 0 < ¢ < s — 1, where addition in the
subscripts is taken modulo s. Clearly F;(U,V) is a 1-factor of K, with distance i
from U to V. Also @:_) F;(U,V) = K, ,, where & denotes the edge-disjoint union of
graphs.

For two graphs A and B, their lezicographic product A® B has vertex set V(A ®
B) = V(A) x V(B) and edge set E(A® B) = {(a1, b1)(az, bz)|aras € E(A) or a; =
ay and biby € E(B)}. Similarly, the tensor product A x B of two graphs A and
B has vertex set V(A) x V(B) and edge set E(A x B) = {(a1,b1)(az,b2) | ajas €
E(A) and biby € E(B)}. One can easily observe that K, ® f(g = Ky, the
complete u-partite graph in which each partite set has g vertices. Hereafter we
denote a complete u-partite graph, with g vertices in each partite set, as K, ® K,. It
is clear that (K, ® K,) — gK, = K, x K,, where gK, denotes g disjoint copies of
K,. For more details about product graphs, the reader is referred to [I1].

We say that the graph G has an H-decomposition if G can be partitioned into
H,, Hy, ..., H, for some integer r > 1 and each H; = H where Hq, H,,..., H, are
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pairwise edge-disjoint subgraphs of G. A Cy-decomposition of H is a partition of
H into edge-disjoint cycles of length k, and the existence of such a decomposition
is denoted as Cy|H. A k-factor (respectively, near k-factor) of H is a k-regular
spanning subgraph of H (respectively, H\{v}, for some v € V(H)). A k-factorization
(respectively, near k-factorization) of H is a partition of H into edge-disjoint k-factors
(respectively, near k-factors). Note that a 2-factor (respectively, near 2-factor) of H
can also be called a Cy-factor of H (respectively, H \ {v}, for some v € V(H)), when
the components are cycles of length k. A Cj-factorization of H is a partition of H
into edge-disjoint Cj-factors, denoted by Cy||H. A near Cy-factorization of H is a
partition of H into edge-disjoint near Cj-factors.

A partial k-factor of (K, ® K,)()) is a k-factor of (K, ® K,)(A\) \ V;, for some
i € {1,2,3,...,u}, where Vi, Vs, V3,...,V, are the partite sets of (K, ® K,)()\).
A partial k-factorization (respectively, partial Cj-factorization) of (K, ® K,)()\) is a
decomposition of (K,®K,)(A) into partial k-factors (respectively, partial Cy-factors).

Let K be a set of integers. A resolvable K-cycle decomposition, briefly K-RCD
(respectively, almost resolvable K-cycle decomposition, briefly K-ARCD) of (K, ®
K,)(\) is a decomposition of (K, ® K,)()\) into 2-factors (respectively, partial 2-
factors) consisting of cycles of lengths from K. When K = {k}, we write K-RCD
as k-RCD, and K-ARCD as k-ARCD. A (k, A)-modified cycle frame, briefly (k, A)-
MCF, of (K, ® K,)(\) is a decomposition of (K, ® K,)(A\) — gK,()\) into partial
Cy-factors. It is appropriate to mention that a k-ARCD of (K, x K;)()) is nothing
but a (k, A)-modified cycle frame.

Studies on RCD/ARCD have a direct relationship with various kinds of cycle
frames. Cycle frames have been studied by many researchers (e.g. Stinson [I§],
Cao et al. [6], Niu et al. [17], Chitra et al. [7], Muthusamy et al. [16], Buratti et
al. [4]), due to their applicability in many well-known combinatorial problems such
as the Oberwolfach problem, the Hamilton-Waterloo problem, etc. The above facts
motivated us to do some work on RCD/ARCD in the present paper.

Cao et al. [6] proved that there exists a 3-ARCD of (K, x K,)(A). Duraimurugan
et al. [§] proved that there exists a k-ARCD of (K, x K,)(A) for all even k£ > 6 with
a few possible exceptions. In this paper we prove that, for all odd £ > 15, u > 4 and
g > 3, there exists a k-ARCD of (K, x K,)(\) if and only if A\(¢—1) = 0 (mod 2) and
g(u—1) =0 (mod k), except possibly for (A, u,g) € {(2m,u, kx), (2m,5,9) | x =
2(mod 4) and m > 1}, and (A, u) € {(2m+1,{16,2r+1,4(2s+1),4t + 2, kx + 1}) |
r € {2t+1,4,6}, m,t >0, for even r, s and odd s < 15}.

For all odd k& > 3, the necessary conditions for the existence of a k-ARCD of
(K, x Kg)(A) are shown in the following theorem.

Theorem 1.1. For all odd integers k > 3, if (K, x K,;)(\) has a k-ARCD, then
(i) u>4 and g > 3,
(ii) g(lu—1)=0 (mod k),

(11i) Mg —1) =0 (mod 2).

Proof. Since k > 3 is an odd integer, it is clear from the definition of a k-ARCD that



S. DURAIMURUGAN ET AL. /AUSTRALAS. J. COMBIN. 84 (1) (2022), 297-313 299

u >4 and g > 3. As the existence of k-ARCD gives the edge disjoint union of partial
Cy-factors of (K, x K,)(\), the number of vertices in (K, x K,)(A) \ V;, for some
i€ {1,2,...,u}, where Vi, Va,...,V, are the partite sets of (K, x K,)()), must be
divisible by k; so g(u—1) = 0 (mod k). Since each partial Cy-factor of (K, x K,)(\)
consists of g(u — 1) edges, the number of partial Cj-factors in (K, x K,)(\) is

u(u—1 u(u—1
)\(2 )92_ (2)92)\”(9_1)
(u—1)g 2

Hence there are precisely @ partial Ci-factors corresponding to each missing

partite set V;, i € {1,2,...,u}. O

2 Preliminaries

To prove our results we need the following:
Theorem 2.1. [2] For any odd integer t > 3, if u =t (mod 2t), then Cy||K,.

Theorem 2.2. [9] For any odd m > 3, there exists a near C,,-factorization of
Komy1(2).

Theorem 2.3. [2] Let k and t be odd integers such that 3 < k <t. Then Cy||C,® K.

Theorem 2.4. [I7] There exists a near {Cs, Cs}-factorization of K,(2) for u > 4
and u # 5, 8.

Theorem 2.5. [13] For m # 2, odd integers k > 5 and r > 3, we have Cy||Cy X K,
Ck”Kk X 05 and CTHKT X 03.

Theorem 2.6. [9] For any odd m > 3 and for any s > 0, there exists a near
Chn-factorization of Ks41(2).

Theorem 2.7. [12] The graph C,, ® K,, has a Hamilton decomposition.

Theorem 2.8. [15] If Ci||G and n|m, then Cy,||G x K,,, where m % 2 (mod 4),
when k s odd.

Theorem 2.9. [J] Let g be an even integer and let k > 15 be a divisor of g. Then
there exists a k-ARCD of K, ® K, for any u > 4.

Theorem 2.10. [J] There exists an r-ARCD of K, ® Ky, s € {r,2r}, for all odd
r > 15.

Theorem 2.11. [1()] K;;; has a Ci-factorization
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3 Basic Constructions

Theorem 3.1. ([1] Walecki’s Construction.) There exists a Hamilton cycle decom-
position of Ky for all k > 3.

Proof. We break this theorem into two cases.
Case (i): k=2t+1, t > 1.

Let V/(Kary1) = {y0, Y1, - - -, Y2} and H = (Yoy1Y2Y2eYsYor—1YaY2m—2 - - - Ye43YtYr+2Ye+1)
be the Hamilton cycle. Let o be the permutation (yo)(y1y2y3 - - - Y2t—1Y2¢). Then Hy =

H,H, =o0(H), Hy=0*(H),...,H,_; = ¢ '(H) is a Hamilton cycle decomposition
of Koq1.

Case (ii): k=2t, t > 2.

By using a similar procedure to the previous case, we can get ¢ — 1 edge disjoint
Hamilton cycles Hy = H, H, = o(H), Hy = ¢*(H), ..., H_5 = o' 2(H). The
remaining edges Yoyt, Ys—1Yi+1, Ye—2Ytt2,s - - -, Y1Yor—1 form a l-factor of K. O

Lemma 3.1. There exists a Cys-factorization of Cy x Cy, for all odd integers s, k > 3.

Proof. Let V(Ck) = {vo,y1,---,Yk—1}. Then V(Cy x Cs) =
{yl | € Z.}. Let

Y;, where Y; =

1E€ELy,

k-1 k-3

2 2
(i) €' = U Fi(Yai, Yair1) @ U Feo1(Yair1, Yaiye) and
i=0 i=0
= 52
(i) € = U Fo1(Yai, Yair1) © U Fi(Yair1, Yaira),
i=0 i=0

where the subscripts of Y are taken modulo k. One can check that both €' and €2
are Cy,-factors of C), x C. O

Lemma 3.2. There exists a Cs-factorization of Cs X Koiq, for allt > 1.

Proof. Let V(C3) = {yo,y1,y2} and V(C3 x Koi41) = Ujez,Y;, where Y; = {yzj WAS
Zori1}. Let Gy = Fi(Yo, Y1) @ Fi(Y1,Y2) ® Fop—i41(Y2,Yp), 1 < < 2t, where the
subscripts of F' are taken modulo (2¢ + 1). One can check that each G;, 1 < i < 2t,
is a Cs-factor of C3 x Ko7 and U?; G, gives a Cs-factorization of C5 X Ko [

Lemma 3.3. There exists a Cy-factorization of Cs X Ky, for all odd integers s,k
with k > s > 3.

Proof. We break this lemma into two cases.

Case (i): s=k .

Let V(Cyx) = {v0, Y1, - -, Yk—1} and V(Cy X Ky) = Ujez, Vi, where Y; = {y] | j € Z;}.
Let Gj = Ujeg, Fi(Yi,Yit1), 1 < j < k — 1, where the subscripts of Y are taken
modulo k. One can check that each G, 1 < j <k —1, is a Cyp-factor of C, x K}, and
Uf;ll G; gives a Cy-factorization of Cj x Kj.
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Case (ii): s <k
We can write
k—1
Cox Ky & Cox{CloCio--@C.? }, by Theorem B.1]
(1 .
= 8,2 (Cs x Cy)
[
~ @2 (CLx Cy). (1)
Now we consider C% x Cy = Cj, x Cy and find its Cj-factors as follows:
Let V(Ck) = {vo,¥1, .-, Y1} and V(Cx x Cy) = U, Yi, where Y; = {yf | j €

7). Let -
e S

(1) et = ZL:JO F(Y;,Yig) @ ZL:JO Foo1(Yigs g Yigs 1) and
kts_g k=s_1

D) 2
@) €= U FaiYi)® U Al Yep ),

where the subscripts of Y are taken modulo k. One can check that both @' and
©? are Cj-factors of Cy, x Cy and together give a Cy-factorization of C} x C,. Thus

each C x C has two Cy-factors and hence together they give a Cy-factorization of
Cs X Kk O

Lemma 3.4. There exists a Cy-factorization of Cy X K, for all odd integers s, k > 3.

Proof. Let V(Ck) = {yo,v1,---,Yr—1}- Then V(Cj x K,) = UieZk Y;, where Y; =
{yl |j € Zs}.
Case (i): k=s and s < k.
The proof follows from Lemma
Case (ii): s > k.
Let
b3 k=5
(1) Gi= U Fi(Ya, Yo5401) @ U Fooi(Yajpn, Yojio) ® Fi(Yia, Yi 1) ® Fy2i(Yi—1, Y0)
=0 =0
and
(2) Hi = U Fomi(Yoj, Yoj01)® U Fi(Yaji1, Yojuo) D Fs—i(Yieo, Yi1) ©F5 (Yio1, Y0),
=0 =0

where 1 <1 < % One can check that both G; and H;, 1 <i < %, are C-factors
s—1
of Cy x K. Thus |J,2, (G; ® H;) together gives a Cy-factorization of Cy x K. O

Lemma 3.5. There exists a partial Cs-factorization of K; x K.
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Proof. To prove this lemma we consider the near Cs-factorization of K;(2), which
exists by Theorem 2.2 Hence we write

K7(2) X K5 = (Go D Gl D---D GG) X K5 by Theorem
Diez, (Gi X Ks),

12

where each G; = {(x¢1; Tsyi T314), (X144 Toyi Tagi)}, @ € Z7, (where the subscripts
of = are taken modulo 7) is a near Cs-factor of K7(2).

Now we write

GZ‘XK5 = (Cg@Og)XK5
= (CgXK5)@(03XK5)

I

03 X (05 @D 05) @D Cg X (05 @D 05) by Theorem [B.1]
(03 X 05) D (03 X 05) D (03 X 05) D (03 X 05)

Il

From the proof of case (ii) of Lemma B3] each C3 x C5 (= C5 x C3) has two Cs-
factors, namely €' and €2, and hence each G; x K5 has a Cs-factorization. Now the
collection of all the C! from the Cs-factorization of each G; x K, i € Zy, together
gives two partial Cs-factors of K; x Kj; see Figures 1-4. Also, the collection of all
the €2 from the Cs-factorization of each G; x K, i € Z7, together gives another two
partial Cs-factors of K7 x Kj; see Figures 1-4.

Finally, the collection of either C! (or €?) gives the required partial Cs-factoriz-
ation of K7 x Kj; see Figure 5. O
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05 X 03 Xs ° ° ° ° °
Fig.4. Kasy1 X Ks
Fig.5.
— denotes the edge set of C! ...denotes the edge set of G2

Theorem 3.2. There exists a partial Cy-factorization of Ky X K}, for all odd k > 3.

Proof. Let V(K,) = {xq, 21, T2, x3}. The near Cs-factor G; = (214;224;734;), with
missing vertex x;, 0 < ¢ < 3, where the subscripts of x are taken modulo 4, generate
the near Cs-factorization of K4(2). Now we can write

> (CIx Kp) @@ (C3 x Ky)

I

691'623(6:@'3 X Kk)a (2>

where each €} is a near Cs-factor of K4(2). Now we consider €4 x K = C3 x Kj,
and find its Cs-factors as follows:

Case (i): k=3

By the proof of case (i) of Lemma B3] the collection of all Cs-factors of C5 x K3
generated by G (respectively, G2) together give the required partial Cs-factorization
of K4 x K3.

Case (ii) k>3

Using () of Lemma B3] we have €} x Kj, = EBE(CZ x C3), i € Z3z. By the proof of
case (i) of Lemma B3] each CJ x Cj has two Cy-factors, namely €' and €2. Now the
collection of all the €' from €4 x K}, i = 0,2, and the collection of all the €? from
€ x Ky, © = 1,3 together give a partial Cy-factorization of K, X Kj. In a similar
manner, we can also have another partial Cy-factorization of K, x K} by taking all
the €' from €4 x Ky, i = 1,3, and €? from €} X K, i = 0,2. One of the above gives
the required partial C-factorization of Ky x K. O
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Theorem 3.3. There exists a partial Cs-factorization of Ky X Ky, for all odd k > 3.

Proof. Using (2)) of Theorem B2, we have K,;(2) x Ki = @iz, (C4 x K},), where each
€%, 0 <i <3, is anear Cs-factor of K;(2). Hence we write €4 x K, = C3 x K}, and
by the proof of Lemma [B.2] the collection of all Cs-factors of C5 x K, generated by
G, 1<i< % (respectively, G, % < i <k —1) together give a required partial
Cs-factorization of K, x Kj,. O

Theorem 3.4. There exists a partial Cy-factorization of Kogy1 X Ky, for all odd
integers s, k with k > s > 3.

Proof. By Theorem 2.2 Ks,.1(2) has a near Cs-factorization. Now we write

Ko 1(2) x K, = {C°@Cla-- @ C*} x K, by Theorem 2.2

1%

@’iEZQS+1 (e?g X Kk‘)’ (3)

where each Gé, 0 < i < 2s, is a near C-factor of Kosy1(2), and each near Cs-factor
contains two cycles of length s.

Hence we write C! x K}, = 2(C, x K}) and find its Cy-factors as follows:

Case (i): s=k

By the proof of case (i) of Lemma [3.3] the collection of all Cy-factors of €L x Kj
generated by G;, 1 < | < 21 (respectively, G;, B < | < k — 1) together give a
required partial C-factorization of Kopiq X Kj.

Case (ii): s <k

By the proof of case (ii) of Lemma [B.3] the collection of all €' (respectively, €?) from
€L x K} together give a required partial Cy-factorization of Koy X K. ]

Theorem 3.5. There exists a partial Cy-factorization of Kopiq X Ky, for all odd
integers s,k > 3.

Proof. Using [3) of Theorem B3, we have Kyp11(2) X Ky = ®iez,,,, (Cf, X K,), where
each G};, 0 <1 < 2k, is a near Cy-factor of Ky y1(2), and each near Cy-factor contains
two cycles of length k.

Now we consider Gi; x Ky =2 2(Cy x Ky), and find its Cy-factors as follows:

Case (i): k =s and s < k.

The proof follows from Theorem [3.4]

Case (ii): s > k.

By the proof of case (ii) of Lemma B4l the collection of all Cy-factors of €% x K,
s—1

generated by Gy (respectively, H;), 1 < 1 < *%=, together give a required partial

C)-factorization of Kory1 X K. O

Theorem 3.6. There exists a partial Cys-factorization of Kok X Ky, for all odd
integers s, k > 3.
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Proof. Using [3) of Theorem B3, we have Kopy1(2) X Ky & @iz, ., (Cf x K;), where
each G};, 0 <1 < 2k, is a near Cy-factor of Ky y1(2), and each near Cy-factor contains
two cycles of length k.

Now we consider Ci x K, = 2(Cy x Kj), and find its Cys-factors as follows:
s—1

By using (I) of Lemma B3] we can write Cj, x K, = @;2,(Cy x C{). By the
proof of Lemma B} each Cy x €7 (= C), x C) has two Cj,-factors, namely €' and
©2. Now the collection of all the €' from Ci x Cy together gives a required partial
Cs-factorization of Koy X K. Similarly, the collection of all the €2 from GZ x C
together also gives another partial Cys-factorization of Koryq X K. O

Construction 1. If there exists a near 2-factorization of K,(2) (a near 2-factor F
can contain different cycle lengths with V(F') = u — 1, and the set of cycle lengths is
denoted by J), a Ci-factorization of Cy x K., a Cy-factorization of Cy ® Ky and a
Cy-factorization of Cy X Ky, for anyt € J, then there exists a partial Cy-factorization
of (Ky X Kiz)(2).

4 k-ARCD of (K, x K,)(\)

In this section we investigate the existence of a k-ARCD of the tensor product of
complete graphs with edge multiplicity .

Theorem 4.1. For all odd k > 5, u > 4 and g =0 (mod k), there exists a k-ARCD
of (Ku x K,)(2), except possibly when (u, g) € {(u, kx), (5,9) | =2 (mod 4)}.

Proof. Let g = kx, where x > 1.

By Theorems 24 and 26| let F = {Fy, F5, ..., F,_1} be the near 2-factorization
of K,(2) (each near 2-factor F;, 0 < ¢ < u — 1, may contain different cycle lengths
with V(F;) = u — 1, and the set of all of cycle lengths is denoted by J = {3,5,7}).
A Cy-factorization of C; x K, and a Cj-factorization C; ® K}, for any ¢t € J, can
be obtained by Theorems 2.8 and 2.3 respectively. Furthermore, C; x K has a
Ci-factorization by Theorem and Lemma B3 Then by using construction [I]
we get a required partial Cy-factorization of (K, x K,)(2). Therefore a k-ARCD of
(K, x K;)(2) exists. O

Theorem 4.2. For all odd integers s,k with 3 < s < k, u = 2s+ 1 and g =
k (mod 2k), there exists a k-ARCD of K,, x K.

Proof. Let g = k(2t+ 1), t > 1. We can write

Ky x Ky = Ky X Kiaern)
{(Kas1 X Kap1) ® Ki} @ (28 + 1)(Kas41 X K). (4)

I

The right-hand side of (@] can be obtained by making 2¢ + 1 holes of type Kasi1 X
K}, and identifying each k-subset of Kj1y (in the resulting graph) into a single
vertex, with two of them being adjacent if the corresponding k-subsets form a K j
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in Kogp1 X Kyey1)- The resulting graph is isomorphic to Koy X Ky11. Expand the
identified vertices into k-subsets and two k-subsets, to form a K}, whenever their
corresponding vertices are adjacent in Kos11 X Ko q. Thus the resulting expanded
graph will be isomorphic to the first graph of ().

Now we construct the partial Cy-factors of the right-hand side of (@) as follows:

Consider  (Kaey1 X Koyy1) @ K = {C?@ .- @ C*} ® K}, by Theorem
> (Cl@Ky) @ @ (CF @ Ky)

I

@i6225+1 (eé ® Kk)

Note that each Gi,, 0 <1 < 2s, contains ¢ partial Cs-factors of Kogiq X Koy, and
each partial C,-factor contains 2(2¢+1) cycles of length s. Hence we write C! ® K, =
t{2(2t +1)(Cs; ® K})} and by Theorem 3] each Cy ® K} has k Cy-factors. Thus we
have obtained kt partial Cy-factors of (Kasi1 X Kopi1) ® K, corresponding to each
€ ® K. When i varies, we get (2s+ 1)kt partial Cj-factors of (Kasy1 X Kopq1) @ K.

Furthermore, by Theorem B4 the second graph (2t + 1)(Kss11 X Kj) has
(2s+ 1)% partial C-factors. Finally, the partial Cy-factors of the two graphs of the
right-hand side of (#]) obtained above together give a required partial Cy-factorization
of K23+1 X Kk;(2t+1) = Ku X Kg. ]

Theorem 4.3. For all odd integers v,k with 15 <r <k, u =4(s+ 1), s € {r,2r}
and g = k (mod 2k), there exists a k-ARCD of K, x K,.
Proof. Let g = k(2t+ 1), t > 1. We can write

Ku X Kg K4(5+1) X Kg
{(Ks1 ® Kq) @ (s + 1)Ky} x K,

{(Kop1 ® Ky) x K} @ (s + 1) (K3 x K,). ()

I

12

Now we construct the partial Cy-factors of the right-hand side of (Bl as follows:

Consider (Ken @ Ky) x K, 2 {C&---® €} x K,, by Theorem 210
= (eg XKg)@"'@(ei XKg)

1%

@z‘ezsﬂ(ei x Kg).
We know that el x K, el x Kit41), © € g1

4
2{78(@ X Ki(ae41)) }

12

I

where each €L, 0 < i < s, contains two partial C,-factors of K, ® K, in which
each partial C,-factor contains 4s/r cycles of length r.

We Write OT‘ X Kk(2t+l) = CT’ X {K2t+1 ® Kk; @ (2t + 1)Kk;}
((C, X Koi1) ® Ky} @ (2t + 1)(Cy x Ky). (6)

I

By applying a similar procedure to (@) we get the right-hand side of (@). By The-

orems and 23, (C, x Kyy1) ® K, has % Cy-factors of C, X Kyoip1y). By
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TheorernBEL (2t4+1)(C, x K},) has (k—1) Cj-factors of C, X Kjg41). Put together

we get (g Ck factors of C) x Kji41)- Thus we have obtained —) partial Cl-
factors of (KS+1 ® K4) x K, corresponding to each missing partite set of size 4g which
makes a hole Ky x K, of Ku x K . Note that corresponding to each partite set of
(Ksp1® Ky) x K, we have a hole K4 x K, of K, x K, in (B). To complete the proof,
it is enough to find the partial C-factors of the hole K4 x K, corresponding to the
missing partite set, and this put together to get the required partial Cj-factors of
K, x K,.

Now consider the second graph of (), that is,

I

Ky x K, Ky X Ky
K4 X {KQtJrl X Kk ©® (2t + 1)Kk}

{(Ky x Ko1) @ K} @ (2t + 1) (K4 x Ky). (7)

l12

12

By applying a similar procedure to (4]) we get the right-hand side of (7).
Now we construct the partial C- factors of the right-hand side of () as follows:

By Theorem B3, K4 x Ko 1 has 2 4@ Y partial Cs-factors, and by T heorern 2111
each C5 ® K, (=2 Ky px) has k Cy- factors Thus we have obtained 22 partlal Ch-
factors of K, x K,, corresponding to the first graph (Kj x Kay1) ® K. Furthermore

by Theorem B.2] (2t + 1)(K, x Kj) has —) partial Cj-factors of Ky x K,. Put
( 1)

together, we have partial Cy-factors of K 14X K. Finally, the combination of the

4(9 D, partial Cl- factors of the first graph of the right-hand side of (&) corresponds

4(g D) partial Cy-factors of the hole

K, x K4, which correspond to that missing partlte set, together gives Alg— 5 D, partial
Cy-factors of K, x K,. Repeat the process s+1 times (as there are s+ 1 holes) to get
4(s + 1)E2 partial C’k factors of K, x K,. Thus a k-ARCD of K, x K, exists. [

Theorem 4.4. For all odd k > 5, u =1 (mod k) and g > 3, there exists a k-ARCD
of (Ku x K,)(2).

to one missing partite set of size 4¢g and the

Proof. Let u=kx + 1, x > 1. We can write

(K, x K,)(2) = K,(2)x K,
~ Qo @ - @€Y x K,, by Theorem
= (@2XKg)@(@iXKg)@“'@(ezflXKg)

12

®i€Zu (e;’u‘ X Kg)a

where each 82, 0 <i < wu-—1isanear Cy-factor of K,(2), and each near Cy-factor
contains z cycles of length k. Hence we write Cf, x K, = 2(Cj x K,). By Theorem 2.5,
each Oy x K, has g — 1 Cj-factors. The collection of all Cj-factors from GZ x K,
together gives some partial Cy-factors of (K, x K,)(2). Thus, in total, we get u(g—1)
partial Cy-factors of (K, x K;)(2). Therefore a k-ARCD of ( x K,)(2) exists. O

Theorem 4.5. For allu = 2k+1, with odd integers k,g > 3, there exists a k-ARCD
of K, x K.
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Proof. The proof follows from Theorem [B.5l O

Theorem 4.6. For all uw = 2kx + 1, with odd integers k and g with k > 5, g > 3,
and for x > 4, there exists a k-ARCD of K, x K.

Proof. Given that u = 2kx + 1 and g > 3 is odd, where x > 4, we can write

Kopei1 x Ky 2 {(K, ® Kot) ® 2 Kopi1} X K, (8)
= {(K: ®@ Ko) x Ky} @ 2(Kogia X Ky). 9)

The right-hand side of (§)) can be obtained by making x holes of type Ko in Kogpi1
and adjoining the omitted vertex, say oo, to each hole Ky to get x copies of Kopiq.

Now we construct the partial Cy-factors of the right-hand side of () as follows.
Consider

I

K, ® Ko) x K, @@l x K,, by Theorem 20 10
g k k g

= (62 X Kg)@"’@(eiil x Kg),

where each €, 0 < i < x — 1, contains % partial Cy-factors of (K, ® Ky;), and each
partial Cy-factor contains 2(z — 1) cycles of length k. Hence we write Cf x K, =
Z{2(z—1)(Cy x Ky)} and each Cj, x K, has g — 1 Cj-factors by Theorem Thus

we have obtained 2 (g D, partial Cy-factors of (K, ® Ka,) X K, corresponding to each
missing partite set of size 2kg which makes a hole K41 X K, of K, X K,. Note that
corresponding to each partite set of (K, ® Ka,) x K, we have a hole K2k+1 x K, of
K, x K, in ([@). To complete the proof, it is enough to find the partial Cj-factors
of the hole K11 x K, corresponding to the missing partite set and put together to
get the required partial Cy-factors of K, x K.

By Theorem[.5], K41 X% K, has 2k(g L) partlal C-factors with missing partite sets
corresponding to the vertices of Ky and L partial C-factors with missing partite
set corresponding to the vertex oo. The combmatlon of the %(g L partial C-factors
of (K, ® Ky,) x K, corresponding to one missing partite set of size 2kg together with

Qk(g D partial Cj-factors of Ky;q1 X K,, which correspond to that missing partite

set of (K, ® Ko) x K,, gives Qk(g D partlal Cy-factors of Kopui1 X K. As there
are r holes, repeating the above process x times, We get M partial C-factors
of Kopzy1 X K. Further, the collection of all 4= partlal C’k factors of each of the
x copies of K2k+1 x K, with missing partite set that corresponds to the vertex oo,
together gives %5~ partlal Ci-factors of Koy i1 X K. Therefore a k-ARCD of K, x K,

exists. D

Theorem 4.7. Let k = q1q2...qx > 9 be odd, where q1,q2,...,qx > 3 are odd
and not necessarily distinct. If u = 1 (mod q1q2...¢;) and g = (Git1Giv2 - - - Q)Y,
1 < i < k—1, then there exists a k-ARCD of (K, x K;)(2), except possibly when
y =2 (mod 4).
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Proof. Let u =mxz+1, g=ny and k = mn where m = ¢q1¢2 ... ¢;, " = ¢;11Qi12 - - - Gk,
and x,y > 1. We can write

1%

(Ku X Kg)(2) Kmx+1(2) X Ky
{C ®C, ® - ®CIY} x Ky
(egn X Kny) DD (@ﬁx X Kny)

@jEZmz+1 (ein X Kny)a

11l

I

where each €/ 0 < j < mua, is a near C,,-factor of K,,,;1(2), and each near C,,-
factor contains x cycles of length m. Hence we write €/ x K,y = 2(C,, x K,,) and
by applying a similar procedure to (@) we get the following:

2

Co X Kpy 2 Cp x {(K, ® K,,) ®yK,}
~ {(Cnx K,)®K,} ®y(Cpn x K,,). (11)

By Theorem 2.8, C,, x K, has (y—1) C,,-factors, and C,, ® K,, has n C,,,-factors by
Theorem 2.7l Thus we have obtained n(y—1) C,,,-factors of C,, x K, corresponding
to the first graph (C,,, x K,,)® K,,. Furthermore, by Theorem Bl y(C,, x K,,) has n—1
Crun-factors. Finally, the C,,,-factors of the two graphs of the right-hand side of (L))
together give (ny — 1) Cy,,-factors of C,, x K,,,. The collection of all C,,,-factors of
€7 x K,, together gives a required partial C,,,-factorzation of (K, x K,)(2). O

Theorem 4.8. Let k = q1q2...qx > 9 be odd, where q1,q2,...,qx > 3 are odd
and not necessarily distinct. If uw = 2(qiqa...q) + 1 and g = (¢i+1Giz2 - - - k)
(mod 2¢i41Git2---qr), 1 <1 <k —1, then there exists a k-ARCD of K, x K,.

Proof. Let u =2m + 1, g = (2x + 1)n, and k = mn, where m = q1q2...q;, n =
Gi+1Giv2 - - - Qk, and x > 1. We can write

Koms1 X Kiggyiyn = {(HKomer X Kopy1) ® K.} & (22 + 1) (Kom1 x K,). (12)

By applying a similar procedure to (4]) we get the right-hand side of (I2I).

We construct a partial C,,,,-factorization of the right-hand side of (I2)) as follows.
First we consider

(Koms1 X Kopy1) @ K, = {C), @®---® €'} ® K,,, by Theorems
~ QKD @ C"eK,)

1%

@iEZQmH (ein ® Kn)’

where each G{m 0 < j < 2m, contains x partial C,,-factors of Ky,,11 X Koz1q, in
which each partial C,,-factor contains 2(2z + 1) cycles of length m. Hence we write
€ x K, = 2{2(22+1)(C,, ® K,)}, and by Theorem 2.7, each C,, ® K,, has n C,,-
factors. Thus we have obtained xn partial Cp,-factors of (Kopi1 X Kopi1) @ K,
corresponding to one missing partite set of size (2x + 1)n. By taking the union of
all partial C,,,-factors corresponding to all the missing partite sets together gives
(2m + 1)an partial C,,,-factors of (Kapi1 X Kopy1) @ K.
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Furthermore, by Theorem we get an partial C),,,-factors of the second graph
(22 4+ 1)(Kapme1 X K,,) corresponding to one missing partite set. Taking the union of
all the partial C’mn—factors together corresponding to all the missing partite sets, we
get (2m + 1)252 partial Cynp-factors of (2z + 1)(Kami1 X K,,). Finally, the partial
Chn-factors of the two graphs of the right-hand side of (I2]) obtained above together
gives a required partial Cy,,-factorization of K, x K,. O

Theorem 4.9. Let k = q1q2...qx > 45 be odd, where qi,q2,...,q > 15, ¢ii1, Givo,

cQr >3 and q,qa, - - ., q are odd and not necessarily distinct. Ifu = 2(qiqo . . . q;)x
+1, where x > 4, and g = (¢ix1Giz2 - - - qx) (mod 2¢i11Giz2 - - - qx), 1 <i < k—1, then
there exists a k-ARCD of K, x K.

Proof. Let uw =2mxz+1, g = (2y+1)n and k = mn > 45, where m = q1qs . .. ¢; > 15,
n = qit1Gi+2 - --qx > 3, and x > 4, y > 1. By using (), we can write

I

KszJrl X Kg {(Kz ® K2m) EB xK2m+1} X Kg (13>

> (K, ® Kop) X K;} @ 2(Komi1 x K,). (14)

Now, we construct the partial C,,,-factors of the right-hand side of (I4)) as follows.
First we consider

I

(K, ® Kop) x K, =2 {C @---@®Co '} x K, by Theorem 2.7
(egn X Kg) G- (efr:l X Kg)
Brez, (G X Ky) (15)

I

I

where each Gl ,0<1<2x—1, contains 22 5 partial Cy-factors of K, ® Ks,,, and each
partial C’k—factor contains 2(:10 - 1) cycles of length k. Hence we write C! x K, =

27771{2(1. - 1)(Cm X K(2y+1)n)}-
g—1
Com X Koyt = Cp X {Cl®---®C,” }, by Theorem 21]

(Cpy x CH @ @(CWXCZ%I)
mecg; = (2y+1)(Cy, ><C)

1%

where each C/, 1 < 7 < £=is a C,-factor of K (2y4+1)n, and each C,-factor contains
2y + 1) Cycles of length n By Theorem B, each C,, x C,, has two C,,, factors.
Thus we have obtained 7) partial C,,,-factors of (K, ®K'2m) x K, corresponding
to one missing partite set of size 2mg which makes a hole Ky,,,11 X K, of K, x K,.
Note that corresponding to each partite set of (K, ® Ka,) x K, we have a hole
Ko X K, of K, x K, in (I4)). To complete the proof, it is enough to find the
partial Cy,,-factors of the hole Ky,,1 X K, corresponding to the missing partite set
and put together to get the required partial C,,,-factors of K, x K.

Now we consider

Komp1 X Ky = Koy X Kiyyiyn
{(FKomy1 X Koy1) @ K} & 2y + 1) (Kopgr x Ky,)  (16)

I
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By Theorems and 27, (K1 X Koy1) ® K, has 2m(yn) partial C,,,-factors
with missing partite sets corresponding to the vertices of K5, and yn partial C,,,-
factors with missing partite sets corresponding to the vertex oo. Furthermore, by
Theorem 3.6, (2y + 1)(Kam41 X K,,) has (2m)(252) partial Cy,,-factors with missing
partite sets corresponding to the vertices of Ks,,, and ”T’l partial C,,,-factors with
missing partite sets corresponding to the vertex co. Adding all the partial C,,,-
factors of the two graphs in the right-hand side of ([I6]), we get % partial
Cn-factors of Kopq1 x K, with missing partite sets corresponding to the vertices
of Ky,,, and % partial C,,,-factors with missing partite sets corresponding to the

vertex oo.

Finally, the combination of W partial C,,,-factors of (K, ® K. om) X K, corre-
sponding to the one missing partite set of size 2mg, together with the w partial
Cn-factors of Kopq1 x K, with missing partite sets corresponding to the vertices

of Ky,,, gives %fl)

partial Cy,,-factors of Kopgi1 X K,y As there are x holes,
repeat the process x times, and we get W partial C,,,-factors of K, x K,.
Furthermore, the collection of all 9%1 partial C,,,-factors of each of the x copies of
Ko x Ky with missing partite set corresponding to the vertex oo, together gives

% partial Cy,,-factors of Kopy11 X K. Therefore a k-ARCD of K, x K exists. [

Theorem 4.10. For all odd k > 15, there exists a k-ARCD of (K, x K,)(X\) if
and only if u >4, g > 3, M(g —1) = 0 (mod 2), g(u —1) = 0 (mod k), except
possibly for (A, u,g) € {(2m,u, kz),(2m,5,9) | © = 2 (mod 4) and m > 1}, and
(Au) € {(2m+1,{16,2r + 1,4(2s + 1), 4t + 2, kx + 1}) | = € {2t + 1,4,6}, m,t >
0, for even r,s and odd s < 15}.

Proof. Necessity follows from Theorem [Tl Sufficiency can be divided into two cases.

Case (i): When A = 1, the values of u and ¢ fall into one of the following cases:

(a) u=2s+1, g =k (mod 2k), where s > 3 is odd and s < k;

(b) u=4(s+1), s € {r,2r}, g = k (mod 2k), where r, k > 15 are odd integers and
r <k

(¢) u=2k+1, and g > 3 is odd;

(d) u=2kzx+1,x>4and g > 3 is odd.

Case (ii): When A = 2, the values of u and ¢ fall into one of the following cases:

() u>4,u#5and g =0 (mod k);
(f) u=kzr+1,2>1and g > 3.

The proofs for (a), (b), (c), (d), (e), and (f) follow from Theorems .2, 43| F.5] .6
A1 and @4 respectively. If A > 2 is even (respectively, odd), then the values for u
and ¢ are the same as in cases (i) and (ii) (respectively, case (i)). Hence a k-ARCD
of (K, x K,)(\) exists. O
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Theorem 4.11. Let k = q1q2...qx > 9 be odd, where q1,q2,...,q > 3 are odd
integers and not necessarily distinct. There exists a k-ARCD of (K, x K,;)(A) if and
onlyifu>4,9>3, AMg—1) =0 (mod 2), g(u—1) =0 (mod k), ezxcept possibly for
(N u,g,k) € {2m,rx+ 1,sy,rs) |m >1,y =2 (mod 4)} and (\,u,g,k) € {(2m +
Lire+1,s(2t+1),rs), 2m+1,u,g,n) | x €{4,6,2t+1},m,t > 0,n < 45 is odd}.

Proof. Necessity follows from Theorem [[LI. We prove the sufficiency as follows:

The values of u, g and A fall into one of the following cases:

(a) u=2(qqz2...¢)+1, 9 = (¢i+1Gi+2 - - - qx) (mod Gi1Giv2 ... qr), 1 <1 <k —1,
when \ = 1;

(b) u=2(qq2--.q:)x+ 1, g = (¢is1Gir2 - - - @) (mod Gi11Giva - qr), 1 <i <k —1
for any x > 4 and k > 45, when A = 1;
(¢) u=1(mod q1q2...¢;), g =0 (mod ¢ 11¢ivo ... qr), 1 <i < k—1, when \ = 2.

The proofs for (a), (b), and (c¢) follow from Theorems 4.8 9] and 7] respectively.
If A > 2 is even (respectively, odd), the values for u and g are the same as in (a), (b),
and (c) (respectively, (a) and (b)). Hence a k-ARCD of (K, x K )()) exists. O

5 Conclusion

In this paper, we have established the existence of a k-ARCD of (K, x K,)(A), for all
odd k > 15 with a few possible exceptions. Our results also provide a partial solution
to the existence of modified cycle frames of complete multipartite multigraphs.
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