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Abstract

The complete 3-uniform hypergraph K9 is a simple 3-uniform hyper-
graph with vertex set V having order |V| = n, and the set of all 3-subsets
of Vasits edge set. A t-cycle in this hypergraph is vy, e1, va, €a, ..., v, €4, U1
where vy, v, . .., v; are distinct vertices and ey, es, . . ., e; are distinct edges
such that v;,v;41 € e; for i € {1,2,...,t — 1} and v, v, € €;. A decom-
position of a hypergraph is a partition of its edge set into edge-disjoint
subsets. In this paper, we prove the existence of a t-cycle decomposi-
tion of K\ for values of ¢ = 2 or 4 (mod 6) that satisfy the divisibility
condition t|(n — 2) or t|n or 2t|(n — 1). Using this, we characterize the
existence of a decomposition of K into 2¢-cycles, where ¢ > 2 is a pos-
itive integer. Consequently, the main result of the paper by Jordan and
Newkirk [Australas. J. Combin. 71(2) (2018), 312-323] is a corollary.

1 Introduction

A hypergraph H consists of a finite nonempty set V' of wvertices and a set £ =
{e1,ea,..., ey} of edges where each e; C V with |e;] > 0 for i € {1,2,...,m}.
If |e;| = h, then we call e; an h-edge. If every edge of H is an h-edge for some h,
then we say that H is h-uniform. The complete h-uniform hypergraph K is the
hypergraph with vertex set V', where |V| = n, in which every h-subset of V' deter-
mines an h-edge. It then follows that K has (Z) edges. When h = 2, K9P = K,,
the complete graph on n vertices.

A decomposition of a hypergraph H is a set F = {Fy, Fa,..., Fr} of subhyper-
graphs of H such that E(F) UE(Fy)U---UE(Fy) = E(H) and E(F;) NE(F;) =0
for all 4,5 € {1,2,...,k} with i # j. We denote thisby H = F1 & Fo & --- § Fy.
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I

fH=F &F®d- & Fis a decomposition such that F; = Fo = --- = F;
where G is a fixed hypergraph, then F is called a G-decomposition of H.

g,

A cycle of length ¢ in a hypergraph H is a sequence of the form vy, eq,vo, €9, ...,
U, €4, V1, Where vy, v, ..., v; are distinct vertices and eq, eq, ..., e; are distinct edges
satisfying v;, v;41 € €; for i € {1,2,...,t — 1} and vy, v € €.

Decompositions of K'Y into Hamilton cycles were considered in [1, 2] and the
proof of their existence was given in [10]. Decompositions of K into Hamilton
cycles were considered in [5, 8], a complete solution for h > 4 and n > 30 was given
in [5], and cyclic decompositions were considered in [8]. In [3], necessary and suffi-
cient conditions were given for a G-decomposition of K,(f’), where G is any 3-uniform
hypergraph with at most three edges and at most six vertices. In [4], decompositions
of K into 4-cycles were considered and their existence was established. In [7],
decompositions of K into 6-cycles were considered and their existence was given.
In [6], decompositions of K into p-cycles were considered and their existence was
given, whenever p is prime.

In this paper, we are interested in the following problem.

Problem 1.1. Given a positive integer n > 3, find all positive integers £ > 2, such
that there exists a 2°-cycle decomposition of K,

For any positive integer ¢ > 3, a necessary condition for the existence of a t-cycle
decomposition of K is: t divides the number of edges in KY(LB), that is, | (g)

In this paper, we consider values of ¢t = 2 or 4 (mod 6) and we prove the existence
of a t-cycle decomposition in the following three special cases: (i) t|(n — 2); (ii) t|n;
(iii) 2t|(n — 1).

By the assumption on ¢, we have: ¢t # 0 (mod 3), both n and n — 2 are even in

n—1

cases (i) and (ii), and ¢|"5* in case (iii). Thus, we have t|(3).

The main result of this paper is stated below and is proved in Section 3.

Theorem 1.1. Ift > 4 is an integer with t = 2 or 4 (mod 6) and n is congruent to
0 (mod t), 2 (mod t) or 1 (mod 2t), then K has a t-cycle decomposition.

2 Tools

In this section, we prove some results which are required to prove Theorem 1.1.

We will assume the vertex set of K.Y is {vi :i € Z,}, where Z,, is the set of
integers modulo n. For non-negative integers ¢ and j with ¢ < j, we denote the set
{vi, vit1,...,v;} by [v;,v;], and the set {i,7+1,...,5} by [4, j].

For convenience, we will often write the edge {vg, vy, v.} as v,-vp-v. and the t-cycle
V1, €1, Vg, €2, ..., U, €, U1 &S (V1-Y1-V2, Vo-Ya-V3, . . . , U=Yy=V1 ), Where e; = v;-y;-v;41 for
ie{l,2,...,t— 1} and e; = v-y;-vy.
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2.1 The hypergraph Z;fg,r

Define the 3-uniform hypergraph Z5,. of order p+ ¢+ r as follows: V( o r) = {v;
i € Lprgir} grouped as Go = [vo, Up—1], G1 = [Up, Upig—1] and G2 = [Upiq, Uptgtr—1]
and let &( pqr) be the set of all 3-edges v,-vp-v. such that v, € Gg, v, € G; and
ve € Go. Note that |E(Z pq)r)\ = pqr. A necessary condition for the existence of a
t-cycle decomposition of Zlg,w is that ¢|pgr.

Lemma 2.1. Ift > 4 is an even integer, then Zf;f),t admits a t-cycle decomposition.

To prove this lemma, we need the following theorem.

Theorem 2.1. [9]. Let Pyy1 be the path of length k, and let k,m,n € N with m,n
even and m > n. The complete bipartite graph K,, , has a Pyi1-decomposition if and
only if m > [E:], n > [£] and mn =0 (mod k).

. Proof of Lemma 2.1. Consider the complete bipartite graph K ; with bipartition
([v1,v¢], [Vt41, v2]). By Theorem 2.1, we have a decomposition, say .#, of K, into
paths of length ¢. For each path (x1, s, ...,z x441) of length ¢t in %, consider the
corresponding t-cycle of the form

(Uo-xl-«?ﬁz, Lo-Vp-T3, T3-Vp-T4, T4-Vg — Tp, ..., Tt—1-Vo~Tt, xr»’UHl-’Uo)
(3)

in Zﬁ{t. This collection of ¢-cycles yields a decomposition of Z;;, into t-cycles. 0O

Corollary 2.1. Ift > 4 s an even integer and if p > 1 is an integer, then Zst)?t

decomposes into t-cycles. In particular, if t > 4 is an even integer, then Zt(i?t decom-
poses into t-cycles.

Proof. We may think of Z; 8 )t as an edge-disjoint union of p copies of tht Apply
Lemma 2.1 to each one of these P copies. a

(3)

Lemma 2.2. Ift >4 is an even integer, then Z)'y, 5, decomposes into t-cycles.

Proof. To see this, we write thgt as an edge-disjoint union of four copies of Zﬁ)’t

with vertex set grouped into

(GO,G1,G2) ({Uo} [U1,U] [U2t+1,v3t]),

(Go,Gl, 2) = ({Uo} [Ul ][U3t+1av4t])a

(Go, G1,G2) = ({vo}, [Ver1, var), [Vae1, v3e]),
[

(G0>G17G2) = ({Uo} Ut+1,U2t] [U3t+1,v4t]),

for the first, second, third and fourth copy respectively. Now apply Lemma 2.1 to
each copy of Z{i‘/),t‘ a

Lemma 2.3. Ift > 4 is an even integer and if p > 1 is an integer, then Zzg)t,%

decomposes into t-cycles. In particular, if t > 4 is an even integer, then Zéi)%’%
decomposes into t-cycles.

Proof. We may think of Z ( Q)t 2 as an edge-disjoint union of p copies of Z1 o2t Apply
Lemma 2.1 to each one of these P copies. a
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2.2 The hypergraph Kr(,f)n

Define the 3-uniform hypergraph K., of order m + n as follows. Let V(K%),) =

{vi 1 € Zpmin}, grouped as Gy = [vg, Uyp—1] and G1 = [V, Umin—1]. Let E(K,gf’)n) be
the set of all 3-edges v,-vp-v. such that v,, v, and v, are not all from the same set G;,
i € {0,1}: that is, for each i € {0,1}, {va, vy, 0.} N G % 0. Note that |E(K),)

mn(m+n—2)

A necessary condition for the existence of a t-cycle decomposition of
K%, is that 2t|mn(m +n — 2).

Lemma 2.4. Ift > 4 is an even integer, then th decomposes into t-cycles.

Proof. Consider the hypergraph th (respectively, its spanning subhypergraph

ngt)t) with vertex set [vg, vy] which is grouped into {vg} and [vy, ve] (respectively,
{vo}, [v1,v¢] and [v41, v9]). For convenience, relabel the vertices v; and vy, @ € [1,¢]
by x;_1 and y;_1, respectively. The subscripts of the vertices = and y are taken mod-
ulo t.

Consider the complete bipartite graph K, with bipartition ([xo, z:—1], [yo, Yt—1])-
Let

P = ($0>yt—1, L1y Yt—2, L2 Yt=3, - - s YLy, TL 9, YLi1, UL 1, y%,xé).

(Observe that, if we denote the length of the edge z;y; as (j — i) (mod t), then
the lengths of the edges of P° in order are: t — 1,t —2,¢t —3,...,1,0.) Let .% =
{P° P, P2 ... P71} where for each i € [1,t — 1], P’ is obtained from P! by
adding 1 and reducing the subscripts modulo ¢ in each of the vertices of P*~!. By
the above observation, .# is a decomposition of K;; into paths of length t.

Using P, obtain a t-cycle C° in Zf;f),t as shown below:

Cc’ = (Vo-To-Yt-1, Ye—1-V0-T1, T1-Vo-Yi—2, Yr—2-V0-T2, To-Vo-Yt—3, -- -,
YtyporUomlt 9, Tt _o- Vo Ytyy, Yti1-VoTt 1, Tt _1~Vo-Yt, y%—x%—vo).
Similarly, for each i € [1,¢ — 1], using P, obtain a t-cycle C* in Zﬁ),t' As F is
a decomposition of K;; into paths of length ¢, {C° C', C? ..., C* '} is a t-cycle

decomposition of ngt)t

As Z{?t),t is a spanning subhypergraph of K gt’ to find a t-cycle decomposition of
-1
K gt, it is enough to find a t-cycle decomposition of K fBQ)t \E(Y ).
i=1
Consider two disjoint copies of K;, say K, and K, , with vertex sets [z, z;_1] and
[Yo, Yi_1], respectively. As t is even, each of K; and K;/ is Hamilton path decompos-
able. For i € [1, 1], let
Pil = (Tim1, T, Timg, Tig1, Tim3, Tiga, - - - y L1t TEo24ir T4 95%71“')

2 _
and P = (yiflayiayi727yi+17yi737yi+27"'7y%+1+z‘7y%—Q—f—iay%-‘,—z‘ay%—l—i—i)'
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Then, clearly, {P : i € [1,£]} and {P? : i € [1,£]} are, respectively, decompositions
of K, and K, into paths of length ¢ — 1.
For each i € [1, 5], let

Pi = (xzel-’Uo-ﬂUz', Ti-Vo-Ti—2, Li—2-V0~Tit+1, Li+1-V0-Ti—3, Ti—3-Vo-Ti+2,

cry TE 1m0 TL o4y U UL 947 V0 T L 445 $%+i‘U0‘fE%—1+z‘)

PZ‘ = (yifl"UO‘yia Yi-V0~Yi—2, Yi—2-V0~Yi+1, Yi+1-V0~Yi—-3, Yi—3-V0~Yi+2,

YUY gy VLo V0YE 1y Yb i U0YE 144)s

where P, and P, are paths of length ¢ — 1 in K {32)25 obtained from P! and P?, respec-
tively. This results in a decomposition {P;, P; : i € [1, L]} of K%)t \&(CuCctu
.-+ U C* 1) into paths of length ¢ — 1.

Consider P;. By rewriting the last edge Tiq-Vo-T of P, as Tt 1=T1-Vo and
adding, at the end, the first edge vo-zo-1:—1 = vo-y:_1-To of C°, we obtain the t-cycle

/

C, = ($0-Uo—$1, T1-V9-Tt—1, Lt—1-Vp-T2, T2-Vo-Tt—2, Lt—2-Vo-T3,

ceey XLyo Vo lL gy UL _17Vo~TLyy, TLiq~TL-Vo, Vo-Yt—1-T0).-

Now consider PZ-/, for ¢ # 1. By rewriting the last edge TtV TL 14y of Pi/ as Tt -
Tty and adding, at the end, the (2i — 1)St edge x;_1-Vo-Yi—; = Vo-Ys_i-T;_1 Of
C°, we obtain the t-cycle

/

CZ- = (xzel-’Uo-ﬂUz', Ti-Vo-Ti—2, Li—2-V0~Tit+1, Li+1-V0~Ti—3, Ti—3-Vo~Ti+2,

co TLp V0T L o4y TLo94imU0 Ly, TLyimTL 1447V0, V0-Yt—i-Ti-1)-

Similarly, by rewriting the first edge yo-vo-y1 of P, as vp-yo-y1 and adding, at the
end, the ¢th edge Y- 1= of CY, we obtain the t-cycle

1

Cl = (UO'yO'yla Y1-Vo-Yt—1, Yt—1-V0-Y2, Y2-Vo-Yt—2, Yt—2-V0-Y3,

. t -Uo-Yt t -Vo-Yt t -Up-Yt t=-Tt-VUp);
yYiypo VoYL 1y Yt 17V0"YL i1, Yii17VoYL, Yi-Tt 0);

and, for i # 1, by rewriting the first edge y;_1-vo-y; of P, as vg-y;_1-y; and adding,

at the end, the (¢t — 2i + 2)2d edge, ie., the 205 —i + 1)St edge, Yo (L —144)"V0"

Tt = YL 14V TL i1 = YL 14 TL 41700 of CY, we obtain the t-cycle

CZ- = (UO‘yi—l‘yia Yi-Vo-Yi—2, Yi—2-V0-Yi+1, Yi+1-V0~Yi—3, Yi—3-Vo-Yi+2,

co Y147 V07Y L ogs Y247 V07Y L iy YL itV0TYL 14 y%71+i_'%’%7i+1_1}0)'

The collection of these t-cycles {C’Z' A= [1’%]} U {C’: i e [17%]} vields a
decomposition of th \E(C'UC?U---UCH. -
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Lemma 2.5. Ift > 4 is an even integer, then KQ(i) decomposes into t-cycles.

Proof. Consider K;i) where its vertex set is grouped into {vg, v;} and [vg, v441]. For
convenience, relabel the vertex v;, i € [2,t + 1], by u;_o, where the subscripts of u
are taken modulo ¢t. The complete graph K; with vertex set [ug,u;_1] is Hamilton
path decomposable, because ¢ is even. Let {P; : j € [0, 5 — 1]} be the Hamilton path
decomposition of K;, where

P; = (uja ULty Ut—1js Uiy Up—2455 Uy - -5 UL yog s UL 145 Uty g, u§+j)-

For each j € [0, £ — 1], using P;, obtain the paths

Pjo = (Uj‘UO‘UH-ja UT45=V0-Ut—1455 Ut—145-V0~U24-5, U245-V0-Ut—2+45, Ut—245-V0-U345,
o Ud o U0 UL 1 Ul 14007 UL 14 Ut 1 V0-UL )
and
le = (Ujv1-U14j, =01 U 14j, Up14j-V1-U2tj, Untj=U1-Ut 24,
Ut—24j7V17UB 45 - - o5 Ul VI UL 14 UL 145 U1 UL 41455 “§+1+j‘vl‘“§+j)
of length t—1in K2t This results in the decomposition {P} : j € [0, 5 — 1]} U{P} :
jel0,t=1]} o fK2 \ {vo-v1-u; : j € [0,¢ — 1]} into paths of length t— 1.

Cons1der P]-O. By rewriting the last edge Ut 14 V0-UL 4 of P]-O as Uty 5-Ut U0
and adding, at the end, the edge vy-vi-u;, we obtain the t-cycle

0 _
Cj = (Uj-’Uo-UHj, U45=Vo~Ut—145, Ut—145-V0~ U245, U24jV0~Ut—24 5, Ut—245-Vo-U3+j, - - -,

Ut oy =V0-UL 14, Ut 14 j-V0-UL 1145, U %+1+j‘“§+j‘v0>7}0‘”1‘uj)-

Next consider le. By rewriting the first edge u;-vi-uiy; of le as v1-uj-ui4; and
adding, at the end, the edge Vo-U1-Ut 4 j = UL 4 ;=Vo=V1, We obtain the t-cycle

1 _
Cj = (Ul‘uj‘ulJrja UL45=V1-Ut—14j, Ut—145-V1-U24j, U24;5-V1-Ut—24j, Ut—245-V1-U34j,

S ULyopTUIT UL q gy UL g4 j7UIT ULy, Ulyq gy U1 UL, “§+j‘”0‘vl)'

The collection of these t-cycles {Cf : j € [0,5 — 1]} U{C} : j € [0, 5 — 1]} yields

a decomposition of K. 2732. a

Lemma 2.6. Ift > 4 is an even integer, then Kﬁ) decomposes into t-cycles.

Proof. Consider Kt(’?;) with its vertex set grouped into [vo,v;—1] and [vy, vg;—q]. Let
K, and K, be two disjoint copies of K, with vertex sets [vg,v;—1] and [vy, vo_1],
respectively. As t is even, each of K, and K, can be decomposed into i % -1
Hamilton cycles and a 1-factor. Denote by H, ® H, & --- ® H/%_1 ®F and H, @

H)® --®H ;’71 @ F", decompositions of K; and K;, respectively, where, for each
2

ie(l,§—1], H; and H; are Hamilton cycles and F' and " are 1-factors.
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. / . t ! . . .
Consider H;, i € [1,5 —1]. If H; = (vi, vy, ..., vi,_,, Vi), Where ig,i1,... 01
is a permutation of 0,1,...,t — 1, then for each r € [t,2¢t — 1], obtain the t-cycle
G
(Vig=Vp=Viy, Viy=Up=Viy, Vig=Up=Dig, . - -, Viy_y=Up=Vi,_1, Vi =Up=Vj) in Ky

Similarly, for each j € [1,£ — 1] and s € [0,¢ — 1], using the Hamilton cycle HJ/./
and the vertex v, obtain a ¢-cycle in Kt(i) as follows: if H],-’ = (Vjos Vjyy -5 Vji_ 15 Vi),
where jo, j1, ..., Ji—1 is a permutation of £,£ + 1,...,2t — 1, then the t-cycle is:

(Ujo_vs_vjn Uj17UsVjg5 ¥ Ujy=UsVjgs -+« 3 Ujy_97VUs™Vjy_q; thffvs_vjo)'

This produces 2(§ — 1)t edge disjoint ¢-cycles in Kt(i).

. . !
If necessary, after relabeling the vertices, let F' = {vquy, v9vs, ..., v4_ov;_1} and
" . .
F" = {00411, Ve12Up43, - - ., Vg oV 1}. For convenience, relabel the vertex v, i €
. . . 1
[0, — 1], by u;, where subscripts of u are taken modulo ¢. In this notation, F*' =
{Uoul, UgUsg, . . - ,Ut—2ut—1}.

To complete the proof, we have to find ¢ edge disjoint ¢-cycles from the set

{vo-v1-Uy, Vo-U3-Up, ..., Vy_o-Vy_1-u, : T € [0, — 1]}

U{uo-u1-vs, Ug-Uz-vs, . . ., Us_o-Uus_1-Vs : s € [0, — 1]}

of edges.
For each i € [0, % — 1], let

CZ- = (UO‘UI‘U%a U2-U2i+1-V2,
V2-U3-U2i+2, U2i42-U243-V4,
V4-V5-U2i+4, U2i4+4-U2i4+5-V6,

)
Vt—4~Ut—3-U2—4, U2j—4~U2%—-3-Vt_2,

Vg—2-Vg—1-U2;—2, u2i—2‘u2i—1‘U0)

and

CZ- = (01-U0—U2¢+1, Ui41-U2-Vt—1,
Vt—1-Vp—2-U2i—1, U2j—1-U2—2-Vt—3,
Vt—3-Vp—4-U2i—3, U2;—3-U2—4-Vt—5,

*
U5-V4-U2i+5, U2i45-U2i4+4-V3,
V3-V2-U2i+3, U2i+3-u2@'+2-’01)-

1

Clearly, {C;, C; :i € [0,% — 1]} is the required collection of ¢ edge-disjoint ¢-cycles,
which completes the proof. O

Lemma 2.7. Ift > 4 is an even integer, then Kéi)% decomposes into t-cycles.
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Proof. Consider KQ(?% with its vertex set grouped into [vg,vy_1] and [va, vg—1].
Write KQ(?% as an edge-disjoint union of eight subhypergraphs, out of which four are

3)

copies of Kt(#/ with vertex sets grouped into

[’Uo,Ut 1] and [UQtavBt 1]
[’U Utfl] and [/031‘/7/041‘/71]7
[vt, var—1] and [vyy, v3;-1], and
[ i

Vg, Var—1] and [vsg, Vag1];
.. . 3 . .
and the remaining four are copies of Zt(,t?t with vertex sets grouped into

[’Uo,Ut 1], [Uta’Uth] and [U2tav3t71]7
[’Uo,Ut 1], [Utantfl] and [U3t,U4t71]7
[U (= 1] [U2t,v3t—1] and [U3t,v4t—1], and
[

)
(i)
) :
) [ve, var—1], [var, v3i—1] and [vsg, vap1].

Since the hypergraphs Kt(i) and Zﬁ?t are decomposable into t-cycles by Lemma 2.6
and Corollary 2.1, respectively, we have the required decomposition. O

sy (3) (3)

2.3 Decompositions of K, and K,

A Hamilton cycle of a hypergraph H on n vertices is a cycle of length n.

Theorem 2.2. [1, 2, 10] If n = 1, 2, 4 or 5 (mod 6), then KP decomposes into
Hamilton cycles.

Lemma 2.8. Ift >4 andt =2 or 4 (mod 6), then KS’) decomposes into t-cycles.

Proof. By Theorem 2.2 and Lemma 2.6, Kt(B) and Kﬁ) are, respectively, t-cycle
decomposable, and hence so is KS’) = 2Kt(3) & Kt(i). a

Lemma 2.9. Ift >4 andt =2 or 4 (mod 6), then Kéi)rl decomposes into t-cycles.

Proof. By Lemmas 2.8 and 2.4, Kéf) and K %)t are, respectively, t-cycle decomposable,

and hence so is Kéi)rl = Kéf) ® th. O

Lemma 2.10. Ift > 4 and t = 2 or 4 (mod 6), then Kt(+2 decomposes into t-cycles.

Proof. By Theorem 2.2 and Lemma 2.5, Kt(3) and Kéi) are, respectively, t-cycle

decomposable, and hence so is Kﬁé Kt(g) & Kéi). a
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3 Proof of Theorem 1.1.

To prove Theorem 1.1, we consider three cases:

Case 1. n =0 (mod t).

Then n = kt for some positive integer k. We may think of K ,g) as an edge-disjoint

}mion of k copies of Kt(B), @ copies of Kt(i) and k(k%)(k_m copies of Zt(:?t That
is,

3 3 3 3 3 3 3
K=K oK e oK o K)ok e - oK 0 23,0270 - 02,

k times k(k2—1) times k(kflg(k72) times

As each of the hypergraphs Kt(g), Kt(i) and Zt(i?t is decomposable into t-cycles by

Theorem 2.2, Lemma 2.6 and Corollary 2.1, respectively, we have the required de-
composition.

Case 2. n =2 (mod t).

Then n = kt 4+ 2 for some positive integer k. We may think of K ,gfz% as an

edge-disjoint union of k copies of Kﬁé, k(k;l) copies of Kﬁ), M copies of

Zt(i?t and k(k — 1) copies of tht That is, K,gfiQ = Kt(i)Z EBK(B) ®---® Kt(i)ZéB

+2
-~

k times

3 3 3 3 3
EJoK] o oKl eZ) 0zl e 02 627,623,6 -0 2,

vV v vV
M times W times w times

tht D Zf t)t oD Z{i‘/),t‘ As each of the hypergraphs Kg)z, Kt(i), Zt(j?t and Zﬁ{t is

v~

EE=D times
2
decomposable into t-cycles by Lemma 2.10, Lemma 2.6, Corollary 2.1 and Lemma 2.1,
respectively, we have the required decomposition.

Case 3. n =1 (mod 2t).

Then n = 2kt + 1 for some positive integer k. We may think of Kéii 41 as an edge-

k;(k; 1) %(":—2) copies of Zéf,)zt,zt

disjoint union of k copies of Kéfil,
k(k—1)
2

copies of K2t ot

and copies of th,%- That is,

3 3
K2(k3t+1 = Két—)l—l D KQ(t—)H DD KQ(t—)i—l D Két)% D Két)% S---D Két,)%
k;t;rrnes k(k— Sr

2

times

® Ziyouon ® Zioen ®  ® Ziyoy oy ® ooy ® Zi o0 ® - @ Zyy o

M times kE=D 4imes
6 2

As each of the hypergraphs Kétil, Kéi)%, Zéi)m,f and thgt is decomposable into
t-cycles by Lemmas 2.9, 2.7, 2.3 and 2.2, respectively, we have the required decom-
position. O
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Among even ¢, consider those t of the form 2¢, where £ > 2. Observe that 2| (g)
if and only if 2¢+!|(n — 1) or 2 n(n — 2). But 2+ n(n — 2) if and only if 2¢|n or
2°|(n — 2), and hence 2°|(}) if and only if 2¢|(n — 2) or 2°|(n — 1) or 2|n.

From the above necessary condition and Theorem 1.1 with ¢t = 2¢, we have the
following.

Corollary 3.1. If n > 2¢ and £ > 2, then K has a 2¢-cycle decomposition if and
only if n = 0 (mod 2¢), 2 (mod 2°) or 1 (mod 2¢1).

Taking ¢ = 2, we have

Corollary 3.2. [4] If n > 4, then K% has a 4-cycle decomposition if and only if
n =0 (mod 4), 2(mod 4) or 1 (mod 8).
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