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Abstract

The complete 3-uniform hypergraph K
(3)
n is a simple 3-uniform hyper-

graph with vertex set V having order |V | = n, and the set of all 3-subsets
of V as its edge set.A t-cycle in this hypergraph is v1, e1, v2, e2, . . . , vt, et, v1
where v1, v2, . . . , vt are distinct vertices and e1, e2, . . . , et are distinct edges
such that vi, vi+1 ∈ ei for i ∈ {1, 2, . . . , t − 1} and vt, v1 ∈ et. A decom-
position of a hypergraph is a partition of its edge set into edge-disjoint
subsets. In this paper, we prove the existence of a t-cycle decomposi-
tion of K

(3)
n for values of t ≡ 2 or 4 (mod 6) that satisfy the divisibility

condition t|(n − 2) or t|n or 2t|(n − 1). Using this, we characterize the

existence of a decomposition of K
(3)
n into 2�-cycles, where � ≥ 2 is a pos-

itive integer. Consequently, the main result of the paper by Jordan and
Newkirk [Australas. J. Combin. 71(2) (2018), 312–323] is a corollary.

1 Introduction

A hypergraph H consists of a finite nonempty set V of vertices and a set E =
{e1, e2, . . . , em} of edges where each ei ⊆ V with |ei| > 0 for i ∈ {1, 2, . . . , m}.
If |ei| = h, then we call ei an h-edge. If every edge of H is an h-edge for some h,

then we say that H is h-uniform. The complete h-uniform hypergraph K
(h)
n is the

hypergraph with vertex set V , where |V | = n, in which every h-subset of V deter-

mines an h-edge. It then follows that K
(h)
n has

(
n
h

)
edges. When h = 2, K

(2)
n = Kn,

the complete graph on n vertices.

A decomposition of a hypergraph H is a set F = {F1,F2, . . . ,Fk} of subhyper-
graphs of H such that E(F1) ∪ E(F2) ∪ · · · ∪ E(Fk) = E(H) and E(Fi) ∩ E(Fj) = ∅
for all i, j ∈ {1, 2, . . . , k} with i 
= j. We denote this by H = F1 ⊕ F2 ⊕ · · · ⊕ Fk.
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If H = F1 ⊕ F2 ⊕ · · · ⊕ Fk is a decomposition such that F1
∼= F2

∼= · · · ∼= Fk
∼= G,

where G is a fixed hypergraph, then F is called a G-decomposition of H.

A cycle of length t in a hypergraph H is a sequence of the form v1, e1, v2, e2, . . . ,
vt, et, v1, where v1, v2, . . . , vt are distinct vertices and e1, e2, . . . , et are distinct edges
satisfying vi, vi+1 ∈ ei for i ∈ {1, 2, . . . , t− 1} and vt, v1 ∈ et.

Decompositions of K
(3)
n into Hamilton cycles were considered in [1, 2] and the

proof of their existence was given in [10]. Decompositions of K
(h)
n into Hamilton

cycles were considered in [5, 8], a complete solution for h ≥ 4 and n ≥ 30 was given
in [5], and cyclic decompositions were considered in [8]. In [3], necessary and suffi-

cient conditions were given for a G-decomposition of K
(3)
n , where G is any 3-uniform

hypergraph with at most three edges and at most six vertices. In [4], decompositions

of K
(3)
n into 4-cycles were considered and their existence was established. In [7],

decompositions of K
(3)
n into 6-cycles were considered and their existence was given.

In [6], decompositions of K
(3)
n into p-cycles were considered and their existence was

given, whenever p is prime.

In this paper, we are interested in the following problem.

Problem 1.1. Given a positive integer n ≥ 3, find all positive integers � ≥ 2, such
that there exists a 2�-cycle decomposition of K

(3)
n .

For any positive integer t ≥ 3, a necessary condition for the existence of a t-cycle
decomposition of K

(3)
n is: t divides the number of edges in K

(3)
n , that is, t|(n

3

)
.

In this paper, we consider values of t ≡ 2 or 4 (mod 6) and we prove the existence
of a t-cycle decomposition in the following three special cases: (i) t|(n− 2); (ii) t|n;
(iii) 2t|(n− 1).

By the assumption on t, we have: t 
≡ 0 (mod 3), both n and n − 2 are even in
cases (i) and (ii), and t|n−1

2
in case (iii). Thus, we have t|(n

3

)
.

The main result of this paper is stated below and is proved in Section 3.

Theorem 1.1. If t ≥ 4 is an integer with t ≡ 2 or 4 (mod 6) and n is congruent to

0 (mod t), 2 (mod t) or 1 (mod 2t), then K
(3)
n has a t-cycle decomposition.

2 Tools

In this section, we prove some results which are required to prove Theorem 1.1.

We will assume the vertex set of K
(3)
n is {vi : i ∈ Zn}, where Zn is the set of

integers modulo n. For non-negative integers i and j with i < j, we denote the set
{vi, vi+1, . . . , vj} by [vi, vj ], and the set {i, i+ 1, . . . , j} by [i, j].

For convenience, we will often write the edge {va, vb, vc} as va-vb-vc and the t-cycle
v1, e1, v2, e2, . . . , vt, et, v1 as (v1-y1-v2, v2-y2-v3, . . . , vt-yt-v1), where ei = vi-yi-vi+1 for
i ∈ {1, 2, . . . , t− 1} and et = vt-yt-v1.
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2.1 The hypergraph Z
(3)
p,q,r

Define the 3-uniform hypergraph Z
(3)
p,q,r of order p+ q+ r as follows: V (Z

(3)
p,q,r) = {vi :

i ∈ Zp+q+r} grouped as G0 = [v0, vp−1], G1 = [vp, vp+q−1] and G2 = [vp+q, vp+q+r−1]

and let E(Z(3)
p,q,r) be the set of all 3-edges va-vb-vc such that va ∈ G0, vb ∈ G1 and

vc ∈ G2. Note that |E(Z(3)
p,q,r)| = pqr. A necessary condition for the existence of a

t-cycle decomposition of Z
(3)
p,q,r is that t|pqr.

Lemma 2.1. If t ≥ 4 is an even integer, then Z
(3)
1,t,t admits a t-cycle decomposition.

To prove this lemma, we need the following theorem.

Theorem 2.1. [9]. Let Pk+1 be the path of length k, and let k,m, n ∈ N with m,n
even and m ≥ n. The complete bipartite graph Km,n has a Pk+1-decomposition if and
only if m ≥ ⌈

k+1
2

⌉
, n ≥ ⌈

k
2

⌉
and mn ≡ 0 (mod k).

. Proof of Lemma 2.1. Consider the complete bipartite graphKt,t with bipartition
([v1, vt], [vt+1, v2t]). By Theorem 2.1, we have a decomposition, say F , of Kt,t into
paths of length t. For each path (x1, x2, . . . , xt, xt+1) of length t in F , consider the
corresponding t-cycle of the form

(v0-x1-x2, x2-v0-x3, x3-v0-x4, x4-v0 − x5, . . . , xt−1-v0-xt, xt-xt+1-v0)

in Z
(3)
1,t,t. This collection of t-cycles yields a decomposition of Z

(3)
1,t,t into t-cycles. �

Corollary 2.1. If t ≥ 4 is an even integer and if p ≥ 1 is an integer, then Z
(3)
p,t,t

decomposes into t-cycles. In particular, if t ≥ 4 is an even integer, then Z
(3)
t,t,t decom-

poses into t-cycles.

Proof. We may think of Z
(3)
p,t,t as an edge-disjoint union of p copies of Z

(3)
1,t,t. Apply

Lemma 2.1 to each one of these p copies. �

Lemma 2.2. If t ≥ 4 is an even integer, then Z
(3)
1,2t,2t decomposes into t-cycles.

Proof. To see this, we write Z
(3)
1,2t,2t as an edge-disjoint union of four copies of Z

(3)
1,t,t

with vertex set grouped into

(G0, G1, G2) = ({v0}, [v1, vt], [v2t+1, v3t]),

(G0, G1, G2) = ({v0}, [v1, vt], [v3t+1, v4t]),

(G0, G1, G2) = ({v0}, [vt+1, v2t], [v2t+1, v3t]),

(G0, G1, G2) = ({v0}, [vt+1, v2t], [v3t+1, v4t]),

for the first, second, third and fourth copy respectively. Now apply Lemma 2.1 to
each copy of Z

(3)
1,t,t. �

Lemma 2.3. If t ≥ 4 is an even integer and if p ≥ 1 is an integer, then Z
(3)
p,2t,2t

decomposes into t-cycles. In particular, if t ≥ 4 is an even integer, then Z
(3)
2t,2t,2t

decomposes into t-cycles.

Proof. We may think of Z
(3)
p,2t,2t as an edge-disjoint union of p copies of Z

(3)
1,2t,2t. Apply

Lemma 2.1 to each one of these p copies. �
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2.2 The hypergraph K
(3)
m,n

Define the 3-uniform hypergraph K
(3)
m,n of order m + n as follows. Let V (K

(3)
m,n) =

{vi : i ∈ Zm+n}, grouped as G0 = [v0, vm−1] and G1 = [vm, vm+n−1]. Let E(K(3)
m,n) be

the set of all 3-edges va-vb-vc such that va, vb and vc are not all from the same set Gi,

i ∈ {0, 1}; that is, for each i ∈ {0, 1}, {va, vb, vc} ∩ Gi 
= ∅. Note that
∣∣∣E(K(3)

m,n)
∣∣∣ =

mn(m+n−2)
2

. A necessary condition for the existence of a t-cycle decomposition of

K
(3)
m,n is that 2t|mn(m+ n− 2).

Lemma 2.4. If t ≥ 4 is an even integer, then K
(3)
1,2t decomposes into t-cycles.

Proof. Consider the hypergraph K
(3)
1,2t (respectively, its spanning subhypergraph

Z
(3)
1,t,t) with vertex set [v0, v2t] which is grouped into {v0} and [v1, v2t] (respectively,

{v0}, [v1, vt] and [vt+1, v2t]). For convenience, relabel the vertices vi and vt+i, i ∈ [1, t]
by xi−1 and yi−1, respectively. The subscripts of the vertices x and y are taken mod-
ulo t.

Consider the complete bipartite graph Kt,t with bipartition ([x0, xt−1], [y0, yt−1]).
Let

P 0 = (x0, yt−1, x1, yt−2, x2, yt−3, . . . , y t
2
+2, x t

2
−2, y t

2
+1, x t

2
−1, y t

2
, x t

2
).

(Observe that, if we denote the length of the edge xiyj as (j − i) (mod t), then
the lengths of the edges of P 0 in order are: t − 1, t − 2, t − 3, . . . , 1, 0.) Let F =
{P 0, P 1, P 2, . . . , P t−1}, where for each i ∈ [1, t − 1], P i is obtained from P i−1 by
adding 1 and reducing the subscripts modulo t in each of the vertices of P i−1. By
the above observation, F is a decomposition of Kt,t into paths of length t.

Using P 0, obtain a t-cycle C0 in Z
(3)
1,t,t as shown below:

C0 = (v0-x0-yt−1, yt−1-v0-x1, x1-v0-yt−2, yt−2-v0-x2, x2-v0-yt−3, . . . ,

y t
2
+2-v0-x t

2
−2, x t

2
−2-v0-y t

2
+1, y t

2
+1-v0-x t

2
−1, x t

2
−1-v0-y t

2
, y t

2
-x t

2
-v0).

Similarly, for each i ∈ [1, t − 1], using P i, obtain a t-cycle C i in Z
(3)
1,t,t. As F is

a decomposition of Kt,t into paths of length t, {C0, C1, C2, . . . , Ct−1} is a t-cycle

decomposition of Z
(3)
1,t,t.

As Z
(3)
1,t,t is a spanning subhypergraph of K

(3)
1,2t, to find a t-cycle decomposition of

K
(3)
1,2t, it is enough to find a t-cycle decomposition of K

(3)
1,2t \ E(

t−1⋃
i=1

C i).

Consider two disjoint copies of Kt, say K
′
t and K

′′
t , with vertex sets [x0, xt−1] and

[y0, yt−1], respectively. As t is even, each of K
′
t and K

′′
t is Hamilton path decompos-

able. For i ∈ [1, t
2
], let

P 1
i = (xi−1, xi, xi−2, xi+1, xi−3, xi+2, . . . , x t

2
+1+i, x t

2
−2+i, x t

2
+i, x t

2
−1+i)

and P 2
i = (yi−1, yi, yi−2, yi+1, yi−3, yi+2, . . . , y t

2
+1+i, y t

2
−2+i, y t

2
+i, y t

2
−1+i).
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Then, clearly, {P 1
i : i ∈ [1, t

2
]} and {P 2

i : i ∈ [1, t
2
]} are, respectively, decompositions

of K
′
t and K

′′
t into paths of length t− 1.

For each i ∈ [1, t
2
], let

P
′
i = (xi−1-v0-xi, xi-v0-xi−2, xi−2-v0-xi+1, xi+1-v0-xi−3, xi−3-v0-xi+2,

. . . , x t
2
+1+i-v0-x t

2
−2+i, i x t

2
−2+i-v0-x t

2
+i, x t

2
+i-v0-x t

2
−1+i)

and

P
′′
i = (yi−1-v0-yi, yi-v0-yi−2, yi−2-v0-yi+1, yi+1-v0-yi−3, yi−3-v0-yi+2,

. . . , y t
2
+1+i-v0-y t

2
−2+i, y t

2
−2+i-v0-y t

2
+i, y t

2
+i-v0-y t

2
−1+i),

where P
′
i and P

′′
i are paths of length t− 1 in K

(3)
1,2t obtained from P 1

i and P 2
i , respec-

tively. This results in a decomposition {P ′
i , P

′′
i : i ∈ [1, t

2
]} of K

(3)
1,2t \ E(C0 ∪ C1 ∪

· · · ∪ Ct−1) into paths of length t− 1.

Consider P
′
1. By rewriting the last edge x t

2
+1-v0-x t

2
of P

′
1 as x t

2
+1-x t

2
-v0 and

adding, at the end, the first edge v0-x0-yt−1 = v0-yt−1-x0 of C
0, we obtain the t-cycle

C
′
1 = (x0-v0-x1, x1-v0-xt−1, xt−1-v0-x2, x2-v0-xt−2, xt−2-v0-x3,

. . . , x t
2
+2-v0-x t

2
−1, x t

2
−1-v0-x t

2
+1, x t

2
+1-x t

2
-v0, v0-yt−1-x0).

Now consider P
′
i , for i 
= 1. By rewriting the last edge x t

2
+i-v0-x t

2
−1+i of P

′
i as x t

2
+i-

x t
2
−1+i-v0 and adding, at the end, the (2i − 1)st edge xi−1-v0-yt−i = v0-yt−i-xi−1 of

C0, we obtain the t-cycle

C
′
i = (xi−1-v0-xi, xi-v0-xi−2, xi−2-v0-xi+1, xi+1-v0-xi−3, xi−3-v0-xi+2,

. . . , x t
2
+1+i-v0-x t

2
−2+i, x t

2
−2+i-v0-x t

2
+i, x t

2
+i-x t

2
−1+i-v0, v0-yt−i-xi−1).

Similarly, by rewriting the first edge y0-v0-y1 of P
′′
1 as v0-y0-y1 and adding, at the

end, the tth edge y t
2
-x t

2
-v0 of C0, we obtain the t-cycle

C
′′
1 = (v0-y0-y1, y1-v0-yt−1, yt−1-v0-y2, y2-v0-yt−2, yt−2-v0-y3,

. . . , y t
2
+2-v0-y t

2
−1, y t

2
−1-v0-y t

2
+1, y t

2
+1-v0-y t

2
, y t

2
-x t

2
-v0);

and, for i 
= 1, by rewriting the first edge yi−1-v0-yi of P
′′
i as v0-yi−1-yi and adding,

at the end, the (t − 2i + 2)nd edge, i.e., the 2( t
2
− i + 1)st edge, yt−( t

2
−1+i)-v0-

x t
2
−i+1 = y t

2
−1+i-v0-x t

2
−i+1 = y t

2
−1+i-x t

2
−i+1-v0 of C0, we obtain the t-cycle

C
′′
i = (v0-yi−1-yi, yi-v0-yi−2, yi−2-v0-yi+1, yi+1-v0-yi−3, yi−3-v0-yi+2,

. . . , y t
2
+1+i-v0-y t

2
−2+i, y t

2
−2+i-v0-y t

2
+i, y t

2
+i-v0-y t

2
−1+i, y t

2
−1+i-x t

2
−i+1-v0).

The collection of these t-cycles {C ′
i : i ∈ [1, t

2
]} ∪ {C ′′

i : i ∈ [1, t
2
]} yields a

decomposition of K
(3)
1,2t \ E(C1 ∪ C2 ∪ · · · ∪ Ct−1). �
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Lemma 2.5. If t ≥ 4 is an even integer, then K
(3)
2,t decomposes into t-cycles.

Proof. Consider K
(3)
2,t where its vertex set is grouped into {v0, v1} and [v2, vt+1]. For

convenience, relabel the vertex vi, i ∈ [2, t + 1], by ui−2, where the subscripts of u
are taken modulo t. The complete graph Kt with vertex set [u0, ut−1] is Hamilton
path decomposable, because t is even. Let {Pj : j ∈ [0, t

2
−1]} be the Hamilton path

decomposition of Kt, where

Pj = (uj, u1+j, ut−1+j , u2+j, ut−2+j, u3+j, . . . , u t
2
+2+j , u t

2
−1+j , u t

2
+1+j , u t

2
+j).

For each j ∈ [0, t
2
− 1], using Pj, obtain the paths

P 0
j = (uj-v0-u1+j, u1+j-v0-ut−1+j, ut−1+j-v0-u2+j , u2+j-v0-ut−2+j , ut−2+j-v0-u3+j,

. . . , u t
2
+2+j-v0-u t

2
−1+j, u t

2
−1+j-v0-u t

2
+1+j , u t

2
+1+j-v0-u t

2
+j)

and

P 1
j = (uj-v1-u1+j, u1+j-v1-ut−1+j , ut−1+j-v1-u2+j , u2+j-v1-ut−2+j,

ut−2+j-v1-u3+j, . . . , u t
2
+2+j-v1-u t

2
−1+j , u t

2
−1+j-v1-u t

2
+1+j, u t

2
+1+j-v1-u t

2
+j)

of length t−1 in K
(3)
2,t . This results in the decomposition {P 0

j : j ∈ [0, t
2
−1]}∪{P 1

j :

j ∈ [0, t
2
− 1]} of K

(3)
2,t \ {v0-v1-uj : j ∈ [0, t− 1]} into paths of length t− 1.

Consider P 0
j . By rewriting the last edge u t

2
+1+j-v0-u t

2
+j of P

0
j as u t

2
+1+j-u t

2
+j-v0

and adding, at the end, the edge v0-v1-uj, we obtain the t-cycle

C0
j = (uj-v0-u1+j, u1+j-v0-ut−1+j , ut−1+j-v0-u2+j , u2+j-v0-ut−2+j , ut−2+j-v0-u3+j, . . . ,

u t
2
+2+j-v0-u t

2
−1+j , u t

2
−1+ji-v0-u t

2
+1+j, u t

2
+1+j-u t

2
+j-v0, v0-v1-uj).

Next consider P 1
j . By rewriting the first edge uj-v1-u1+j of P

1
j as v1-uj-u1+j and

adding, at the end, the edge v0-v1-u t
2
+j = u t

2
+j-v0-v1, we obtain the t-cycle

C1
j = (v1-uj-u1+j, u1+j-v1-ut−1+j, ut−1+j-v1-u2+j, u2+j-v1-ut−2+j , ut−2+j-v1-u3+j,

. . . , u t
2
+2+j-v1-u t

2
−1+j , u t

2
−1+j-v1-u t

2
+1+j , u t

2
+1+j-v1-u t

2
+j, u t

2
+j-v0-v1).

The collection of these t-cycles {C0
j : j ∈ [0, t

2
− 1]} ∪ {C1

j : j ∈ [0, t
2
− 1]} yields

a decomposition of K
(3)
2,t . �

Lemma 2.6. If t ≥ 4 is an even integer, then K
(3)
t,t decomposes into t-cycles.

Proof. Consider K
(3)
t,t with its vertex set grouped into [v0, vt−1] and [vt, v2t−1]. Let

K
′
t and K

′′
t be two disjoint copies of Kt with vertex sets [v0, vt−1] and [vt, v2t−1],

respectively. As t is even, each of K
′
t and K

′′
t can be decomposed into i t

2
− 1

Hamilton cycles and a 1-factor. Denote by H
′
1 ⊕ H

′
2 ⊕ · · · ⊕ H

′
t
2
−1

⊕ F
′
and H

′′
1 ⊕

H
′′
2 ⊕ · · · ⊕H

′′
t
2
−1

⊕ F
′′
, decompositions of K

′
t and K

′′
t , respectively, where, for each

i ∈ [1, t
2
− 1], H

′
i and H

′′
i are Hamilton cycles and F

′
and F

′′
are 1-factors.
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Consider H
′
i , i ∈ [1, t

2
− 1]. If H

′
i = (vi0 , vi1, . . . , vit−1 , vi0), where i0, i1, . . . , it−1

is a permutation of 0, 1, . . . , t − 1, then for each r ∈ [t, 2t − 1], obtain the t-cycle

(vi0-vr-vi1, vi1-vr-vi2 , vi2-vr-vi3 , . . . , vit−2-vr-vit−1, vit−1-vr-vi0) in K
(3)
t,t .

Similarly, for each j ∈ [1, t
2
− 1] and s ∈ [0, t − 1], using the Hamilton cycle H

′′
j

and the vertex vs, obtain a t-cycle in K
(3)
t,t as follows: if H

′′
j = (vj0, vj1 , . . . , vjt−1, vj0),

where j0, j1, . . . , jt−1 is a permutation of t, t + 1, . . . , 2t− 1, then the t-cycle is:

(vj0-vs-vj1, vj1-vs-vj2, i vj2-vs-vj3 , . . . , vjt−2-vs-vjt−1 , vjt−1-vs-vj0).

This produces 2( t
2
− 1)t edge disjoint t-cycles in K

(3)
t,t .

If necessary, after relabeling the vertices, let F
′
= {v0v1, v2v3, . . . , vt−2vt−1} and

F
′′
= {vtvt+1, vt+2vt+3, . . . , v2t−2v2t−1}. For convenience, relabel the vertex vt+i, i ∈

[0, t − 1], by ui, where subscripts of u are taken modulo t. In this notation, F
′′
=

{u0u1, u2u3, . . . , ut−2ut−1}.
To complete the proof, we have to find t edge disjoint t-cycles from the set

{v0-v1-ur, v2-v3-ur, . . . , vt−2-vt−1-ur : r ∈ [0, t− 1]}
∪{u0-u1-vs, u2-u3-vs, . . . , ut−2-ut−1-vs : s ∈ [0, t− 1]}

of edges.

For each i ∈ [0, t
2
− 1], let

C
′
i = (v0-v1-u2i, u2i-u2i+1-v2,

v2-v3-u2i+2, u2i+2-u2i+3-v4,

v4-v5-u2i+4, u2i+4-u2i+5-v6,

. . . ,

vt−4-vt−3-u2i−4, u2i−4-u2i−3-vt−2,

vt−2-vt−1-u2i−2, u2i−2-u2i−1-v0)

and

C
′′
i = (v1-v0-u2i+1, u2i+1-u2i-vt−1,

vt−1-vt−2-u2i−1, u2i−1-u2i−2-vt−3,

vt−3-vt−4-u2i−3, u2i−3-u2i−4-vt−5,

. . . ,

v5-v4-u2i+5, u2i+5-u2i+4-v3,

v3-v2-u2i+3, u2i+3-u2i+2-v1).

Clearly, {C ′
i , C

′′
i : i ∈ [0, t

2
− 1]} is the required collection of t edge-disjoint t-cycles,

which completes the proof. �

Lemma 2.7. If t ≥ 4 is an even integer, then K
(3)
2t,2t decomposes into t-cycles.
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Proof. Consider K
(3)
2t,2t with its vertex set grouped into [v0, v2t−1] and [v2t, v4t−1].

Write K
(3)
2t,2t as an edge-disjoint union of eight subhypergraphs, out of which four are

copies of K
(3)
t,t with vertex sets grouped into

(i) [v0, vt−1] and [v2t, v3t−1],

(ii) [v0, vt−1] and [v3t, v4t−1],

(iii) [vt, v2t−1] and [v2t, v3t−1], and

(iv) [vt, v2t−1] and [v3t, v4t−1];

and the remaining four are copies of Z
(3)
t,t,t with vertex sets grouped into

(i) [v0, vt−1], [vt, v2t−1] and [v2t, v3t−1],

(ii) [v0, vt−1], [vt, v2t−1] and [v3t, v4t−1],

(iii) [v0, vt−1], [v2t, v3t−1] and [v3t, v4t−1], and

(iv) [vt, v2t−1], [v2t, v3t−1] and [v3t, v4t−1].

Since the hypergraphsK
(3)
t,t and Z

(3)
t,t,t are decomposable into t-cycles by Lemma 2.6

and Corollary 2.1, respectively, we have the required decomposition. �

2.3 Decompositions of K
(3)
2t+1 and K

(3)
t+2

A Hamilton cycle of a hypergraph H on n vertices is a cycle of length n.

Theorem 2.2. [1, 2, 10] If n ≡ 1, 2, 4 or 5 (mod 6), then K
(3)
n decomposes into

Hamilton cycles.

Lemma 2.8. If t ≥ 4 and t ≡ 2 or 4 (mod 6), then K
(3)
2t decomposes into t-cycles.

Proof. By Theorem 2.2 and Lemma 2.6, K
(3)
t and K

(3)
t,t are, respectively, t-cycle

decomposable, and hence so is K
(3)
2t = 2K

(3)
t ⊕K

(3)
t,t . �

Lemma 2.9. If t ≥ 4 and t ≡ 2 or 4 (mod 6), then K
(3)
2t+1 decomposes into t-cycles.

Proof. By Lemmas 2.8 and 2.4,K
(3)
2t andK

(3)
1,2t are, respectively, t-cycle decomposable,

and hence so is K
(3)
2t+1 = K

(3)
2t ⊕K

(3)
1,2t. �

Lemma 2.10. If t ≥ 4 and t ≡ 2 or 4 (mod 6), then K
(3)
t+2 decomposes into t-cycles.

Proof. By Theorem 2.2 and Lemma 2.5, K
(3)
t and K

(3)
2,t are, respectively, t-cycle

decomposable, and hence so is K
(3)
t+2 = K

(3)
t ⊕K

(3)
2,t . �
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3 Proof of Theorem 1.1.

To prove Theorem 1.1, we consider three cases:

Case 1. n ≡ 0 (mod t).

Then n = kt for some positive integer k. We may think of K
(3)
kt as an edge-disjoint

union of k copies of K
(3)
t , k(k−1)

2
copies of K

(3)
t,t and k(k−1)(k−2)

6
copies of Z

(3)
t,t,t. That

is,
K

(3)
kt =K

(3)
t ⊕K

(3)
t ⊕ · · · ⊕K

(3)
t︸ ︷︷ ︸

k times

⊕K
(3)
t,t ⊕K

(3)
t,t ⊕ · · · ⊕K

(3)
t,t︸ ︷︷ ︸

k(k−1)
2

times

⊕Z
(3)
t,t,t⊕Z

(3)
t,t,t⊕ · · · ⊕Z

(3)
t,t,t︸ ︷︷ ︸

k(k−1)(k−2)
6

times

.

As each of the hypergraphs K
(3)
t , K

(3)
t,t and Z

(3)
t,t,t is decomposable into t-cycles by

Theorem 2.2, Lemma 2.6 and Corollary 2.1, respectively, we have the required de-
composition.

Case 2. n ≡ 2 (mod t).

Then n = kt + 2 for some positive integer k. We may think of K
(3)
kt+2 as an

edge-disjoint union of k copies of K
(3)
t+2,

k(k−1)
2

copies of K
(3)
t,t ,

k(k−1)(k−2)
6

copies of

Z
(3)
t,t,t and k(k − 1) copies of Z

(3)
1,t,t. That is, K

(3)
kt+2 = K

(3)
t+2 ⊕K

(3)
t+2 ⊕ · · · ⊕K

(3)
t+2︸ ︷︷ ︸

k times

⊕

K
(3)
t,t ⊕K

(3)
t,t ⊕ · · · ⊕K

(3)
t,t︸ ︷︷ ︸

k(k−1)
2

times

⊕Z
(3)
t,t,t ⊕ Z

(3)
t,t,t ⊕ · · · ⊕ Z

(3)
t,t,t︸ ︷︷ ︸

k(k−1)(k−2)
6

times

⊕Z
(3)
1,t,t ⊕ Z

(3)
1,t,t ⊕ · · · ⊕ Z

(3)
1,t,t︸ ︷︷ ︸

k(k−1)
2

times

⊕

Z
(3)
1,t,t ⊕ Z

(3)
1,t,t ⊕ · · · ⊕ Z

(3)
1,t,t︸ ︷︷ ︸

k(k−1)
2

times

. As each of the hypergraphs K
(3)
t+2, K

(3)
t,t , Z

(3)
t,t,t and Z

(3)
1,t,t is

decomposable into t-cycles by Lemma 2.10, Lemma 2.6, Corollary 2.1 and Lemma 2.1,
respectively, we have the required decomposition.

Case 3. n ≡ 1 (mod 2t).

Then n = 2kt + 1 for some positive integer k. We may think of K
(3)
2kt+1 as an edge-

disjoint union of k copies of K
(3)
2t+1,

k(k−1)
2

copies of K
(3)
2t,2t,

k(k−1)(k−2)
6

copies of Z
(3)
2t,2t,2t

and k(k−1)
2

copies of Z
(3)
1,2t,2t. That is,

K
(3)
2kt+1 = K

(3)
2t+1 ⊕K

(3)
2t+1 ⊕ · · · ⊕K

(3)
2t+1︸ ︷︷ ︸

k times

⊕K
(3)
2t,2t ⊕K

(3)
2t,2t ⊕ · · · ⊕K

(3)
2t,2t︸ ︷︷ ︸

k(k−1)
2

times

⊕Z
(3)
2t,2t,2t ⊕ Z

(3)
2t,2t,2t ⊕ · · · ⊕ Z

(3)
2t,2t,2t︸ ︷︷ ︸

k(k−1)(k−2)
6

times

⊕Z
(3)
1,2t,2t ⊕ Z

(3)
1,2t,2t ⊕ · · · ⊕ Z

(3)
1,2t,2t︸ ︷︷ ︸

k(k−1)
2

times

.

As each of the hypergraphs K
(3)
2t+1, K

(3)
2t,2t, Z

(3)
2t,2t,2t and Z

(3)
1,2t,2t is decomposable into

t-cycles by Lemmas 2.9, 2.7, 2.3 and 2.2, respectively, we have the required decom-
position. �



R. LAKSHMI ET AL. /AUSTRALAS. J. COMBIN. 84 (2) (2022), 314–324 323

Among even t, consider those t of the form 2�, where � ≥ 2. Observe that 2�|(n
3

)

if and only if 2�+1|(n− 1) or 2�+1|n(n− 2). But 2�+1|n(n − 2) if and only if 2�|n or
2�|(n− 2), and hence 2�|(n

3

)
if and only if 2�|(n− 2) or 2�+1|(n− 1) or 2�|n.

From the above necessary condition and Theorem 1.1 with t = 2�, we have the
following.

Corollary 3.1. If n ≥ 2� and � ≥ 2, then K
(3)
n has a 2�-cycle decomposition if and

only if n ≡ 0 (mod 2�), 2 (mod 2�) or 1 (mod 2�+1).

Taking � = 2, we have

Corollary 3.2. [4] If n ≥ 4, then K
(3)
n has a 4-cycle decomposition if and only if

n ≡ 0 (mod 4), 2 (mod 4) or 1 (mod 8).
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