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Abstract

An assignment ϕ ∶ V (G) → Z is said to be an odd-sum coloring of a
given graph G if no two adjacent vertices receive the same color (i.e., the
coloring is proper) and for every vertex v ∈ V (G) the sum ∑u∈N[v]ϕ(u)
of all colors (with repetition) used in the closed neighborhood N[v] is
odd. The minimum number of colors required for an odd-sum coloring
of G is called the odd-sum chromatic number of G, denoted χos(G). In
this paper, we prove that the odd-sum chromatic number always exists
and determine the value of this new graph parameter for several basic
graph classes including trees, cycles, subdivisions of complete graphs and
prisms. We give a tight upper bound on χos(G) in terms of the maximum
vertex degree by establishing the inequality χos(G) ≤ 2∆(G) for non-
empty graphs, and also in terms of the (ordinary) chromatic number by
showing that χos(G) ≤ 2χ(G). In regard to the classes of planar, triangle-
free planar, outerplanar, and bipartite planar graphs, respectively, we
determine the tight upper bounds of 8,6,6, and 4 (colors) for the odd-
sum chromatic number. The paper concludes with a few open problems.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow [2]
for terminology and notation not defined here. A k-(vertex-)coloring of a graph G is
a (not necessarily surjective) mapping ϕ ∶ V (G) → S, where S is a k-set (i.e., a set
of size k) which is referred to as the color set of ϕ; thus each s ∈ S is called a color.
A coloring ϕ is said to be proper if every color class ϕ−1(s) is an independent subset
of the vertex set of G, i.e., intersects no edge in more than one endpoint.

This work is about proper colorings of graphs with additional constraints, ob-
tained by considering the accompanying closed neighborhood-hypergraph. A hyper-
graph (or set system) H = (V (H),E(H)) is a generalization of a graph, its (hyper-
)edges being subsets of V (H) of arbitrary positive size.

Given a graph G = (V,E), the set of neighbors of a vertex v, denoted N(v), is
the open neighborhood of v. If we include the vertex v in its set of neighbors, we
obtain the closed neighborhood of v, denoted N[v]. Let N(G) = {N(v) ∶ v ∈ V } and
N[G] = {N[v] ∶ v ∈ V }. The open neighborhood-hypergraph of G is the hypergraph
with vertex set V and edge set N(G)/{∅}, i.e., every non-empty open neighborhood
in G corresponds to an edge of the hypergraph. Similarly, the closed neighborhood-
hypergraph of G is the hypergraph with vertex set V and edge set N[G]; this time
every closed neighborhood in G corresponds to a (hyper-)edge. Any (vertex) coloring
of the open or closed neighborhood-hypergraph of G is said to be a ‘neighborhood-
constrained’ coloring of G.

There are various notions of (vertex-)colorings of hypergraphs, which when re-
stricted to graphs coincide with proper graph colorings. Introduced by Cheilaris et
al. [10], a coloring of hypergraph H is weak-odd (WO) if for every edge e ∈ E(H)
there is a color c with an odd number of vertices of e colored by c. The particular
aspect of this notion in regard to the open neighborhood-hypergraph has been re-
cently introduced by Petruševski and Škrekovski [23] (under the name ‘odd coloring’)
and its basic features have been established in Caro, Petruševski and Škrekovski [9].
An odd coloring of a graph G is a proper coloring such that for every non-isolated
vertex v ∈ V (G) at least one color c occurs an odd number of times on N(v).
This neighborhood-constrained coloring concept immediately spurred considerable
interest in the graph theory community (see e.g. [11, 13, 15, 19, 22, 26]). Note in
passing that the analogous notion regarding the closed neighborhood-hypergraph
brings nothing new as it does not impose any additional constraint to the assumed
properness of the coloring.

The principal aim of this paper is to introduce a related hypergraph coloring
concept, and to consider it for closed neighborhood-hypergraphs. Namely, given a
hypergraph H, an assignment ϕ ∶ V (H) → Z is said to be an odd-sum (OS) coloring
if for every edge e ∈ E(H) the sum ∑u∈eϕ(u) is odd. So, restricting to the realm
of closed neighborhood-hypergraphs, we arrive at the following notion. A proper
coloring ϕ of a graph G is an odd-sum coloring (in regard to closed neighborhoods)
if for every vertex v ∈ V (G) the sum ∑u∈N[v]ϕ(u) is odd.
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Under any odd-sum coloring ϕ of a graph G (with respect to closed neighbor-
hoods), for short an OS coloring, the vertex set V (G) splits into independent subsets
according to the values under the (proper) coloring ϕ. Let us introduce notation
Vodd = {v ∈ V (G) ∶ ϕ(v) is odd} and Veven = {v ∈ V (G) ∶ ϕ(v) is even}. Observe
that the independent classes belonging to Vodd (respectively Veven) may exchange the
assigned colors (values) between them, which in turn can be chosen to start from
1 (respectively 2) and to form an interval of consecutive odd (respectively even)
positive integers.

The minimum number of colors in any OS coloring of a graph G is its OS chro-
matic number, denoted χos(G). The obvious inequality χ(G) ≤ χos(G) may be strict:
e.g., χ(P4) = 2 whereas χos(P4) = 3. Later we shall show that the ratio χos(G)/χ(G)
is at most 2.

Note in passing several fundamental differences between the ordinary chromatic
number and the OS chromatic number. To begin with, the former graph parameter is
monotonic in regard to the ‘subgraph relation’, that is, if H ⊆ G then χ(H) ≤ χ(G).
However, this nice monotonicity feature does not hold for the OS chromatic number
in general; e.g., P4 is a subgraph of C4, but nevertheless it holds that χos(P4) = 3 >
2 = χos(C4). These two graphs also illustrate the non-monotonicity aspect of χos

even with respect to edge addition. As for the non-monotonicity of χos regarding
vertex addition, observe that for G =K3 ◻K2 we have χos(G) = 6 and χos(G∨K1) =
4. Another distinction from ordinary (proper) coloring is the behavior of the OS
chromatic number under taking disjoint union of graphs: namely, χos(F ⊍H) is not
necessarily equal to max{χos(F ), χos(H)}. For example, χos(P4 ⊍C4) = 4.

The article is organized as follows. The next section collects several preliminary
results of relevance. Section 3 establishes a basic relation between the OS chromatic
number of a graph G and its odd-domination sets. It also provides characterizations
of several basic graph classes in terms of the value of the OS chromatic number.
This is followed by a section on extremal problems concerning the value of χos. In
Section 5 we discuss upper bounds for χos in planar, outerplanar, triangle-free planar,
and bipartite planar graphs. At the end, we briefly convey some of our thoughts for
possible further work on the subject of proper odd-sum colorings.

We bring this introductory section to a completion by giving a few comments re-
garding (proper) odd-sum coloring of graphs with respect to open neighborhoods. It
is another natural notion; moreover, it gives an odd coloring with an extra condition.
Unfortunately, it is not always possible (see e.g. [17, 12]). There are graphs which do
not admit any odd-sum coloring in regard to open neighborhoods: namely, every odd
cycle is an obvious ‘negative example’. Yet another uncolorable graph, which can be
of arbitrarily large minimum degree, is G =K2m∨Kn : the join of a complete graph of
even order 2m and an empty graph on n vertices. To demonstrate the uncolorability
of G, we argue by contradiction. Suppose there exists an odd-sum coloring of G
with respect to open neighborhoods and let A = V (K2m) ∩ Vodd, B = V (Kn) ∩ Vodd.
Since N(u) = V (K2m) for every u ∈ V (Kn), the set A is odd-sized. So there exist
vertices v′ ∈ A and v′′ ∈ V (K2m)/A. As N(v′) = V (G)/{v′}, the set B is odd-sized.
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Consequently, Vodd is even-sized. However, Vodd ⊆ N(v′′), implying that the odd-sum
condition fails for the vertex v′′.

The detected inconsistency concerning odd-sum colorability with respect to open
neighborhoods is the main reason why our focus throughout this paper is on odd-sum
colorings with respect to closed neighborhoods. It turns out that every graph admits
such an OS coloring (a non-obvious fact which shall be proven later on).

2 Preliminaries

Given a graph G on vertex set V , for any x, y ∈ V we have: x ∈ N[y] if and only if
y ∈ N[x]. Consequently, with ⊕ denoting the symmetric difference between sets, the
following equivalence holds for any subset S ⊆ V :

v ∈ ⊕{N[s] ∶ s ∈ S} ⇔ ∣N[v] ∩ S∣ ≡ 1 (mod 2) . (1)

As defined in [25] (under the name ‘odd-parity cover’), an odd-dominating set
D of a graph G is a subset of V such that N[v] ∩D is odd-sized for each v ∈ V .
Equivalently, in view of (1), the requirement is that ⊕{N[v] ∶ v ∈ D} = V . The
following basic result in domination theory was first shown by Sutner [25] in the
context of cellular automata (see also [18]). A linear algebraic proof of the same
result can be found in Caro [5]. For completeness, we give a relatively short graph-
theoretic proof.

Proposition 2.1. Every graph has an odd-dominating set.

Proof. Consider a minimal counterexample G. For each vertex v ∈ V there exists
a subset Dv ⊆ V /{v} such that ⊕{N[w] ∶ w ∈ Dv} = V /{v}. Namely, take Dv to
be an odd-dominating set of G − v (such a Dv exists by the choice of G). Then
⊕{N[w]/{v} ∶ w ∈ Dv} = V /{v}, implying that either ⊕{N[w] ∶ w ∈ Dv} = V /{v} or
⊕{N[w] ∶ w ∈ Dv} = V . Since the latter would mean Dv is an odd-dominating set of
G, it must be that

⊕ {N[w] ∶ w ∈Dv} = V /{v} . (2)

For any subset S ⊆ V , let DS = ⊕{Dv ∶ v ∈ S}. From (2) we have

⊕ {N[w] ∶ w ∈DS} = ⊕{V /{v} ∶ v ∈ S} . (3)

Namely, LHS = ⊕{N[w] ∶ w ⊕ {Dv ∶ v ∈ S}} = ⊕{⊕{N[w] ∶ w ∈ Dv} ∶ v ∈ S}
(2)
= RHS.

Consequently, every even-sized subset S ⊆ V satisfies the following

⊕ {N[w] ∶ w ∈DS} = S . (4)

From (4) we conclude that V is odd-sized, otherwise DV would be an odd-dominating
set of G. Take a vertex u ∈ V with even degree deg(u). The set V /N[u] is even-sized,
and can be used as S in (4) in order to deduce that
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⊕ {N[w] ∶ w ∈DV /N[u] ∪ {u}} = (V /N[u]) ⊕N[u] = V . (5)

However, (5) means that DV /N[u]∪{u} is an odd-dominating set of G, a contradiction.

Note in passing the linear algebraic interpretation of Proposition 2.1. Letting
A denote the adjacency matrix of graph G and I the identity square matrix of the
corresponding order, the existence of an odd-dominating set of G amounts to the
solubility over GF(2) of the equation (A + I)X = 1, where 1 is the all-ones column-
vector. In the light of this, a graph has a unique odd-dominating set if and only if
A + I is non-singular (over GF(2)), i.e., det(A + I) = 1.

There are various papers about minimum cardinality of odd-dominating sets (see
e.g. [6, 7, 8]). We also point out the absence of monotonicity concerning odd-
dominating sets: if D is an (ordinary) dominating set and B contains D, then B
is also a dominating set; however, this is no longer true in the context of odd-
domination.

In the next section we shall establish a basic connection between odd-sum color-
ings and odd-dominating sets D in any graph G. In doing so we shall demonstrate
that the odd-sum chromatic number χos(G) relates to the minimum sum of (ordi-
nary) chromatic numbers χ(G[D]) and χ(G − D). For that reason we complete
this short section by mentioning a classical coloring result [4] which gives an upper
bound on a graph’s chromatic number in terms of the maximum degree ∆ and clique
number ω.

Proposition 2.2. (Brooks) Every graph with ∆ ≥ 3 satisfies χ ≤ max{∆, ω}.

3 Basic results

Here we show that every graph admits an OS coloring via establishing a basic relation
that connects this coloring notion with that of an odd-dominating set. Afterwards
we determine the OS chromatic number of some basic graph classes and study the
behavior of this graph parameter under certain standard graph constructions. Since
this is a new graph parameter, we believe that some of these observations will be
useful in future study.

3.1 Existence of χos and a fundamental equality

Let us begin by noting the connection between the notions ‘odd-sum coloring’ and
‘odd-dominating set’. Consider a coloring ϕ of G such that all colors are integers.
Recall the notation Vodd = {v ∈ V (G) ∶ ϕ(v) is odd} and Veven = {v ∈ V (G) ∶ ϕ(v) is
even}. Denote σ(v) = ∑u∈N[v]ϕ(u). For any vertex v ∈ Vodd, the sum σ(v) is odd if
and only if v has an even number of neighbors (possibly zero) inside Vodd. Contrarily,
for any vertex v ∈ Veven, the sum σ(v) is odd if and only if v has an odd number of
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neighbors within Vodd. Therefore, ϕ is an odd-sum coloring if and only if Vodd is an
odd-dominating set of G. As already mentioned in Section 2, every graph G has an
odd-dominating set D. Consequently, we have the following.

Proposition 3.1. Every graph G admits an odd-sum coloring.

Proof. Take an odd-dominating set D of G, by Proposition 2.1. Combine a proper
coloring of G[D] with color set 2Z + 1 and a proper coloring of G −D with color set
2Z. The result is an OS coloring of G.

If the proper colorings of G[D] and G −D that were used in the previous proof
are optimal in the sense of minimum number of assigned colors, then the resulting
OS coloring of G uses exactly χ(G[D]) + χ(G −D) colors. Hence for a given odd-
dominating set D of G the minimum number of colors required for an OS coloring
ϕ of G such that Vodd =D is exactly χ(G[D]) +χ(G −D). This yields the promised
fundamental equality.

Theorem 3.2. For every graph G it holds that

χos(G) = min{χ(G[D]) + χ(G −D) ∶D is an odd-dominating set of G} . (6)

A straightforward consequence of Theorem 3.2 is the following.

Corollary 3.3. Every graph G admits an OS coloring with color set{1,2, . . . ,2χ(G)}.

Proof. Take an odd-dominating set D of G. Since χ([D]), χ(G −D) ≤ χ(G), the
induced subgraphG[D] admits a proper coloring with color set {1,3,5, . . . ,2χ(G)−1}
and the subgraph G−D admits a proper coloring with color set {2,4,6, . . . ,2χ(G)}.
The union of these colorings is the required OS coloring of G.

From Proposition 3.1 and Corollary 3.3 we deduce the following.

Corollary 3.4. For every graph G it holds that

χos(G) ≤ min{∣G∣,2χ(G)} . (7)

Proof. Since χos(G) exists, the highest value it can acquire is if all vertices must be
assigned with distinct colors; hence ∣G∣ colors always suffice for an OS coloring of G.
That 2χ(G) colors also suffice follows immediately from Corollary 3.3.

In the next subsection it will become clear that the inequality (7) is sharp in the
sense that either of the equalities χos(G) = ∣G∣ and χos(G) = 2χ(G) is achievable.
We end this subsection by observing that, similar to the ordinary proper colorings,
for every value k ∈ {χos(G), . . . , ∣G∣} there exists an OS coloring of G which uses
precisely k colors. Let us also note that the established basic connection between
the odd-sum requirement and an odd-dominating set makes the improper variant of
odd-sum colorings not really interesting: indeed, every graph is 2-colorable in that
sense since it admits such a coloring with color set {1,2}.
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3.2 OS chromatic number of several graph classes

Here we determine the proper odd-sum chromatic number of some basic graph classes.
For each of the considered graphs G we also discuss whether it admits an OS coloring
with color set {1,2, . . . ,2∆}, where ∆ is the maximum vertex degree of G.

Complete graphs and their complete subdivisions. First we study the com-
plete graphs in regard to OS colorings. Denoting V = V (Kn), a subset D ⊆ V is
an odd-dominating set of Kn if and only if D is odd-sized. Indeed, for every ver-
tex v ∈ V it holds that N[v] = V . As every subset of V induces a clique, we have
χ(Kn[D]) = ∣D∣ and χ(Kn −D) = ∣V ∣ − ∣D∣. This reasoning combined with (6) yields
the following.

Observation 3.5. For every n ≥ 1 it holds that χos(Kn) = n.

Moreover, for every odd value x ∈ {1,2, . . . , n}, Kn admits an OS coloring with
color set {1,3,5, . . . ,2x− 1}∪{2,4,6, . . . ,2n− 2x}. In particular, by taking x = 1, Kn

admits an OS coloring with color set {1}∪{2,4, . . . ,2n−2}. Hence, with the obvious
exception of K1, every other Kn admits an OS coloring with color set {1,2, . . . ,2∆}.

Let us now consider the complete subdivision of a complete graph. Recall that
S(G), the complete subdivision of graph G, is obtained from G by subdividing every
edge in E(G) exactly once. If G =Kn we denote S(G) by SKn.

Observation 3.6. For every n ≥ 2 it holds that χos(SKn) = 2.

Proof. We distinguish between the cases of even n and of odd n. If n is even, then
the set of 2-vertices comprising V (SKn)/V (Kn) is an odd-dominating set D such
that both D and V (SKn)/D are independent. So there exists an OS coloring of SKn

with color set {1,2}. Contrarily, if n is odd, then D = V (SKn) is an odd-dominating
set such that χ(SKn[D]) = 2 and χ(SKn)−D) = 0. Hence SKn admits an OS coloring
with color set {1,3}.

Since χos(SKn) ≥ χ(SKn) = 2, we conclude that χos(SKn) = 2.

Trees. Both for complete graphs and for their complete subdivisions, the OS chro-
matic number equals the ordinary chromatic number. Concerning trees, things are
slightly different. We start with a consideration of all paths. Recall that a path Pn

is a path on n vertices.

Observation 3.7. For every n ≥ 1, the path Pn admits an OS coloring with color
set {1,2,4}. Both colors 2 and 4 are required if and only if n ≥ 4. Moreover, it holds
that

χos(Pn) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if n = 1 ;

2 if 2 ≤ n ≤ 3 ;

3 if n ≥ 4 .

(8)
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Proof. We may assume that n ≥ 3, since it is obvious that χos(Pn) = χ(Pn) for n ≤ 2
and each odd-dominating set is a singleton. Note that a subset D ⊆ V (Pn) is an
odd-dominating set of Pn ∶ v1v2⋯vn if and only if the following two requirements are
fulfilled:

(i) ∣D ∩ {v1, v2}∣ = ∣D ∩ {vn−1, vn}∣ = 1;

(ii) from any triplet of consecutive vertices along Pn, exactly one belongs in D.

Consequently, if 3 ∤ (n−2) then Pn has a unique odd-dominating set D. This unique
D is independent, and moreover χ(Pn −D) = 2 unless n = 3. Contrarily, if 3 ∣ (n − 2)
then Pn has precisely two odd-dominating sets D, each of which is independent and
once again χ(Pn −D) = 2 unless n = 3. So, Pn always admits an OS coloring with
color set {1,2,4}. Moreover, both colors 2 and 4 required if and only if n ≥ 4.

Let us obtain an analogous result for trees in general.

Theorem 3.8. Every tree T admits an OS coloring with color set {1,2,4}. If T is
non-trivial then χos(T ) ∈ {2,3}. Furthermore, letting A∪B = V (T ) be the bipartition
of T , the equality χos(T ) = 2 is true if and only if either A or B is an odd-dominating
set of T .

Proof. Let D be an odd-dominating set of T . Clearly D induces a subgraph with
all degrees even. Consequently, D is an independent set. Indeed, for otherwise a
component of T [D] is not an isolated vertex implying that this component contains
a cycle which is impossible as T is a tree. Hence χ(T [D]) = 1. Since T is bipartite,
we have χ(T −D) ≤ 2. Therefore T admits an OS coloring with color set {1,2,4}.
It follows that χos(T ) ∈ {2,3} unless T is trivial. Moreover, χos(T ) = 2 if and only if
there exists an odd-dominating set D such that the set V /T is independent, that is,
if and only if {D,V /D} = {A,B} happens to be the bipartition of T .

Cycles. The OS chromatic number of cycles equals their ordinary chromatic num-
ber.

Observation 3.9. For every n ≥ 3 it holds that

χos(Cn) = χ(Cn) =

⎧⎪⎪
⎨
⎪⎪⎩

2 if n is even ;

3 if n is odd .
(9)

Proof. The set D = V (Cn) is an odd-dominating set of Cn. Hence Cn admits an OS
coloring with color set {1,3, . . . ,2χ(Cn) − 1}. Consequently, χos(Cn) ≤ χ(Cn). The
reversed inequality is true for any graph.

Excepting K1, each of the graphs we already considered admitted an OS coloring
with color set {1,2, . . . ,2∆}. This nice feature does not hold for cycles in general.
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Observation 3.10. Cn has proper odd-dominating sets (i.e., distinct from V (Cn))
if and only if 3 ∣ n. In the affirmative the number of such proper Ds is 3, and each
is of size n

3 .

Proof. Let us look into the existence of an odd-dominating set D ⊊ V (Cn). Start by
noting that the presence of two adjacent vertices (of Cn) within an odd-dominating
set D implies that D = V (Cn). Consequently, given D ⊊ V (Cn) is an odd-dominating
set if and only if from every triplet of consecutive vertices along Cn precisely one
belongs in D.

Therefore, Cn has a proper odd-dominating set D if and only if 3 ∣ n. In the
affirmative, the number of such Ds is exactly three, and each has ∣D∣ = n

3 .

In regard to the existence of an OS coloring with color set {1,2,3,4}, Observa-
tion 3.10 implies the following.

(a) If 3 ∣ n then Cn admits an OS coloring with color set {1,2,4}.

(b) If 3 ∤ n and 2 ∣ n then Cn admits an OS coloring with color set {1,3}.

(c) If 3 ∤ n and 2 ∤ n then Cn does not admit an OS coloring with color set
{1,2,3,4}.

Indeed, (a) is straightforward. As for (b) and (c), the assumption 3 ∤ n tells that
V (Cn) is the only odd-dominating set of Cn. Hence, an OS coloring of Cn is precisely
a proper coloring that uses only odd integers as colors. The coloring is optimal if it
uses χ(Cn) (odd) colors.

In view of the above and Observation 3.7 we deduce the following.

Proposition 3.11. Let G be a connected graph of maximum degree ∆ ≤ 2. Then G
admits an OS coloring with color set {1,2, . . . ,2∆} if and only if G is neither K1 nor
Cn where n ≡ 1 or 5 (mod 6).

Prisms over graphs. Given a graph G, a prism over G is the graph G◻K2 con-
sisting of two disjoint copies of G and a perfect matching between the corresponding
vertices. We are confined to G ∈ {Kn,Cn}. Our findings shall demonstrate the
sharpness of (7). First we consider the prism over G =Kn.

Proposition 3.12. For every n ≥ 1 it holds that

χos(Kn ◻K2) =

⎧⎪⎪
⎨
⎪⎪⎩

n if n is even ;

2n if n is odd .
(10)

Proof. Note that Kn ◻K2 is n-regular and has χ(Kn ◻K2) = n. Let A and B be the
vertex sets of the two copies of Kn comprising Kn ◻K2, and for every v ∈ V (Kn)
let the vertices vA ∈ A and vB ∈ B form an edge vAvB in Kn ◻K2. We determine
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all possible odd-dominating sets of Kn ◻K2 by considering separately the two cases
regarding parity of n.

Case 1: n is even. Then all vertex degrees are even, as Kn ◻ K2 is n-regular.
Consequently, V = A∪B is an odd-dominating set, implying that Kn◻K2 admits an
OS coloring with color set {1,3,5, . . . ,2n−1}. Hence χos(Kn◻K2) = χ(Kn◻K2) = n.
In fact V is the only odd-dominating set. To demonstrate this, let D be an arbitrary
odd-dominating set of Kn ◻K2. First we show that D ∩ A,D ∩ B are even-sized.
For argument’s sake, suppose D ∩B is odd-sized. So for any vB ∈ B the intersection
N[vB] ∩ (D ∩B) is odd-sized, implying that vA ∈ A/D. Consequently, D ⊆ B. But
then for any vertex wB ∈ B/D (here we use that n = ∣B∣ is even), the vertex wA is
not dominated by D, a contradiction.

Now, since for any vA ∈ A the set N[vA] ∩ (D ∩A) is even-sized, it must be that
vB ∈D ∩B. Hence B ⊆D. Analogously, A ⊆D and we conclude that D = V .

Case 2: n is odd. There are two obvious odd-dominating sets of Kn◻K2, namely A
and B. In fact these are the only ones, and we show this by considering an arbitrary
odd-dominating set D. If D ⊆ A then D = A, for otherwise there is a vertex in B
which is not dominated by D. Similarly, if A ⊆ D then D = A, for otherwise there
is a vertex in A = D ∩A having odd number of neighbors in D, a contradiction. So,
supposing D ≠ A and D ≠ B, we have that D∩A,D∩B are non-empty proper subsets
of A and B, respectively. The same argument from the previous case tells us that
D ∩ A,D ∩ B are even-sized. However, the latter implies that for every vB ∈ B we
have vA ∈D ∩A. In other words, A ⊆D, a contradiction.

Since A and B are the only odd-dominating sets of Kn ◻ K2, we deduce that
χos(Kn ◻ K2) = 2n. Note that Kn ◻ K2 admits an OS coloring with color set
{1,2, . . . ,2n} and it must be surjective.

Note in passing that (10) demonstrates that for every χ ≡ 1 (mod 2) and for every
∆ ≡ 1 (mod 2) there is a graph G such that χos(G) = ∣G∣ = 2χ(G) = 2∆(G) showing
the tightness of (7) and of Corollary 3.17 (which appears later).

Next we consider the prism over G = Cn.

Proposition 3.13. For every n ≥ 3 it holds that

χos(Cn ◻K2) =

⎧⎪⎪
⎨
⎪⎪⎩

2 if n is even ;

6 if n is odd .
(11)

Proof. Note that χ(Cn ◻K2) = 2 or 3 depending on whether n is even or odd. Let
us enumerate the vertices in one copy of V (Cn) with u1, u2 . . . , un, and the vertices
in the other copy of V (Cn) with w1,w2, . . . ,wn so that uiwi is an edge in Cn◻K2 for
every i. We consider separately the two possible parities of n.

Case 1: n is even. Then D = {u1, u3, . . . , un−1} ∪ {w2,w4, . . . ,wn} is an odd-
dominating set. Indeed, for every vertex v ∈ V (Cn ◻K2) it holds that ∣N[v] ∩D∣
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is either 1 or 3. Since for this particular choice, both D and V (Cn ◻ K2)/D are
independent sets, we conclude that Cn ◻K2 admits an OS coloring with color set
{1,2}. Hence, χos(Cn ◻K2) = χ(Cn ◻K2) = 2 in this case. (In fact, this follows from
a more general observation that χos(G) = 2 whenever G is bipartite and Eulerian;
indeed, each color class in a proper 2-coloring of G is an odd-dominating set.)

Case 2: n is odd. Consider the characteristic function χD of an arbitrary odd-
dominating set D of Cn ◻K2, that is, the function on V (Cn ◻K2) defined by:

χD(v) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if v ∈D ;

0 if v ∉D .

In what follows we consider all indices i taken (modn) up to n. In view of the
intersections N[ui] ∩D and N[wi] ∩D, we have that

χD(ui−1) + χD(wi−1) ≡ χD(ui+1) + χD(wi+1) (mod 2) . (12)

Namely, since both N[ui] ∩D and N[wi] ∩D are odd-sized, the sum

(χD(ui−1) + χD(ui) + χD(wi) + χD(ui+1)) + (χD(wi−1) + χD(ui) + χD(wi) + χD(wi+1))

is even. Taking into account that n is odd, (12) implies that all χD(ui) + χD(wi)
are of the same parity. Indeed, the sequence 1,3,5, . . . n, n+ 2, n+ 4, . . . ,2n− 1 taken
(modn) up to n reads 1,3,5, . . . , n,2,4, . . . , n − 1.

It cannot be that χD(ui) +χD(wi) are all even. Otherwise, in view of N[ui] ∩D,
it would hold that χD(ui−1) ≠ χD(ui+1) for every i. However, this yields a clear
contradiction: the sequence 1,3,5, . . . n, n + 2, n + 4, . . . ,2n − 1,2n + 1 taken (modn)
up to n reads 1,3,5, . . . , n,2,4, . . . , n − 1,1 and it is of even length, implying that
χD(u1) ≠ χD(u1).

So for every i we have χD(ui) + χD(wi) = 1. Consequently, χD(ui−1) = χD(ui+1).
Invoking once again the fact that n is odd, we deduce χD(u1) = χD(u2) = ⋯ = χD(un).
In view of the equality χD(ui)+χD(wi) = 1, it follows that either D = {u1, u2, . . . , un}
or D = {w1,w2, . . . ,wn}.

It is readily seen that both {u1, u2, . . . , un} and {w1,w2, . . . ,wn} are odd-domin-
ating sets of Cn ◻K2 (regardless of the parity of n). What we established above is
that in the case when n is odd, these two are the only odd-dominating sets. Since
they are complementary to each other (in regard to V (Cn◻K2)) and each induces an
odd cycle (namely Cn), from (6) we conclude that χos(Cn ◻K2) = 2χ(Cn ◻K2) = 6.
Every OS coloring of Cn ◻K2 with color set {1,2, . . . ,6} is surjective.

We end our discussion concerning prisms over graphs by noting that (11) shows
that Corollaries 3.4 and 3.17 are tight even for 3-regular 3-chromatic planar graphs.

Corona. The corona C(G) of a graph G is the graph obtained from G by attaching
a pendant edge to each vertex of G. Clearly, χ(C(G)) = χ(G) if and only if χ(G) ≥ 2,
and otherwise χ(C(G)) = χ(G) + 1.
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Proposition 3.14. For the corona of every graph G it holds that

χ(C(G)) ≤ χos(C(G)) ≤ χ(C(G)) + 1 . (13)

Moreover, both inequalities are attainable.

Proof. Since the added leaves form an independent odd-dominating set of C(G),
from the basic equality (6) it follows that χ(C(G)) ≤ χos(C(G)) ≤ 1 + χ(C(G)).

Let us show that either of the inequalities in (13) is sharp. The left one is realized
by any 2-chromatic graph G with all degrees even, as then χos(C(G)) = χ(C(G)) = 2.
We proceed to prove that the right inequality is attained for any complete graph:
namely, for every n ≥ 1 it holds that χos(C(Kn)) = n + 1.

Denote A = V (Kn),B = V (C(Kn))/A and for any v ∈ A let v̄ ∈ B be the leaf
adjacent to v. Consider an odd-dominating set D of C(Kn). Since N[v̄] = {v, v̄},
the set D contains exactly one member from each pair {v, v̄}. From this it follows
that at least one of the sets A/D A ∩D is empty. Indeed, for any v ∈ A/D we have
N[v] ∩D = {v̄} ∪ (A∩D), implying that ∣A∩D∣ ≡ 0 (mod 2). On the other hand, for
any v ∈ A ∩D we have N[v] ∩D = A ∩D, implying that ∣A ∩D∣ ≡ 1 (mod 2).

Now, as each intersection D ∩ {v, v̄} is a singleton, A/D = ∅ if and only if D = A.
For the same reason, A ∩D = ∅ if and only if D = B. It is readily seen that A is
an odd-dominating set of C(Kn) if and only if n ≡ 1 (mod 2). On the other hand,
B is always an odd-dominating set of C(Kn) (regardless of the parity of n). Since
D ∈ {A,B}, the basic equality (6) yields χos(C(Kn)) = χ([A]) + χ([B]) = n + 1.

3.3 Upper bound in terms of maximum degree

Most of the graphs considered in the previous subsection were found to admit an OS
coloring with color set {1,2, . . . ,2∆}. In fact, it easily follows from Propositions 2.2
and (6) that ∆ ≥ 3 is sufficient for such colorability.

Proposition 3.15. Let G be a graph of maximum degree ∆ ≥ 3. Then G admits an
OS coloring with color set {1,2, . . . ,2∆}.

Proof. Consider a minimum counter-example G. In view of the conclusion in the
proof of Observation 3.5, G is not a complete graph. Let us show that G is discon-
nected. Supposing the opposite, Proposition 2.2 applies to every subgraph of G. It
follows that the chromatic number of any subgraph of G is at most ∆. In particu-
lar, for any odd-dominating set D of G, we have χ(G[D]) ≤ ∆ and χ(G −D) ≤ ∆.
By combining a proper coloring of G[D] with color set {1,3,5, . . . ,2∆ − 1} and a
proper coloring of G−D with color set {2,4,6, . . . ,2∆}, we construct an OS coloring
of G with color set {1,2, . . . ,2∆}. The obtained contradiction confirms that G is
disconnected.

Since G is a counter-example, there exists a component H of G which does not
admit an OS coloring with color set {1,2, . . . ,2∆}. The minimality choice of G
implies that the maximum degree ∆(H) of H is less than ∆. Consequently, the
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chromatic number of any subgraph of H is at most ∆(H) + 1 ≤ ∆. However, then
the same construction used above produces an OS coloring of H with color set
{1,2, . . . ,2∆}, a contradiction.

The requirement ∆ ≥ 3 cannot be omitted, in view of Proposition 3.11. Hence,
we conclude the following.

Theorem 3.16. Let G be a connected non-trivial graph of maximum degree ∆. Then
G admits an OS coloring with color set {1,2, . . . ,2∆} if and only if G is not a cycle
Cn with n ≡ 1 or 5 (mod 6).

Note that the following straightforward consequence of Theorem 3.16 and Obser-
vation 3.9 is sharp for every odd value of ∆, by (10).

Corollary 3.17. Let G be a non-empty graph of maximum degree ∆. Then χos(G) ≤
2∆.

We end this subsection by sharing some of our initial thoughts regarding the
structure of (possible?) graphs G having sufficiently large maximum degree ∆ ≡
0(mod 2) and χos(G) = 2∆. Let D be a minimum (in terms of size) odd-dominating
set of such G. Due to the minimality choice of D, no component of G[D] is a copy
of K∆+1. Consequently, since χ(G[D]) +χ(G−D) = 2∆, it must be that χ(G[D]) =
χ(G − D) = ∆. From the equality χ(G[D]) = ∆ it follows that ∆(G[D]) = ∆.
Indeed, for otherwise ∆(G[D]) ≤ ∆ − 2 (as ∆ and G[D] are both even) implying
that χ(G[D]) ≤ ∆ − 1. Borodin and Kostochka [3] conjectured that if ∆(G) ≥ 9 and
ω(G) ≤ ∆(G) − 1 then χ(G) ≤ ∆ − 1. Beutelspacherf and Hering [1] independently
conjectured that this statement holds for sufficiently large ∆. Reed [24] confirmed the
latter by showing that ∆ ≥ 1014 suffices. So assuming that our even ∆ is sufficiently
large, it must be that ω(G[D]) = ∆. In other words, K∆ ⊆ G[D]. Any vertex
v ∈ V (K∆) of such a complete subgraph of G[D] has a neighbor v in D/V (K∆)
(again, since ∆ and G[D] are both even). Moreover, no two such v′ and v′′ coincide,
otherwise D/{v′, v′′} would be a smaller odd-dominating set of G. We conclude that a
corona C(K∆) appears as a subgraph of G[D]. Finally, note that ∆((G−D)) ≤ ∆−1
(because every vertex in V /D is dominated by some vertex in D). Thus, Brooks’
theorem implies ω(G−D) = ∆. In other words, a copy of K∆ is present within G−D
as well.

3.4 Sufficient conditions for χos = χ

We present two such conditions, and for each we derive equality of the OS chromatic
number and the ordinary chromatic number by using the basic equality (6) and the
fact that the former graph parameter is never less than the latter. The first sufficient
condition regards the parity of all vertex degrees.

Observation 3.18. Let G be a graph with all degrees even. Then χos(G) = χ(G).



Y. CARO ET AL. / AUSTRALAS. J. COMBIN. 85 (2) (2023), 195–219 208

Proof. Clearly, for every vertex v ∈ V (G) the closed neighborhood N[v] is odd-sized.
Consequently, V (G) is an odd-dominating set of G. So, in view of (6), we have that
χos(G) ≤ χ(G). The reversed equality holds in general.

The second sufficient condition refers to the presence of a vertex adjacent to every
other vertex (i.e., a universal dominating vertex).

Observation 3.19. Let G be a graph with a vertex v of degree deg(v) = ∣V (G)∣ − 1.
Then χos(G) = χ(G).

Proof. Clearly {v} is an odd-dominating set of G. Noting that χ(G − v) = χ(G) − 1,
it follows from (6) that χos(G) ≤ χ(G).

3.5 Complexity

It is well-known that the problem of determining the chromatic number of a graph
G is NP-complete as soon as χ(G) ≥ 3. Here we show NP-hardness of the problem
of determining the OS chromatic number.

Observation 3.20. Determining if χos(G) = 3 is NP-complete for 4-regular planar
graphs.

Proof. By Observation 3.18, for any planar graph G with all degrees even we have
χos(G) = χ(G). Since for 4-regular planar graphs deciding 3-colorability is NP-
complete [16] it follows that for 4-regular planar graphs the problem of deciding
odd-sum 3-colorability is also NP-complete.

Contrarily, similar to ordinary 2-colorability, OS 2-colorability can be efficiently
decided. This is implied by the following characterization of the graphs G satisfying
χos(G) = 2.

Observation 3.21. Let G be a non-trivial connected graph. Then χos(G) ≤ 2 if
and only if G is bipartite and there is a partition D ∪ B = V where D is an odd-
dominating set of G such that either D = V (and B is empty) or both D and B are
the independent sets forming the bipartition of G.

Proof. Assume χos(G) ≤ 2. As χos(G) ≥ χ(G) we have that G is bipartite. By (6),
there is an odd-dominating set D of G such that χ(G[D]) + χ(G −D) ≤ 2. Setting
B = V /D we have the desired partition D∪B = V . Indeed, if B is empty then D = V
(implying that G has all degrees even). Contrarily, if B is non-empty then both D
and B are independent sets (and from the connectedness of G it follows that {D,B}
is precisely the bipartition of G).

In the other direction, assume that G is bipartite and that there is a partition
D∪B = V , where D is an odd-dominating set of G with either D = V (and B empty)
or D,B being the two independent sets forming the bipartition of G. In both cases,
the basic equality (6) implies that χos(G) ≤ χ(G[D]) + χ(G[B]) ≤ 2.
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4 Extremal problems

In view of Corollaries 3.4 and 3.17, for every non-empty graph G it holds that

χos(G) ≤ min{∣G∣,2∆(G),2χ(G)} . (14)

Here we discuss possible realizations of certain aspects of (14). In particular, first
we characterize the equality χos(G) = ∣G∣ = 2∆(G). Afterwards, we point out to two
realizations of the equality χos(G) = ∣G∣ = 2χ(G). Finally, we briefly comment on
χos(G) = ∣G∣.

The equality χos(G) = ∣G∣ = 2∆(G). By Proposition 3.12, every graph G =Kn ◻
K2 with odd n satisfies χos(G) = ∣G∣ = 2∆(G). We show that these particular prism
graphs are the only realization of the considered equality.

Proposition 4.1. A graph G satisfies χos(G) = ∣G∣ = 2∆(G) if and only if G =
Kn ◻K2 and n is odd.

Proof. Begin by observing that every graph G for which χos(G) = ∣G∣ must be con-
nected. Indeed, for otherwise in any odd-sum χos(G)-coloring of G there is an odd
color with multiple occurrences (namely, in at least two components), making im-
possible the equality χos(G) = ∣G∣. Let us abbreviate ∆(G) to ∆ and ω(G) to ω. So,
assuming χos(G) = ∣G∣ = 2∆, the graph G is surely connected. Note that ∆ ≥ 1, and
equality implies G = K2 = K1 ◻K2. If ∆ = 2 then ∣G∣ = 4, hence G = P4 or G = C4.
However, neither works as χos(P4) = 3 and χos(C4) = 2. Consequently, if ∆ ≠ 1 then
∆ ≥ 3. By Observation 3.5, G ≠K∆+1. Thus ω ≤ ∆.

Consider an arbitrary odd-dominating set D of G. In view of (6), the equality
χos(G) = ∣G∣ implies that χ(G[D]) = ∣D∣ and χ(G−D) = ∣V /D∣. In other words, both
G[D] and G−D are complete graphs. Let us show that each is of order ∆. First note
that ∆(G−D) ≤ ∆−1 (because every vertex from V /D is dominated by some vertex
of D). Consequently, ∣V /D∣ ≤ ∆, which in turn gives ∣D∣ ≥ ∆. The strict inequality
∣D∣ > ∆ would imply G = K∆+1. Hence ∣D∣ = ∣V /D∣ = ∆, i.e., G[D] and G −D are
copies of K∆. Since D is an odd-dominating set of G, the graph G[D] is even. So ∆
must be odd. Now, as G[D] and G −D are (∆ − 1)-regular, the bipartite subgraph
H = G[D,V /D] of G has the following two properties: (i) for every x ∈D the degree
degH(x) ≤ 1, and (ii) for every y ∈ V /D the degree degH(y) = 1. From ∣D∣ = ∣V /D∣
it follows that E(H) is a perfect matching of G. In other words, G = Kn ◻K2 with
n = ∆ odd.

The equality χos(G) = ∣G∣ = 2χ(G). If G is a graph such that χos(G) = ∣G∣ =
2χ(G), then G is connected (because of χos(G) = ∣G∣) and non-complete (because of
∣G∣ = 2χ(G)). Once again, in view of the basic equality (6), for any odd-dominating

set D of G it holds that G[D] and G−D are complete graphs of order ∣G∣

2 . Moreover,

since G[D] is even, ∣G∣

2 must be odd, that is, ∣G∣ ≡ 2 (mod 4). The challenging part of
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the task of characterizing the equality χos(G) = ∣G∣ = 2χ(G) is to determine all possi-
ble realizations of the bipartite subgraph G[D,V /D] of G. Unfortunately, we weren’t
able to entirely resolve this issue. One realization is immediate by Proposition 3.12:
it comes with E(H) being a perfect matching of G, that is, when G = Kn ◻K2 and

n = ∣G∣

2 is odd. But unlike the previous extremal problem, this time those particular
prism graphs are not the only possible realization. Indeed, our next result demon-
strates another realization: H is obtained from Kn,n by removing the edges of a
Hamilton cycle.

Proposition 4.2. Let G = C4k+2, that is, G be the graph obtained from K4k+2 by
deleting the edge set of a Hamilton cycle. Then

χos(G) = ∣G∣ = 2χ(G) .

Proof. Letting n = 2k + 1, the graph G decomposes into two copies of Kn, with
corresponding vertex sets A and B, and a bipartite graph H[A,B] = Kn,n −E(C2n)
between them. We refer to the edges of the removed Hamilton cycle as the ‘missing
edges’. Thus every vertex is incident with two missing edges, and the endpoints of
every second missing edge on a traversing of C2n form a pair of non-adjacent vertices
in G (one from A and the other one from B). Hence, by assigning a distinctive
color from the set {1,2, . . . , n} to the members of each such pair we obtain a proper
n-coloring of G, which shows that χ(G) = n. Clearly, each of the sets A,B is an
odd-dominating set of G, and χ(G[A])+χ(G[B]) = 2n = ∣G∣ = 2χ(G). In view of the
basic equality (6), in order to show χos(G) = ∣G∣ = 2χ(G) it suffices to prove that A,B
are the only odd-dominating sets of G. So consider an arbitrary odd-dominating set
D of G. Let [D,V /D]mis be the spanning subgraph of C2n on the missing edges
having one endpoint in D and the other in V /D. Similarly, let [D]mis and [V /D]mis

be the induced subgraphs of C2n with vertex set D and V /D, respectively.

Suppose first that ∣D∣ ≡ 0 (mod 2). Then [D]mis is 1-regular. Indeed, as D is an
odd-dominating set, every vertex v ∈D is adjacent in G to an even number of vertices
from D/{v}. Consequently, v misses an odd number of vertices from D/{v}. And
since v misses in total two vertices in V /{v}, it follows that v is incident with exactly
one missing edge whose other endpoint is also in D, which proves the 1-regularity of
[D]mis. Moreover, we also deduce from this that every vertex of D is incident with
exactly one missing edge whose other endpoints lies in V /D. On the other hand, by
applying the same reasoning to our supposition that D is even-sized, we have that
every vertex of V /D is incident with an odd number (and thus exactly one) missing
edge towards D. So [D,V /D]mis is 1-regular as well. Now consider the sets A ∩D,
B∩D and A/D. The established 1-regularity of [D]mis implies that ∣A∩D∣ = ∣B∩D∣.
Analogously, the 1-regularity of [D,V /D]mis yields the equality ∣A/D∣ = ∣B ∩ D∣.
Therefore, ∣A ∩D∣ = ∣A/D∣, which in turn gives that ∣A∣ = 2∣A ∩D∣ is even. However,
this clearly contradicts with n = ∣A∣ being odd.

We conclude that ∣D∣ ≡ 1 (mod 2). Then every vertex of D is incident with an
even number (0 or 2) of missing edges whose other endpoint is in D. And similarly,
every vertex of V /D is incident with an even number (0 or 2) of missing edges
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towards D. Consequently, each of the graphs [D]mis, [D,V /D]mis and [V /D]mis is
even (i.e., has all degrees even). But [D]mis and [V /D]mis are also proper subgraphs
of C2n (since D,V /D ⊊ V ). Therefore, they are both empty, implying that every
missing edge has one endpoint in D and the other endpoint in V /D. However, this
means that D,V /D is a bipartition of the connected bipartite graph C2n, proving
that {D,V /D} = {A,B}.

The equality χos(G) = ∣G∣. Recall that every realization G must be connected.
And of course every complete graph works since χos(Kn) = n = ∣Kn∣ = χ(Kn). The
problem of characterizing all graphs that satisfy the considered equality is interest-
ing because, in a sense, those graphs are the cliques in regard to odd-sum colorings.
Unfortunately, we were not able to go significantly beyond the straightforward ob-
servation that every odd-dominating set D of G as well as its complement V /D must
induce (ordinary) cliques. Therefore, we confine here to only briefly discussing our
initial thoughts which perhaps disclose the difficulties of this particular characteri-
zation problem.

Observation 4.3. There is no graph G with χos(G) = ∣G∣ and χ(G) = ∣G∣ − 1.

Proof. Note that G is connected and non-complete. So ω ≤ ∣G∣ −1. It cannot be that
∆ = ∣G∣ − 1, otherwise G has a universal dominating vertex and Observation 3.19
applies giving χos(G) = χ(G) < ∣G∣. So ∆ ≤ ∣G∣−2. If ∆ ≤ 2 then G is either a path or
cycle, but Observations 3.7 and 3.9 discard this possibility. Hence ∆ ≥ 3 and Brooks
theorem applies, giving ∣G∣ − 1 = χ(G) ≤ max{∆, ω} ≤ ∣G∣ − 1. Hence ω = ∣G∣ − 1 > ∆,
contradicting the connectedness.

One naturally wonders next whether there are graphs G satisfying χos(G) = ∣G∣
and χ(G) = ∣G∣ − 2. Any possible realization must be a connected non-complete
graph. Moreover, as χ(G) = ∣G∣ − 2, it is implied that ω ≤ ∣G∣ − 2. The absence of
a universal dominating vertex guarantees that ∆ ≤ ∣G∣ − 2 as well. Consequently,
max{∆, ω} ≤ ∣G∣ − 2. Since it is easily checked that ∆ ≥ 3, Brooks theorem gives
that max{∆, ω} = ∣G∣ − 2. Combined with the connectedness of G, this implies that
∆ = ∣G∣ − 2. So χ(G) = ∆, and we leave at this here since clarifying the structure of
such graphs seems to be a very difficult point (see e.g. [20]).

5 Planar graphs

Let P be the class of all planar graphs, and let P∄△, O and B be the subclasses of
triangle-free planar graphs, of outerplanar graphs, and of bipartite planar graphs,
respectively. Moreover, for an invariant χ∗ and a graph class C define

χ∗(C) = max{χ∗(G) ∣ G ∈ C} .

It is well-known that χ(P) = 4 whereas χ(P∄△) = χ(O) = 3 and χ(B) = 2. In
view of the basic inequality (6), for any graph class C that is closed under taking
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subgraphs it holds that
χos(C) ≤ 2χ(C) .

Moreover, every graph G ∈ C admits an OS coloring with color set {1,2, . . . ,2χ(C)}.
In particular, every planar graph admits an OS coloring with color set {1,2,3,4,5,6,
7,8}, every triangle-free planar graph or outerplanar graph admits an OS coloring
with color set {1,2,3,4,5,6}, and every bipartite planar graph admits an OS coloring
with color set {1,2,3,4}. Consequently, χos(P) ≤ 8, χ(P∄△), χ(O) ≤ 6 and χ(B) ≤ 4.
In this section we show that each of the last four inequalities is in fact an equality.

Theorem 5.1. χos(P) = 8.

Proof. Consider the planar graph G depicted in Figure 1. It is readily seen that the
set D = {v1, v3, v4, v5, v6, v9, v11} is an odd-dominating set of G. Moreover, both of
the induced subgraphs G[D] and G−D contain a copy of K4 as a subgraph: indeed,
{v1, v3, v4, v6} ⊆D and {v2, v7, v8, v10} ⊆ V /D. Hence χ(G[D]) = χ(G −D) = 4.

v1

v5 v4 v3

v2
v7

v8

v9

v10

v11v6

Figure 1: An example of a planar graph that is not OS 7-colorable.

A simple calculation shows that det(A + I) = 1 over GF(2), meaning that A + I
is non-singular. (Here A denotes the adjacency matrix of G and I is the identity
square matrix of order ∣V (G)∣). Consequently, the above mentioned D is the only
odd-dominating set of G. In view of (6), we conclude that χos(G) = 4 + 4 = 8.

We have found dozens of planar graphs with χos = 8 and maximum degree 6, 7
or 8. So the considered graph G is by no means unique in realizing the equality
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χos(P) = 8. However it is of minimum possible order, as there are no such planar
graphs on fewer than 11 vertices.

Theorem 5.2. χ(P∄△) = χ(O) = 6.

Proof. The equality χ(P∄△) = 6 can be deduced from (11), as for every odd integer
n ≥ 3 the prism Cn ◻K2 is an example of a member of P∄△ that requires six colors
for an OS coloring.

Next we point out an infinite family of graphs that realize χ(O) = 6. Namely, for
every positive integer n divisible by 6, we exhibit a connected maximal outerplanar
graph G of order 6n + 1 such that χos(G) = 6. Start with a path Pn ∶ v1v2 . . . vn and
a copy of K1, form the join Pn ∨K1, and then attach a vertex w of degree 2 to the
vertices vn−2 and vn−1. The obtained graph is the promised G (see Figure 2).

v1

v2

v3 v4

v5

v6

w

u u
v1

v2

v3

v4

v5
v6 v7

v8
v9

v10

v11

v12

w

(n = 6) (n = 12)

Figure 2: Graph G for n = 6 (left) and for n = 12 (right).

In what follows we show thatG has only one odd-dominating set, namely {v1, vn−2,
vn−1,w}. Let us denote by u the vertex of degree n (coming from the copy of K1

joined to Pn). Consider an arbitrary odd-dominating set of G.

Claim 1. u ∉ D. Arguing by contradiction, suppose u ∈ D. Consequently, v1 ∈ D as
well. Indeed, for otherwise it must be that v2 ∉D,v3 ∉D, . . . , vn−2 ∉D. However, then
{vn−1,w} ∩D = N[w] ∩D is a singleton, implying ∣N[vn−2] ∩D∣ = 2, a contradiction.

Now, since uv1 ∈ D, it is forced that: v2 ∈ D, v3 ∉ D, v4, v5 ∈ D, . . ., vn−6 ∉ D,
vn−5, vn−4 ∈ D, vn−3 ∉ D and vn−2 ∈ D. There are two possibilities regarding w, each
of which yields a contradiction. Namely, if w ∈ D then vn−1 ∈ D as well (because
∣N[w] ∩D∣ is odd), and from this vn ∈ D (because ∣N[vn] ∩D∣ is odd); however, by
then ∣N[v0∩D]∣ = 2

3n+2 is even. Contrarily, if w ∉D then vn−1 ∉D as well, and from
this vn ∈D; but then ∣N[vn] ∩D∣ = 2.◇

Claim 2. v1 ∈ D. Again, for argument’s sake, suppose the opposite, that is, let
v1 ∉ D. Then v2 ∈ D, v3, v4 ∉ D, v5 ∈ D, . . ., vn−3, vn−2 ∉ D. But now it is forced
that {vn−1, vn} ∩D is a singleton. Indeed, if w ∈ D then vn−1 ∉ D, implying vn ∈ D.
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Contrarily, if w ∉ D then vn−1 ∈ D, and thus vn ∉ D. Either way, it follows that
∣N[v0] ∩D∣ = n

3 is even, a contradiction.◇

So far we have established that u ∉D and v1 ∈D. Consequently v2, v3 ∉D, v4 ∈D,
v5, v6 ∉ D, . . ., vn−4, vn−3 ∉ D and vn−2 ∈ D. If w ∉ D then vn−1 ∉ D as well, implying
that vn ∈D. However this would make ∣N[vn−1∩D]∣ = 2, a contradiction. We deduce
that w ∈ D, which in turn yields vn−1 ∈ D and vn ∉ D. In conclusion, we have that
D = {v1, vn−2, vn−1,w}.

Since both G[D] and G−D are outerplanar graphs containing a triangle, we have
that χ(G[D]) = χ(G−D) = 3. In view of the uniqueness of D, the basic equality (6)
proves that χos(G) = 6.

All graphs considered in the proof of Theorem 5.2 are 2-connected. Note that
among graphs of connectivity 1 there are more obvious examples that realize the
equalities in Theorem 5.2. In fact, for any given odd value ∆ ≥ 3 there exists
an outerplanar graph G of arbitrary large girth and maximum degree ∆ such that
χos(G) = 6. Indeed, simply take two copies of Cn with n odd, connect them by an
edge and to all other vertices add a leaf. It is easily seen that there are precisely two
odd-dominating sets of G: each consists of the vertex set of one copy of Cn and the
leaves attached to the other copy of Cn.

u1 u2 u3 u4

v1 v2

w1 w2 w3 w4

u0
v0
w0

u5
v3
w5

Figure 3: The theta graph Θ3,5,5.

In the proof of the next result we exhibit a family of bipartite planar graphs of
arbitrary large girth that require 4 colors for any OS coloring. Recall that a theta
graph Θk,l,m is a graph obtained by joining two vertices by three internally-disjoint
paths of length k, l and m. We use {v0v1⋯vk, u0u1⋯ul,w0w1⋯wm} with v0 = u0 = w0

and vk = ul = wm to denote a Θk,l,m (see Figure 3).

Theorem 5.3. χos(B) = 4.

Proof. Let G = Θk,l,m with k ≡ 3 (mod 6) and l,m ≡ 5 (mod 6). Note that G is planar
and of girth = min{k+ l, l+m,k+m}. Since G is also bipartite, χos(G) ≤ 4 by (7). We
show that χos(G) = 4. For argument’s sake suppose the opposite, that is, let there
be an odd-dominating set D of G such that χ(G[D]) + χ(G −D) ≤ 3.

Claim 1. χ(G−D) = 2. We may assume that u2 ∈D, otherwise either u1u2 or u2u3

is an edge in G −D. If u1 ∉ D then also u3 ∉ D and u4 ∉ D, hence u3u4 is an edge in
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G −D. So let u1 ∈ D. Consequently, ui ∈ D for all i = 0,1, . . . , k. Then v1, vk−1 ∉ D
or w1,wm−1 ∉ D, otherwise D = V (G) and thus ∣N[u0] ∩ D∣ = 4, a contradiction.
Since both l,m ≡ 5 (mod 6), by symmetry assume that v1, vk−1 ∉D. From v0 ∈D and
v1 ∉D it follows that v2 ∉D. So v1v2 ∈ E(G −D).◇

Since χ(G[D]) +χ(G−D) ≤ 3, it follows from Claim 1 that D is an independent
set.

Claim 2. v0, vk ∈ D. Suppose first that {v0, vk} ∩D is a singleton. By symmetry
let it be that v0 ∈ D and vk ∉ D. So v1 ∉ D (because D is independent). It follows
that v2 ∉ D, v3 ∈ D, v4, v5 ∉ D, . . . , vk−3 ∈ D and vk−2, vk−1 ∉ D. However then
N[vk−1] ∩D = ∅, a contradiction. Suppose now that {v0, vk}∩D is empty. It follows
that {v1, vk−1} ∩ D is a singleton. Indeed, if v1 ∈ D then v2, v3 ∉ D, v4 ∈ D, . . . ,
vk−2 ∈ D and vk−1 ∉ D; contrarily, if v1 ∉ D then v2 ∈ D, v3, v4 ∉ D, . . . , vk−3, vk−2 ∉ D
and vk−1 ∈ D. By symmetry, assume v1 ∉ D. Note that u1 ∈, for otherwise u2 ∈ D,
u3, u4 ∉ D, u5 ∈ D, . . . , ul−3 ∈ D and ul−2, ul−1 ∉ D; but then N[ul−1] ∩ D = ∅, a
contradiction. Now looking at N[v0] ∩D, we conclude that w1 ∉ D. However, this
yields a similar contradiction as it implies that w2 ∈ D, w3,w4 ∉ D, w5 ∈ D, . . . ,
wm−3 ∈D and wm−2,wm−1 ∉D, giving N[wm−1] ∩D = ∅.◇

As D is independent, if follows from Claim 2 that v1, vk−1, u1, ul−1,w1,wm−1 ∉ D.
In particular, since u0 ∈ D and u1 ∉ D, we conclude that u2 ∉ D, u3 ∈ D, u4, u5 ∉ D,
. . . , ul−2 ∈D and ul−1 ∉D. But then ∣N[ul−1] ∩D∣ = 2, a contradiction.

The graphs considered in the proof of Theorem 5.3 are of maximum degree ∆ = 3.
Note that for any odd value of ∆ ≥ 3 the generalized theta graph Θk,l1,l2,...,l∆−1

with
k ≡ 3 (mod 6) and l1, l2, . . . , l∆−1 ≡ 5 (mod 6) realizes the equality χos(B) = 4 amongst
graphs of maximum degree ∆.

6 Further work

We noted after Proposition 3.12 that for every χ ≡ 1 (mod 2) there is a graph G such
that χos(G) = 2χ(G). For χ = 2 there are analogous examples: one is G = C4 ◻K2

and another is G = P4 ⊍ C4. As for χ = 4 such an example is the graph used in the
proof of Theorem 5.1.

Problem 6.1. For each k ≥ 3 find graphs G such that χos(G) = 2χ(G) = 4k.

The analogous issue regarding realizations of the equality χos = 2∆ amongst
graphs with maximum degree ∆ is settled for every odd value of ∆ (e.g. Kn ◻K2

with n odd) and also for ∆ = 2 (e.g. P4 ⊍C4), but open for any even ∆ ≥ 4.

Problem 6.2. For each k ≥ 2 find graphs G such that χos(G) = 2∆(G) = 4k.

In Section 4 we discussed a possible characterization of the equality χos(G) =
2χ(G) = ∣G∣, and pointed out to at least two realizations: namely, G = Kn ◻K2 for
n ≡ 1 (mod 2) and G = Cn for n ≡ 2 (mod 4).
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Problem 6.3. Find other realizations of the equality χos(G) = 2χ(G) = ∣G∣.

As to the third possible upper bound χos(G) ≤ ∣G∣ and in view of Observation 4.3
we suggest the following.

Problem 6.4. Find more realizations of the equality χos(G) = ∣G∣.

We concluded the proof of Theorem 5.1 by mentioning that we have found dozens
of planar graphs with χos = 8 and maximum degree 6, 7 or 8. A peculiar feature of all
examples that we have found is that each has a unique odd-dominating set. Perhaps
this is no coincidence.

Problem 6.5. Find a planar graph G with χos(G) = 8 that has at least two odd-
dominating sets.

For 4-chromatic planar graphs we propose the following.

Conjecture 6.6. Every planar graph G maximum degree ∆ ≤ 5 has χos(G) ≤ 7.

In view of the remark given after Theorem 5.2, one naturally wonders the follow-
ing.

Question 6.7. Given an even value ∆ ≥ 4, is there a sufficiently large value g such
that all connected planar (or connected outerplanar) graphs of maximum degree ∆
and girth ≥ g are odd-sum 5-colorable?

Similarly, in the light of the last remark in the previous section, we ask the
following.

Question 6.8. Given an even value ∆ ≥ 4, is there a sufficiently large value g such
that all connected bipartite planar graphs of maximum degree ∆ and girth ≥ g are
odd-sum 3-colorable?

For a surface Σ, let us define the odd-sum chromatic number of Σ,

χos(Σ) = max
G↪Σ

χos(G),

as the maximum of χos(G) over all graphs G embedded into Σ.

The basic equality (6) implies that χos(Σ) ≤ 2χ(Σ), and Theorem 5.1 gives that
χos(S0) = 2χ(S0) = 8, where S0 is the sphere. Our result motivates the study of
this invariant for graphs on other surfaces. It would be interesting to have a similar
characterization to the Heawood number for other surfaces of higher genus.

Problem 6.9. Determine χos(Σg), where g is the Euler genus.

It is our belief that for some positive constant C, it turns out thatH(Σg)+C colors

always suffice, where H(Σg) = ⌊7+
√

1+28g
2 ⌋ is the Heawood number of the surface Σg.
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Recall that for any graph G, Ḡ denotes the complement of G, that is, the graph
defined on the vertex set of G so that an edge belongs to G if and only if it does
not belong to G. Nordhaus and Gaddum [21] studied the chromatic number in a
graph and in its complement together. They proved sharp lower and upper bounds
on the sum and on the product of χ(G) and χ(G) in terms of the order n of G.
For example, they showed that χ(G) + χ(G) ≤ n + 1. Since then, any bound on the
sum and/or the product of an invariant in a graph G and the same invariant in the
complement G of G is called a Nordhaus-Gaddum type inequality or relation.

Question 6.10. Is there a constant C such that for every graph G of order n it holds
that

χos(G) + χos(G) ≤ n +C ?

We hope that the provided generous list of questions, conjectures and open prob-
lems will spur further research in this direction. Recently, several questions posed
above were answered by D. W. Cranston. We refer the interested reader to [14].
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