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Abstract

We give a bijective proof of a result by Mantaci and Rakotondrajao from
2003, regarding even and odd derangements with a fixed number of ex-
cedances. We refine their result by also considering the set of right-to-left
minima.

1 Introduction and preliminaries

Let Sn be the symmetric group acting on the set [n] := {1, 2, . . . , n}. An integer
i ∈ [n] is said to be a fixed point of a permutation π ∈ Sn if π(i) = i. The set of
fixed points of π is denoted by FIX(π) and we set fix(π) := |FIX(π)|. Recall that
the set of derangements is defined as Dn := {π ∈ Sn : fix(π) = 0}.

An inversion in a permutation π is a pair (i, j), for 1 ≤ i < j ≤ n, such that
π(i) > π(j). The parity of the number of inversions, inv(π), in a permutation π
determines the parity of the permutation; π is even if inv(π) is even, otherwise π
is called an odd permutation. The sign of π, sgn(π) is defined as (−1)inv(π). The
set of even permutations in Sn is denoted Se

n and the set of odd permutations is
So
n. Let De

n and Do
n be the sets of even and odd derangements, respectively, in Dn.

Whenever S = {s1, . . . , sm} is a finite set of positive integers, we shall let xS denote
the product xs1xs2 · · ·xsm of (commuting) variables. By definition, x∅ := 1.

In order to state our results, we need to recall some standard notions and ter-
minology. For any function g : [n] −→ [n], let the set of excedances, excedance
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values, right-to-left minima indices, right-to-left minima values, and the number of
inversions respectively, be defined as

EXCi(g) := {j ∈ [n] : g(j) > j},
EXCv(g) := {g(j) : j ∈ EXCi(g)},
RLMi(g) := {i ∈ [n] : g(i) < g(j) for all j ∈ {i+ 1, . . . , n}},
RLMv(g) := {g(i) : i ∈ RLMi(g)},

inv(g) := |{(i, j) : 1 ≤ i < j ≤ n such that g(i) > g(j)}|.

Moreover, we denote exc(g) := |EXCi(g)| and rlm(g) := |RLMi(g)| = |RLMv(g)|.
Note that |EXCv(σ)| = |EXCi(σ)| = exc(σ), for any σ ∈ Sn, and indices which are
not excedances are called anti-excedances. Below we show three permutations in S7.
The first permutation has indices 3 and 6 as fixed-points, so it is not a derangement,
while the remaining two are.

Permutation, π inv(π) EXCi(π) RLMi(π) RLMv(π)

2135764 5 {1,4,5} {2,3,7} {1,3,4}
2153746 5 {1,3,5} {2,4,6,7} {1,3,4,6}
6713245 11 {1,2} {3,5,6,7} {1,2,4,5}

The right-to-left minima statistic and the excedance statistic behave quite differ-
ently. One can see that∑

π∈Sn

trlm(π) =
∑
π∈Sn

tc(π) =
n∑
k=1

S1(n, k)tk

where c(π) is the number of cycles in cycle representation of π and S1(n, k) is the
unsigned Stirling number of the first kind; see A008275. However,∑

π∈Sn

texc(π) =
n∑
k=1

An,kt
k−1

where An,k denote the Eulerian numbers, A008292.

It was shown1 by Mantaci and Rakotondrajao [7, Proposition 4.3], that for every
n ≥ 1 and 1 ≤ k ≤ n− 1,

|{π ∈ De
n : exc(π) = k}| − |{π ∈ Do

n : exc(π) = k}| = (−1)n−1. (1)

This refines a result by Chapman, stating that |De
n| − |Do

n| = (−1)n−1(n − 1); see
[2]. We find that Sivasubramanian provided an alternative proof for (1) by setting
a connection between determinants and signed- excedance enumeration of permuta-
tions, see [9]. In addition, a bijection proof (unlike the involution in this paper) has
been provided by Ksavrelof and Zeng, see [3], for (1).

In this paper, we provide a proof for a refinement of Equation (1) in Section 3,
namely:

1Their proof uses a recursion, rather than an explicit involution.

http://oeis.org/A008275
http://oeis.org/A008292
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Theorem 1.0.1. For n ≥ 1, we have that

∑
π∈Dn

(−1)inv(π)

 ∏
j∈RLMv(π)

xj

 ∏
j∈EXCv(π)

yj

 = (−1)n−1
n−1∑
j=1

x1· · ·xjyj+1· · ·yn. (2)

We prove Theorem 1.0.1 by exhibiting a bijection Ψ̂ : Dn → Dn with exactly
(n− 1) fixed-elements, where Ψ̂ acts as a sign-reversing involution outside the set of
fixed-elements. The bijection preserves the excedance value and right-to-left minima
permutation statistics, which gives the desired result. Moreover, Theorem 1.0.1
allows us to deduce Theorem 1.0.2, where we now consider indices instead of values.

Theorem 1.0.2. For n ≥ 1, we have that

∑
π∈Dn

(−1)inv(π)

 ∏
j∈RLMi(π)

xj

 ∏
j∈EXCi(π)

yj

 = (−1)n−1
n−1∑
j=1

y1· · ·yjxj+1· · ·xn. (3)

We include an alternative proof of the x1 = x2 = · · · = xn = 1 case of The-
orem 1.0.2 in Section 4. We note that Sivasubramanian also gave a slightly more
general proof in this case, see [8]. Again, Sivasubramanian used determinants as in
[9].

In Section 4, we provide a proof of the right-to-left minima analog (Corollary 4.1.4)
of the main result in [5].

2 Subexcedant functions

The involution we shall construct is not performed directly on permutations, but
rather on so-called subexcedant functions which are in bijection with permutations.
Our main reference is [6], where several fundamental properties are proved.

Definition 2.0.1. A subexcedant function f on [n] is a map f : [n] −→ [n] such that

1 ≤ f(i) ≤ i for all 1 ≤ i ≤ n.

We let Fn denote the set of all subexcedant functions on [n]. The image of f ∈ Fn
is defined as IM(f) := {f(i) : i ∈ [n]}.

We write subexcedant functions as words, f(1)f(2) . . . f(n). For example, the
subexcedant function f = 112352 has IM(f) = {1, 2, 3, 5}.

From each subexcedant function f ∈ Fn−1, one can obtain n distinct subexcedant
functions in Fn by appending any integer i ∈ [n] at the end of the word representing
f . Hence, the cardinality of Fn is n!. There is a bijection SEFToPerm : Fn −→ Sn,
described in [6], which is defined as the following composition (using cycle notation
for permutations):

SEFToPerm(f) := (n f(n)) · · · (2 f(2))(1 f(1)).
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Example 2.0.2. Let f = 112435487 ∈ F9. The permutation σ = SEFToPerm(f) is

σ = (9 7)(8)(7 4)(6 5)(5 3)(4)(3 2)(2 1)(1)

= (1 6 5 3 2)(4 9 7)(8)

= 6 1 2 9 3 5 4 8 7.

For σ ∈ Sn and j ∈ [n], it is fairly straightforward to see that we can compute
the jth entry of SEFToPerm−1(σ) via the recursive formula

SEFToPerm−1(σ)j :=

{
σ(n) if j = n,
SEFToPerm−1

(
(n σ(n)) ◦ σ

)
j

otherwise.
(4)

Note that
σ′ := (n σ(n)) ◦ σ (5)

is the result after interchanging n and the image of n in σ. Therefore, σ′(n) = n
and, by a slight abuse of notation, σ′ can be considered as a permutation in Sn−1.
Hence, the definition above is well-defined, and for simplicity, we use the shorthand
fσ := SEFToPerm−1(σ).

Example 2.0.3. We shall now show how to invert the calculation in Example 2.0.2.
We start with the permutation σ(9) =

(
1 2 3 4 5 6 7 8 9
6 1 2 9 3 5 4 8 7

)
using two line notation, and for

i > 1 we let σ(i−1) ∈ Si−1 be given by

σ(i−1) := (i σ(i)(i)) ◦ σ(i),

where we use the observation in Equation (5). Combining this recursion with Equa-
tion (4), we have

σ(9) =
(
1 2 3 4 5 6 7 8 9
6 1 2 9 3 5 4 87

)
fσ(9) = 7

σ(8) =
(
1 2 3 4 5 6 7 8
6 1 2 7 3 5 48

)
fσ(8) = 8

σ(7) =
(
1 2 3 4 5 6 7
6 1 2 7 3 54

)
fσ(7) = 4

σ(6) =
(
1 2 3 4 5 6
6 1 2 4 35

)
fσ(6) = 5

σ(5) =
(
1 2 3 4 5
5 1 2 43

)
fσ(5) = 3

σ(4) =
(
1 2 3 4
3 1 24

)
fσ(4) = 4

σ(3) =
(
1 2 3
3 12

)
fσ(3) = 2

σ(2) =
(
1 2
21

)
fσ(2) = 1

σ(1) =
(
1
1

)
fσ(1) = 1.

Thus, fσ = 112435487.

Proposition 2.0.4 (See [6, Prop. 3.5]). For fσ ∈ Fn we have that [n] \ IM(fσ) =
EXCv(σ). In particular, exc(σ) = n− | IM(fσ)|.

Since subexcedant functions are seen as maps g : [n] → [n], we have the notion
of right-to-left minima, fixed points, etc., as defined in the previous section. The
following proposition is reminiscent of [1, Property 1], but they consider a different
bijection (the Lehmer code) between permutations and subexcedant functions.
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Proposition 2.0.5. Let π ∈ Sn and fπ be the corresponding subexcedant function.
Then

(a) i ∈ RLMi(π) =⇒ π(i) = fπ(i),

(b) RLMv(π) = RLMv(fπ),

(c) RLMi(π) = RLMi(fπ).

Proof. We use induction over n, where the base case for n = 1 is trivial. Now let
π(n) ∈ Sn and define πn−1 ∈ S(n−1) as

π(n−1)(j) :=

{
π(n)(n) if π(n)(j) = n

π(n)(j) otherwise,
so that fπ(n)(j) =

{
π(n)(n) if j = n

fπ(n−1)(j) otherwise.
(6)

This is the same setup as in Example 2.0.3. By induction hypothesis, π(n−1) fulfills
properties (a), (b), and (c).
Now suppose i ∈ RLMi(π(n)). We must show that π(n)(i) = fπ(n)(i).
Case i = n: Here, π(n)(i) = fπ(n)(i), as this follows immediately Equation (6).
Case i < n: Now, either π(n)(i) = n or π(n)(i) = π(n−1)(i). But π(n)(i) = n is
impossible since π(n)(i) is a right-to-left minima and i < n. Hence

π(n)(i) = π(n−1)(i) and fπ(n)(i) = fπ(n−1)(i). (7)

Moreover, π(n)(i) < π(n)(t) whenever i < t ≤ n. But π(n)(t) = π(n−1)(t) whenever
π(n)(t) 6= n. Thus, π(n−1)(i) = π(n)(i) < π(n)(t) = π(n−1)(t) when π(n)(t) 6= n.
If π(n)(t) = n, then π(n−1)(t) = π(n)(n) > π(n)(i) = π(n−1)(i), by the first formula in
Equation (6).
In any case, π(n−1)(i) < π(n−1)(t), for i < n and whenever i < t ≤ n − 1. So i ∈
RLMi(π(n−1)). This fact, together with Equation (7) and the induction hypothesis,
finally gives

i ∈ RLMi(π(n)) implies that π(n)(i) = π(n−1)(i) = fπ(n−1)(i) = fπ(n)(i),

which completes the proof of property (a).
We proceed with (b). By definition of π(n−1), we have that

RLMv(π(n)) = (RLMv(π(n−1)) ∩ [π(n)(n)]) ∪ {π(n)(n)},
= (RLMv(fπ(n−1)) ∩ [fπ(n)(n)]) ∪ {fπ(n)(n)}
= RLMv(fπ(n)),

where the second equality follows from the induction hypothesis.
By the first property and the inductive hypothesis, we have

RLMi(π(n)) = {j ∈ RLMi(π(n−1)) : π(n−1)(j) ≤ π(n)(n)} ∪ {n}
= {j ∈ RLMi(fπ(n−1)) : fπ(n−1)(j) ≤ fπ(n)(n)} ∪ {n}
= RLMi(fπ(n)).

This concludes the proof of property (c).
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We say that f has a strict anti-excedance at i if f(i) < i. Let sae(f) denote the
number of strict anti-excedances in f .

Proposition 2.0.6 (See [6, Prop. 4.1]). The permutation σ is even if and only if
sae(fσ) is even.

A fixed point of f ∈ Fn is an integer i ∈ [n] such that f(i) = i. Moreover, i is a
multiple fixed point of f if:

1. f(i) = i and

2. there is some j > i such that f(j) = i.

Proposition 2.0.7 (See [6, Prop. 3.8]). We have that σ ∈ Dn if and only if all fixed
points of fσ are multiple.

3 An involution and its consequences

A subexcedant function f is matchless if it is of the form

f = 1 1 2 3 4 . . . k−1 k k . . . k for some 1 ≤ k ≤ n−1.

There are n−1 matchless subexcedant functions of length n. For example, for n = 10,
the following subexcedant functions are matchless:

1111111111, 1122222222, 1123333333,

1123444444, 1123455555, 1123456666,

1123456777, 1123456788, 1123456789.

Lemma 3.0.1 (Properties of matchless functions). Let fσ ∈ Fn be matchless. Then

σ = (1 k+1 k+2 . . . n k k−1 . . . 2).

Moreover,

(−1)inv(σ) = (−1)n−1, EXCv(σ) = [n] \ [k], and RLMv(σ) = [k].

Proof. The form of σ follows directly from Section 2. Since σ has only one cycle, its
sign is (−1)n−1. From the definition of fσ, we have that

IM(fσ) = [k] which implies EXCv(σ) = [n] \ [k],

by Proposition 2.0.4. Similarly, the last property follows from Proposition 2.0.5.

Note that for each k ∈ [n], there is a unique matchless subexcedant function such
that the corresponding permutation has n−k excedances. We shall see that this
property gives a combinatorial interpretation of the right-hand side of Mantaci and
Rakotondrajao’s identity (stated in (1) above).
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3.1 The involution

Let DFn := {fσ : σ ∈ Dn} and DF∗n := {fσ : σ ∈ Dn and fσ is not matchless}. In
other words, DFn is the set of subexcedant functions corresponding to derangements
of [n]. Note that every f ∈ DFn must have at least two 1’s in its row representation.
We also call σ a matchless derangement if fσ ∈ DFn is matchless, and we use D∗n to
denote the set of non-matchless derangements.

Our goal is now to define an involution Ψ : DFn −→ DFn, with the following
properties:

(i) The image is preserved, IM(Ψ(fσ)) = IM(fσ).

(ii) The set of right-to-left minima is preserved, RLMv(Ψ(fσ)) = RLMv(fσ).

(iii) The fixed-elements of Ψ consist of the matchless subexcedant functions.

(iv) The sign is reversed, sgn(Ψ(fσ)) = − sgn(fσ), whenever fσ ∈ DF∗n.

We shall define Ψ : DFn −→ DFn below, where fτ is short for Ψ(fσ). First, if
fσ is matchless, we set fτ := fσ. Now we fix some fσ ∈ DF∗n and let

IM(fσ) = {m1,m2,m3, . . . ,m`}.

Note that m1 = 1 and since fσ is non-matchless, we know that ` ≥ 2 in IM(fσ).
With these preparations, we define two auxiliary maps, fixi, unfixi on subexcedant
functions. For i ∈ {2, . . . , `},

fixi(fσ)(mi) := mi, unfixi(fσ)(mi) := mi−1

while the remaining entries of fσ are untouched. For i ∈ {2, . . . , `}, we say that fσ
satisfies ~i (or simply ~i holds if fσ is clear from the context) if the three conditions

fσ(mi) <mi <m`, f−1σ (1) = {1, 2}, and {mi + 1} ( f−1σ (mi), (~i)

hold. Note that

{mi + 1} ( f−1σ (mi) if and only if fσ(mi + 1) = mi and |f−1σ (mi)| ≥ 2.

Now let i ∈ {2, . . . , `} be the smallest element satisfying one of the cases below,
and let fτ be given as described in each case.

Case Ai: If fσ(mi) = mi, then fτ := unfixi(fσ).

Case Bi: If fσ(mi) <mi and |f−1σ (1)| ≥ 3, then fτ := fixi(fσ).

Case Ci: If ~i holds and fσ(mi+1) = mi+1, then fτ := unfixi+1(fσ).

Case Di: If ~i holds and fσ(mi+1) <mi+1, then fτ := fixi+1(fσ).
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Note that for the same i, the four cases are mutually exclusive. We emphasize that
by saying that a case with subscript i holds, this particular i ≥ 2 is the smallest i
for which the conditions one of the four cases hold.

Example 3.1.1. Consider the following four subexcedant functions in DF7.

1. Let fσ = 1133535. Then IM(fσ) = {1, 3, 5} and 2 is the smallest index
greater than 1 with fσ(m2) = fσ(3) = 3. Hence, fσ is in case A2 and
fτ = unfix2(fσ) = 1113535.

2. Now let fσ = 1121355. Then IM(fσ) = {1, 2, 3, 5}. Since fσ(2) < 2 and
|f−1σ (1)| = 3, then fσ is in case B2. Thus, fτ = fix2(fσ) = 1221355.

3. Suppose that fσ = 1123535, then IM(fσ) = {1, 2, 3, 5}. The index 2 does not
satisfy any of the four cases. So, we consider the next integer i = 3. We note
that ~3 holds and in addition, fσ(m4) = fσ(5) = 5. Hence, fσ fulfills C3 and
fτ = unfixi+1(fσ) = unfix4(fσ) = 1123335.

4. Now take fσ = 1123445. Then IM(fσ) = {1, 2, 3, 4, 5}. None of the four cases
for fσ are fulfilled with i ∈ {2, 3}. However, fσ satisfies ~4 and fσ(m5) =
fσ(5) = 4 <m5. Thus, we are in D4 and fτ = fix5(fσ) = 1123545.

Remark 3.1.2. Suppose Bi applies for fσ. Then, for sure fσ(m2) < m2, since
otherwise, we would be in the case A2. Hence, Bi may only apply when i = 2.

We have several things that need to be proved. In Lemma 3.1.3 we show that Ψ is
well-defined, and in Lemma 3.1.5, we show that the range is correct. In Lemma 3.1.6,
we show that Ψ preserves the image. Finally, in Lemma 3.1.7, we show that Ψ
preserves the right-to-left minima set. In Lemmas 3.1.8 and 3.1.9, we show that Ψ
is sign-reversing on DF∗n and Ψ is indeed an involution, respectively.

It is clear from the definition of Ψ that at most one of the cases applies for any
fσ ∈ DF∗n. For the well-definedness of Ψ, we must also verify that at least one of
the cases applies.

Lemma 3.1.3 (Well-defined). Let fσ ∈ DFn with ` elements in its image. If none
of the four cases (A,B,C,D) applies to fσ, then fσ is matchless.

Moreover, if no i ∈ {2, . . . , t} fulfills any of Ai,Bi,Ci,Di, conditions for some
t ∈ [`], and either t = ` or cases At+1 and Bt+1 do not hold, then

fσ(j) = max{1, j − 1}, for all j ∈ [t+ 1]. (8)

Consequently, the prefix

fσ(1) fσ(2) . . . fσ(t) fσ(t+ 1) (9)

is matchless. In addition, if ` = t, then

fσ = 1 1 2 3 . . . `−1 ` ` . . . `, (10)

which is matchless. Otherwise,

{fσ(t+ 2), . . . , fσ(n)} = {mt+1, . . . ,m`}. (11)



P. ALEXANDERSSON/AUSTRALAS. J. COMBIN. 86 (3) (2023), 387–413 395

Proof. We first note that (9) follows immediately from (8) and mi = i, for i ∈ [t]
by (9). The main statement follows from considering t = ` in (9). We shall use
induction on t in order to prove (8), (10), and (11).

Base case t = 1: In this case, {2, . . . , t} is empty. If ` = t = 1, then fσ = 1 1 1 · · · 1 1
(which is matchless). Otherwise, suppose that the cases At+1 and Bt+1 do not hold.

Since case A2 is not fulfilled, then fσ(m2) <m2 so fσ(m2) = 1. Hence, fσ(1) = 1
and fσ(2) = 1, otherwise fσ(2) = 2 which would violate our assumption.

Since case B2 is not fulfilled, although fσ(m2) < m2, then |f−1σ (1)| < 3. Thus,
f−1σ (1) = {1, 2}. Consequently, m2 = 2, since else fσ(3) = 3 and A2 would be
fulfilled. Hence, (11) follows.

Induction hypothesis: Suppose the statements hold for t = k, for some k ≥ 1.
We shall prove that they hold for t = k + 1.

For this purpose suppose that none of the cases (A,B,C,D) holds for i ∈ {2, 3, . . . ,
k + 1} and either ` = t = k + 1 or cases Ak+2 and Bk+2 are not satisfied. Then, by
the induction hypothesis, fσ(j) = max{1, j − 1}, for j ∈ [k + 1] and fσ starts with
1 1 2 3 · · · k−1 k, which is matchless. Since ` > k and the two cases (Ak+1, Bk+1)
are not fulfilled, (by the induction hypothesis) none of the elements in [k] belongs to
{fσ(k+2), . . . , fσ(`)}. So, fσ(k+2) ∈ {k+1, k+2}. We also have mi = i, for i ∈ [k].
We claim that mk+1 = k + 1. Otherwise, mk+1 > k + 1 and then fσ(mk+1) = mk+1,
which would satisfy case Ak+1.

If ` = k + 1, then fσ(k + 2) = mk+1 = k + 1 and

fσ = 1 1 2 3 · · · k−1 k k+1 k+1 · · · k+1,

indeed (8) and (10) holds.

Else, fσ(k + 2) = k + 1 and fσ starts with 1 1 2 3 · · · k−1 k k+1 since cases Ak+2

and Bk+2 are not fulfilled. Thus, (8) holds. And since neither of the two cases (Ci,
Di) holds for i ∈ [k+1], at least one of the conditions in ~i is not fulfilled. However,
fσ(mi) <mi <m` (since ` > k+1) and fσ(mi+1) = mi, for all i ∈ [k+1]. Moreover,
f−1σ (1) = {1, 2}. Thus, |f−1σ (mi)| = 1, for all i ∈ {2, . . . , k + 1}. Hence, none of the
elements in [k + 1] belongs to {fσ(k + 3), . . . , fσ(`)}, which proves (11).

Remark 3.1.4. If either Ci or Di holds, then ` > i, and both (8) and (11) hold
for t = i − 1. If, in particular, case Di is fulfilled, then fσ(mi+1) = mi since
mi+1 > fσ(mi+1) ∈ {mi, . . . ,m`}.

Lemma 3.1.5 (Correct range). If fσ ∈ DFn, then fτ := Ψ(fσ) ∈ DFn.

Proof. If fσ is matchless, then we are done. Suppose that fσ ∈ DF∗n and i ≥ 2
satisfies one the cases in (Ai, Bi, Ci, Di). By Proposition 2.0.7, it suffices to show
that all fixed-points of fτ are multiple.

In the case of either Ai or Ci, there will be no new fixed point created in fτ since
fτ = unfixr(fσ), for r ∈ {i, i + 1}. So all the fixed points of fσ remain multiple in
fτ too except for mr, which is not fixed in fτ .
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If the case Bi is fulfilled, then i = 2 by Remark 3.1.2, and fσ(m2) = 1. Moreover,
fτ (m2) = m2 and there is some j > m2 such that fτ (j) = fσ(j) = m2. That is, m2

is a multiple fixed point in fτ . And so is 1 since |f−1σ (1)| ≥ 3 implies |f−1τ (1)| ≥ 2.

If the case Di is fulfilled, then fσ(mi+1) = mi by Remark 3.1.4, and there is
some j > mi+1 such that fτ (j) = fσ(j) = mi+1. Consequently, fτ (mi+1) = mi+1 is
a multiple fixed point in fτ while mi is not a fixed point in both fσ and fτ .

Lemma 3.1.6 (Image-set preserving). For fτ = Ψ(fσ), we have

IM(fσ) = IM(fτ ) and EXCv(σ) = EXCv(τ). (12)

Proof. First note that IM(fτ ) ⊆ IM(fσ), which clearly follows from the definition of
Ψ. Now suppose that one of the cases in (Ai, Bi, Ci, Di) is satisfied for i ≥ 2. Recall
that the map Ψ first removes an element in position mr, for r ∈ {i, i+ 1}, in fσ and
then insert another element on the same position to obtain fτ . So, it is enough to
show that the removed element is in IM(fτ ) for IM(fσ) = IM(fτ ) to hold.

In the case of Ai or Ci, fτ = unfixr(fσ) and there is some j > mr such that
mr = fσ(j) = fτ (j) since mr is a multiple fixed point in fσ in these cases. So
mr ∈ IM(fτ ).

If Bi holds, then fσ(mi) = 1, since i = 2 (by Remark 3.1.2). Moreover, fτ (mi) =
mi. However, |f−1σ (1)| ≥ 3. So, |f−1τ (1)| ≥ 2 and then 1 ∈ IM(fτ ).

Finally, suppose case Di is fulfilled. Then by Remark 3.1.4, fσ(mi+1) = mi. We
can now conclude that mi ∈ IM(fτ ), since |f−1σ (mi)| ≥ 2.

Therefore, the first equality in (12) is proved, while the second follows from
Proposition 2.0.4.

Lemma 3.1.7. For fτ = Ψ(fσ) we have

RLMv(fσ) = RLMv(fτ ) and RLMv(σ) = RLMv(τ). (13)

Proof. Let fσ ∈ DFn. If fσ is matchless, then fτ = fσ and RLMv(fσ) = RLMv(fτ ).
Suppose fσ is non-matchless, so that one of the four cases applies.

Case Ai: Then fσ(mi) = mi and fτ (mi) = mi−1. Moreover, there is some j > mi

such that fτ (j) = fσ(j) = mi. The property of mi being a right-to-left
minimum in fσ as well as fτ is determined either at the position j or to
the right of j. Hence, replacing mi by mi−1 at position mi, preserves mi

being (or not) a right-to-left minimum.

• If i ≥ 3, then mi is the leftmost occurrence of mi−1 in fτ , since i is
the smallest such that fσ(mi) = mi. Since IM(fσ) = IM(fτ ), there
is some k > mi such that fτ (k) = fσ(k) = mi−1. So, RLMv(fσ) =
RLMv(fτ ).

• If i = 2, then mi−1 = m1 = 1 ∈ RLMv(fτ ). Since 1 ∈ RLMv(fσ),
then RLMv(fσ) = RLMv(fτ ).
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Case Bi: Then i = 2 and fσ(m2) = m1 = 1 and fτ (m2) = m2. Moreover, there
is some k > m2 such that fτ (k) = fσ(k) = m2. Since the right-to-left
minimum property of m2 is determined at or to the right of the kth position
and 1 ∈ RLMv(fτ ), we have RLMv(fσ) = RLMv(fτ ).

Case Ci: Then fσ(mi+1) = mi+1 and fτ (mi+1) = mi. We claim thatmi ∈ RLMv(fσ).
Otherwise, there are r < i and s > j, such that fσ(s) = mr, where j is the
rightmost position of mi in fσ. But now, |f−1σ (mr)| ≥ 2 (by Lemma 3.1.3)
and so ~r is fulfilled and case Dr holds. This contradicts the choice of i
being minimal, and the claim follows.
Since mi+1 being a right-to-left minimum is determined at some other
position k > mi+1 where fτ (k) = fσ(k) = mi+1, we can conclude that
RLMv(fσ) = RLMv(fτ ).

Case Di: There is some i ≥ 2 such that fσ(mi+1) = mi < mi+1 (by Remark 3.1.4)
and fτ (mi+1) = mi+1. We also know that mi ∈ RLMv(fσ). Since mi+1 >
mi, we have mi ∈ RLMv(fτ ).
Now, mi+1 being a right-to-left minimum is determined at some position
k > mi+1 where fτ (k) = fσ(k) = mi+1. Hence, we can conclude that
RLMv(fσ) = RLMv(fτ ).

The second equality in (13) follows from Proposition 2.0.5.

Lemma 3.1.8. If fσ ∈ DF∗n, then

sae(Ψ(fσ)) ∈ {sae(fσ)− 1, sae(fσ) + 1} .

Moreover, if fτ = Ψ(fσ), then σ and τ have different parity.

Proof. The first statement follows from the fact that fixi and unfixi decreases and
increases, respectively, the number of strict anti-excedances by one. The second
statement follows from the first by Proposition 2.0.6.

Lemma 3.1.9. The map Ψ : DFn −→ DFn is an involution.

Proof. Let fσ ∈ Fn with IM(fσ) = {m1,m2,m3, . . . ,m`} and set fτ = Ψ(fσ). For
matchless fσ, there is nothing to show. Now assume that one of (Ai, Bi, Ci, Di)
holds for fσ and one of (Ai′ , Bi′ , Ci′ , Di′) holds fτ , for i, i′ ∈ {2, . . . , l}.

Case Ai: We have fσ(mi) = mi, and fτ = unfixi(fσ).

• If |f−1τ (1)| ≥ 3, then i = 2.

Suppose i ≥ 3. Then |f−1σ (1)| < 3 since otherwise fσ would be in case Bj for
some j < i. Thus, |f−1σ (1)| < |f−1τ (1)| and then there is some r ∈ [n] such that
fτ (r) = 1 6= fσ(r). However, r = mi since fτ and fσ differs only on position mi.
So, fτ (mi) = 1 = mi−1 and this only happens if i = 2.

Hence, i = 2 and m2 ∈ f−1τ (1) \ f−1σ (1). There is now some h > m2 such that
fτ (h) = fσ(h) = m2 since fσ ∈ DFn. So, fτ satisfies the conditions for case Bi′

with i′ = i. It follows that Ψ(fτ ) = fσ.
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• If |f−1τ (1)| = 2, then f−1τ (1) = f−1σ (1). Because we always have f−1σ (1) ⊆ f−1τ (1)
in Ai and Ci, and since |f−1σ (1)| ≥ 2, we must have equality. Moreover, i ≥ 3
since otherwise fτ (m2) = 1 and then |f−1τ (1)| > |f−1σ (1)|.

By applying Lemma 3.1.3 for t = i− 2, the first i− 1 entries of fσ and fτ are

1, 1, 2, 3, . . . , i−3, i−2,

and mj = j, for all j ∈ [i− 2]. In addition, |f−1σ (j)| = 1 otherwise fσ would lie
in case Dj holds for some j ∈ [i− 2]. Hence, fσ(i) ∈ {i−1, i}.

If fσ(i) = i, then mi = i (since fσ is in case Ai) and fτ (i) = mi−1 = i− 1 since
i − 2 = mi−2. Thus, there exists some s > i such that fτ (s) = fσ(s) = i − 1.
Then

fσ = 1 1 2 3 · · · i−3 i−2 i · · · i−1 · · · i · · ·
fτ = 1 1 2 3 · · · i−3 i−2 i−1 · · · i−1 · · · i · · ·

or
fσ = 1 1 2 3 · · · i−3 i−2 i · · · i · · · i−1 · · ·
fτ = 1 1 2 3 · · · i−3 i−2 i−1 · · · i · · · i−1 · · · .

Now we can see that fτ satisfies the conditions in ~i′ , for i′ = i− 1:

fτ (mi−1) = fτ (i− 1) = i− 2 <mi−1 <m` (since ` ≥ i), f−1τ (1) = {1, 2},

fτ (mi−1 + 1) = fτ (i) = i− 1 = mi−1, and |f−1τ (mi−1)| ≥ 2.

Hence, fτ fulfills case Di′ for i′ = i− 1 and Ψ(fτ ) = fσ.

If fσ(i) = i− 1, then mi−1 = i− 1 and mi > i. Thus, fτ (mi) = i− 1. Moreover,
|f−1σ (i− 1)| = 1. Otherwise, fσ would satisfy ~i whence either Ci or Di would
be fulfilled. This implies that f−1τ (i − 1) = {i,mi}. Now, it is easy to see that
fτ satisfies the conditions in ~i′ for i′ = i− 1. Therefore, fτ fulfills the case Di′

for i′ = i− 1 and Ψ(fτ ) = fσ.

Case Bi: Then i = 2 and fτ = fix2(fσ). We have that fτ (m2) = m2 and fτ belongs
to Ai′ for i′ = i, so Ψ(fτ ) = fσ.

Case Ci: In this case, ~i hold, which state that

fσ(mi) <mi <m`, f
−1
σ (1) = {1, 2}, fσ(mi + 1) = i, and |f−1σ (mi)| ≥ 2.

And also fσ(mi+1) = mi+1.

Since fτ = unfixi+1(fσ) and i ≥ 2, we have fτ (mi) < mi < m` and
f−1τ (1) = {1, 2}. And also since fσ(mi + 1) = mi and fσ(mi+1) = mi+1,
we have mi + 1 6= mi+1. This implies that fτ (mi + 1) = fσ(mi + 1) = mi.
We also have that |f−1τ (mi)| ≥ 3, since |f−1σ (mi)| ≥ 2 and fτ (mi+1) = mi.
Hence, fτ satisfies the conditions in ~i′ for i′ = i and then it belongs to
Di′ . It follows that Ψ(fτ ) = fσ.
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Case Di: Again, we have ~i for fσ, and fσ(mi+1) <mi+1. Moreover, fσ(mi+1) = mi

(from Remark 3.1.4). Recall, fτ = fixi+1(fσ). We also have that fτ (mi) =
fσ(mi) < mi < ml, f−1τ (1) = {1, 2}, and fτ (mi+1) = mi+1. We shall now
consider two subcases.

• Suppose mi+1 <mi+1 and |f−1σ (mi)| ≥ 3. We have that fτ (mi+1) =
fσ(mi + 1) = mi. Then |f−1τ (mi)| ≥ 2 (then ~i is satisfied for fτ )
and fτ belongs to case Ci′ for i′ = i.

• Otherwise, |f−1τ (mi)| = 1 if mi + 1 < mi+1 and |f−1σ (mi)| = 2. On
the other hand, fτ (mi + 1) = fτ (mi+1) = mi+1 if mi + 1 = mi+1.
Then ~i will not be satisfied for fτ in both cases. Therefore, fτ lies
in case Ai′ for i′ = i+ 1.

In both cases, Ψ(fτ ) = fσ.

Remark 3.1.10. In Table 1, we give an overview under what circumstances a subex-
cedant function belonging to a case, is mapped to a different case.

fσ ∈ Ai fσ ∈ Bi fσ ∈ Ci fσ ∈ Di

fτ ∈ Ai′ ∅ Always,
(i′ = i)

∅ fτ does not fulfill
Equation (~i), (i′= i)

fτ ∈ Bi′ |f−1τ (1)| ≥ 3,
(i′ = i)

∅ ∅ ∅

fτ ∈ Ci′ ∅ ∅ ∅ fτ fulfills Equa-
tion (~i), (i′ = i+ 1)

fτ ∈ Di′ |f−1τ (1)| = 2,
(i′ = i− 1)

∅ Always,
(i′ = i)

∅

Table 1: When fτ = Ψ(fσ), we have the combinations under the conditions described
in the cells of the table.

Example 3.1.11. Consider the following subexcedant functions.

1. fσ = 1133535 satisfies case A2. However, its image, fτ = 1113535, lies in case
B2.

2. fσ = 1124545 satisfies case A3. Then, its image, fτ = 1122545, lies in case D2.

3. fσ = 1121355, which is in case B2, mapped to fτ = 1221355 that belongs to
case A2.

4. fσ = 1123535 satisfies case C3. Nevertheless, the image fτ = 1123335 appears
in case D3.
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5. fσ = 11233353 is in case D3. The image, fτ = 11235353, is in case C3.

6. fσ = 1123445 is in case D4. However, its image, fτ = 1123545, is in case A5.

We conclude this subsection by listing all properties proved for Ψ.

Corollary 3.1.12. The map Ψ : DFn −→ DFn is an involution with the following
properties.

(i) The image is preserved, IM(Ψ(fσ)) = IM(fσ).

(ii) The set of right-to-left minima is preserved, RLMv(Ψ(fσ)) = RLMv(fσ).

(iii) Whenever fσ ∈ DF∗n,
sae(Ψ(fσ)) = sae(fσ)± 1.

We now have an involution on derangements Ψ̂ : Dn → Dn by setting

Ψ̂(σ) := (SEFToPerm ◦Ψ ◦ SEFToPerm−1)(σ), for σ ∈ Dn.

Corollary 3.1.13. The involution Ψ̂ satisfies the properties below:

(i) The excedance value set is preserved, EXCv(Ψ̂(σ)) = EXCv(σ).

(ii) The set of right-to-left minima is preserved, RLMv(Ψ̂(σ)) = RLMv(σ).

(iii) Whenever σ ∈ D∗n, sgn(Ψ̂(σ)) = − sgn(σ).

3.2 Consequences

Before stating the main theorem, we shall first introduce two auxiliary involutions
on Sn, and prove some of their properties. Let flip : Sn → Sn be the map

flip(σ)(k) := n+ 1− σ(k) for k ∈ [n],

and let ζ : Sn → Sn be the composition ζ := flip−1 ◦( · )−1 ◦ flip . In other words,

ζ(σ)(k) := n+ 1− σ−1(n+ 1− k) for k ∈ [n].

Lemma 3.2.1. The map ζ is an involution, and

EXCv(π) = {n+ 1− k : k ∈ EXCi(ζ(π))},
RLMv(π) = {n+ 1− k : k ∈ RLMi(ζ(π))},

FIX(π) = {n+ 1− k : k ∈ FIX(ζ(π))},
inv(π) = inv(ζ(π)).

In particular, ζ restricts to a sign-preserving involution ζ : Dn → Dn.



P. ALEXANDERSSON/AUSTRALAS. J. COMBIN. 86 (3) (2023), 387–413 401

Proof. It follows immediately from the definition that ζ is an involution. For the
first property, let i ∈ [n] and set j := n+ 1− i. We then see that

i ∈ EXCv(π) if and only if n+ 1− π−1(i) > n+ 1− i.

Replacing i by n+ 1− j, we have that

n+ 1− π−1(n+ 1− j) > j.

That is, ζ(π)(j) > j, which is equivalent with

i ∈ {n+ 1− k : k ∈ EXCi(ζ(π))}.

Now for the right-to-left minima, again with j := n+ 1− i, we have

i ∈ {n+ 1− k : k ∈ RLMi(ζ(π))} if and only if ζ(π)(j) < ζ(π)(t)

whenever j < t ≤ n.

By definition of ζ, we have

π−1(n+ 1− j) > π−1(n+ 1− t) whenever j < t ≤ n.

And then change variables to get

π−1(i) > π−1(k) whenever k ∈ [i− 1].

That is, every k ∈ [i− 1] lies to the left of i in π. Thus, i ∈ RLMv(π).
Similarly, with i ∈ [n], j := n+ 1− i,

i ∈ FIX(π) if and only if π−1(i) = i,

which is equivalent with

π−1(n+ 1− j) = n+ 1− j.

That is, ζ(π)(j) = j by definition of ζ. Hence, j ∈ FIX(ζ(π)) and so is i.
This last property also shows that ζ is an involution on Dn.
Finally, we have that

inv(ζ(π)) = |{(i, j) : 1 ≤ i < j ≤ n such that ζ(π)(i) > ζ(π)(j)}|
= |{(i, j) : 1 ≤ i < j ≤ n such that π−1(n+ 1− i) < π−1(n+ 1− j)}|
= |{(n+ 1− k, n+ 1− l) : 1 ≤ l < k ≤ n such that π−1(k) < π−1(l)}|
= |{(l′, k′) : 1 ≤ l′ < k′ ≤ n such that π−1(k′) < π−1(l′)}|
= inv(π),

so ζ preserves the number of inversions. In particular, ζ preserves the sign.

We are now ready to prove the main theorems in this paper.
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Proof. (Proof of Theorems 1.0.1 and 1.0.2) By applying the involution Ψ̂ and
using all the properties listed in Corollary 3.1.13, all terms in the left-hand side of
Equation (2) cancel, except the terms with π /∈ D∗n. Thus, the left-hand side of
Equation (2) equals ∑

π/∈D∗n

(−1)inv(π)xRLMv(π)yEXCv(π).

By Lemma 3.0.1, this sum is equal to

n−1∑
k=1

(−1)n−1x[k]y[n]\[k],

which is the right-hand side of Equation (2).

Let ρ(S) := {n + 1 − s : s ∈ S} whenever S ⊆ [n]. By applying the change of
variables xi 7→ xn+1−i, yj 7→ yn+1−j on both sides of Equation (2), we get

∑
π∈Dn

(−1)inv(π)xρ(RLMv(π))yρ(EXCv(π)) = (−1)n−1
n−1∑
j=1

xn · · · xn+1−j · yn−j · · · y1

= (−1)n−1
n−1∑
j′=1

xj′+1 · · ·xn · y1 · · · yj′ .

Now by Lemma 3.2.1,∑
π∈Dn

(−1)inv(π)xρ(RLMv(π))yρ(EXCv(π)) =
∑
π∈Dn

(−1)inv(ζ(π))xRLMi(ζ(π))yEXCi(ζ(π)).

Since ζ sends Dn to Dn, the last sum must be exactly the left-hand side of Equa-
tion (3), and we are done.

Corollary 3.2.2. By letting xj → 1 and yj → t, we have that∑
π∈Dn

(−1)inv(π)texc(π) = (−1)n−1(t+ t2 + · · ·+ tn−1).

By comparing coefficients of tk, we get Equation (1). In a similar manner,∑
π∈Dn

(−1)inv(π)trlm(π) = (−1)n−1(t+ t2 + · · ·+ tn−1).

4 A simpler proof in the excedance case

We shall first define an involution ι : Sn → Sn such that for π ∈ Sn,

1. EXCi(ι(π)) = EXCi(π),

2. sgn(ι(π)) = − sgn(π) if ι(π) 6= π,
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3. sgn(π) = (−1)exc(π) if ι(π) = π,

4. for each E ⊆ [n−1], there is a unique π with ι(π) = π such that EXCi(π) = E.

We shall now describe ι, which is essentially the one given in [5].

Definition 4.0.1. Define a mapping ι : Sn → Sn by ι(π) = π′, where π′ is obtained
from π by swapping π(l) and π(m), where

(l,m) = max{(i, j) : 2 ≤ i < j ≤ n and either i, j ∈ EXCi(π) or i, j /∈ EXCi(π)}

with respect to lexicographical order, so that EXCi(π′) = EXCi(π). It can be defined
as ι(π) = (l,m)π if π is in cycle form. If there is no such (l,m), then ι(π) = π and
we say that π is critical.

From the definition, it is clear that (1) and (2) hold. We must show that (3) and
(4) hold as well, which are done in Proposition 4.0.4.

Lemma 4.0.2. Suppose π ∈ Sn, and that i, j ∈ EXCi(π) with i < j. If π(i) > j,
then π is not critical.

Similarly, if i′, j′ /∈ EXCi(π) such that i′ < j′ with π(j′) ≤ i′, then π is not
critical.

Proof. After swapping π(i) and π(j), both i and j remain excedances since π(j) >
j > i and π(i) > j. Hence, π is not critical as there is at least one pair of entries
where we can perform a swap as in the definition of ι. A similar argument proves
the second statement.

Corollary 4.0.3. Suppose π ∈ Sn with EXCi(π) = {j1, . . . , jk} and [n]\EXCi(π) =
{i1, . . . , in−k}. Then, π is critical iff

j1 < π(j1) ≤ j2 < π(j2) ≤ j3 < π(j3) ≤ · · · ≤ jk < π(jk) and
π(i1) ≤ i1 < π(i2) ≤ i2 < π(i3) ≤ i3 < · · · < π(in−k) ≤ in−k = n.

(14)

Moreover, if in−k−1 < j1, then

i1 < i2 < · · · < in−k−1 < j1 < j2 < · · · < jk < in−k

and it follows directly that

π = (n− k n− k + 1 . . . n− 1 n) (15)

with inv(π) = exc(π).

Proof. The forward statement follows directly from Corollary 4.0.3. Now suppose
that (14) holds. Then

π(js) ≤ js′ and ir < π(ir′), for s < s′ and r < r′.

However, after swapping π(js) and π(js′), js remains an excedance while js′ is not
since π(js′) > js′ > js and π(js) ≤ js′ . Similarly, swapping π(ir) and π(ir′) preserves
ir′ being an anti-excedance but not ir since π(ir) < ir < ir′ and π(ir′) > ir. Thus, π
is critical.
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The following is similar to an argument in [5], where a slightly different2 approach
is taken.

Proposition 4.0.4. Let E = {j1, j2, . . . , jk} ⊆ [n − 1], and define πE ∈ Sn with
excedance set E via

πE(js) = js + 1 for each js ∈ E,
πE(ir) = ir−1 + 1 for each ir ∈ [n] \ E, (i0 := 0).

Then πE is the unique critical permutation in Sn with EXCi(πE) = E, and inv(πE) =
|E|.

Proof. We first show that πE is critical, so assume it is not. Then swapping πE(js)
and πE(js′), for s < s′, produces a π′E from πE with the same set of (anti)excedances.
However, π′E(js′) = js + 1 < js′ + 1 implies π′E(js′) ≤ js′ . So, the set of excedances
is not preserved. A similar argument shows that we cannot swap a pair of anti-
excedances either.

Now we have established that πE is critical, we must show that there are no other
critical permutations in Sn with E as excedance set.

We proceed by (strong) induction over n. The base case n = 1 is trivial. And if
π(n) = n, then the statement follows easily by induction hypothesis. From now on
we consider π−1(n) < n.

First we handle the case |E| = n− 1 where E = {1, 2, . . . , n− 1}. There is only
one permutation with E as excedance set, namely π = (1 2 . . . n) in cycle form, and
this is exactly πE, where inv(πE) = |E|.

Suppose now that |E| = k < n−1, E = {j1, . . . , jk}, and {i1, . . . , in−k} be the set
of anti-excedances of some critical permutation π. Let h ∈ [n] be the largest integer
such that jh < in−k−1. If there is no such h, then E = {n − k, . . . , n − 2, n − 1}
and π is of the form given in (15) and the statement holds. So now, there is some
m ∈ [n − k] such that jh + 1 = in−k−m, and the permutation π has the following
structure:

π =

 1 2 · · · jh in−k−m · · · in−k−1 jh+1 · · · jk n
π(1) π(2) · · · π(jh) π(in−k−m) · · · π(in−k−1) π(jh+1) · · · π(jk) π(n)

.
We have that

jh+1 < π(jh+1), jh+2 < π(jh+2), jk < π(jk),

and taking (14) into account, this is only possible if

π(jh+1) = jh+2, π(jh+2) = jh+3, . . . , π(jk) = n,

or h = k and π(jh) = n.
Suppose now π(jh) > in−k−1. Then by (14), either π(jh) = jh+1, or h = k and

π(jh) = n. In either case, we must have that π(in−k) ≤ jh+1 − 1 = in−k−1 then
π(n) = in−k−1 by (14), and π(in−k−1) < in−k−1. But this is not possible, as π would

2We note that the original proof has a few typographical errors.
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not be critical (we could swap the values at positions n − k − 1 and n). Hence,
π(jh) ≤ in−k−1.

It follows that π sends {1, 2, . . . , in−k−1} to itself and that π(n) = in−k−1 + 1.
Hence, the value of π(s) is uniquely determined for all s > in−k−1. So, π restricts to
a critical permutation π′ acting on [in−k−1]. By induction, π′ is uniquely determined
by E ∩ [in−k−1] with so it follows that π is unique and of the form πE. Also by
induction, inv(π′) = h = |E ∩ [in−k−1]|, and finally

inv(π) = inv(π′) + (k − h) = h+ (k − h) = |E|.

Example 4.0.5. Let n = 4 and consider all permutations with two excedances. We
have 7 even permutations with two excedances, and 4 odd permutations. The sign-
reversing involution should therefore have

(
3
2

)
= 3 fixed-points, all with even sign

(−1)2.

Even Odd
1342
2143
2314
2431 2413
3241 3142
3412 3421
4321 4312

Proposition 4.0.4 now immediately gives a bijective proof of the following result,
which is essentially due to Mantaci in [5] (albeit stated in terms of anti-excedances
instead of excedances).

Proposition 4.0.6. Let n ≥ 1, then∑
π∈Sn

(−1)inv(π)xEXCi(π) =
∏

j∈[n−1]

(1− xj) =
∑

E⊆[n−1]

(−1)|E|xE. (16)

In particular, by setting all xi equal to t, we have∑
π∈Se

n

texc(π) −
∑
π∈So

n

texc(π) = (1− t)n−1.

Proposition 4.0.7. Let n ≥ 1 and let T ⊆ [n]. Let m ≤ n be the largest integer not
in T and set E = {1, 2, . . . ,m− 1} \ T. Then∑

π∈Sn
T⊆FIX(π)

(−1)inv(π)xEXCi(π) =
∏
j∈E

(1− xj), (17)

where the empty product has value 1.



P. ALEXANDERSSON/AUSTRALAS. J. COMBIN. 86 (3) (2023), 387–413 406

Setting all xi to be t, we have∑
π∈Se

n
T⊆FIX(π)

texc(π) −
∑
π∈So

n
T⊆FIX(π)

texc(π) =

{
1 if |T | = n

(1− t)n−1−|T | otherwise.
(18)

Proof. First note that E = ∅ if T = [n] and (17) is easy to verify, so from now on,
we may assume |T | < n.

By definition of m, we have that T = T1 ∪ T2 where T1 ⊆ {1, 2, . . . ,m− 1}, and
T2 = {m+ 1,m+ 2, . . . , n}. Hence, |E|+ |T1| = m− 1 and |T2| = n−m, and

|E| = n− 1− |T1| − |T2| = n− 1− |T |.

Now suppose π ∈ Sn is a permutation such that T ⊆ FIX(π). We then construct
π′ ∈ Sn−|T |, by only considering the positions not in T , and the relative ordering of
the entries at these positions. For example, if n = 9, T = {2, 4, 6, 8, 9}, [n] \ T =
{1, 3, 5, 7} and

π = 127436589, we have π′ = 1423

since the relative ordering of 1, 3, 5 and 7 in π is 1423. Observe that exc(π) = exc(π′)
and (−1)inv(π) = (−1)inv(π

′).
Hence, the sum in the left-hand side of Equation (17) can be taken as a sum

over permutations π′ ∈ Sn−|T |, but with a reindexing of the variables using values in
[n] \ T . Now, this sum can be computed using Proposition 4.0.6 which finally gives
Equation (17). Note that m is the largest member of [n] \ T , so we do not get any
variable with this index — this corresponds to the fact that the right-hand side of
Equation (16) only uses elements in [n− 1].

A generalized proof of the following theorem is provided in [8, Thm. 7].

Theorem 4.0.8. Let n ≥ 1. Then∑
π∈Dn

(−1)inv(π)xEXCi(π) = (−1)n−1
n−1∑
j=1

x1x2 · · ·xj. (19)

Proof. By inclusion-exclusion, we have the two identities:∑
π∈Se

n
FIX(π)=∅

xEXCi(π) =
∑
T⊆[n]

(−1)|T |
∑
π∈Se

n
T⊆FIX(π)

xEXCi(π),

∑
π∈So

n
FIX(π)=∅

xEXCi(π) =
∑
T⊆[n]

(−1)|T |
∑
π∈So

n
T⊆FIX(π)

xEXCi(π).

By taking the difference of these two identities, we get

∑
π∈Dn

(−1)inv(π)xEXCi(π) =
∑
T⊆[n]

(−1)|T |

 ∑
π∈Se

n
T⊆FIX(π)

xEXCi(π) −
∑
π∈So

n
T⊆FIX(π)

xEXCi(π)

 .
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By Proposition 4.0.7, the difference in the right-hand side is equal to∏
j∈[mT−1]\T

(1− xj)

where mT ≤ n is the largest integer not in T . We group the terms depending on the
value of mT . If mT = 0 then T = [n] and the product is empty, so its value is 1. In
general, the left hand side of Equation (19) is equal to

(−1)n +
n∑
k=1

∑
T⊆[n]
mT=k

(−1)|T |
∏

j∈[k−1]\T

(1− xj).

By using E = [k − 1] \ T , this can then be expressed as

(−1)n +
n∑
k=1

∑
E⊆[k−1]

(−1)n−1−|E|
∏
j∈E

(1− xj).

Canceling the k = 1 case with (−1)n, and then shifting the index, we get

(−1)n−1
n−1∑
k=1

∑
E⊆[k]

∏
j∈E

(xj − 1).

Now,

(−1)n−1
n−1∑
k=1

∑
E⊆[k]

∏
j∈E

(xj − 1) = (−1)n−1
n−1∑
k=1

∑
E⊆[k]

∑
F⊆E

(−1)|E|−|F |xF

= (−1)n−1
n−1∑
k=1

∑
F⊆[k]

(−1)|F |xF
∑

F⊆E⊆[k]

(−1)|E|.

The last sum vanish unless F = [k], and we have that

(−1)n−1
n−1∑
k=1

∑
E⊆[k]

∏
j∈E

(xj − 1) = (−1)n−1
n−1∑
k=1

x[k], (20)

which is exactly the right-hand side in Equation (19).

Corollary 4.0.9. For n, k ≥ 1, we have that

|{π ∈ De
n : exc(π) = k}| − |{π ∈ Do

n : exc(π) = k}| = (−1)n−1.

Proof. This follows directly by comparing coefficients of degree k in Equation (19).
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4.1 A right-to-left minima analog

Our goal with this subsection is to prove a right-to-left minima analog of Proposi-
tion 4.0.6. We shall use the same type of proof, i.e., exhibit an involution on Sn,
such that all fixed-elements with the same set of right-to-left minima, also have the
same sign.

Definition 4.1.1. Let κ : Sn → Sn be defined as follows. Given π ∈ Sn, let i ∈ [n]
be the smallest odd integer such that π(i i+1) and π have the same sets of right-
to-left minima, if such an i exists. That is, we swap the entries at positions i and
i+ 1 in π. We then set κ(π) := π(i i+1), and κ(π) := π otherwise. We say that π is
decisive3 if it is a fixed-point of κ.

Example 4.1.2. In S7, there are 8 decisive permutations:

1234567, 1234657, 1243567, 1243657, 2134567, 2134657, 2143567, 2143657.

Note that {1, 3, 5, 7} are always right-to-left minima (but there might be more).

Lemma 4.1.3. The map κ : Sn → Sn has the following properties;

(i) κ is an involution,

(ii) κ preserves the number of right-to-left minima,

(iii) κ changes sign of non-fixed elements,

(iv) for each subset T ⊆ [n] ∩ {2, 4, 6, . . . }, there is a unique decisive permutation
with {1, 3, 5, . . . } ∪ T as right-to-left minima set, and

(v) there are
( bn/2c
k−dn/2e

)
decisive permutations with exactly k right-to-left minima,

and they all have sign (−1)n−k.

Proof. Items (i)–(iii) are clear from the definition of κ. It remains to prove (iv) and
(v). Let us use O to denote the odd integers in [n], and let E be the even integers
in [n]. In order to prove (iv), we must construct a decisive permutation π, such that
RLMv(π) = O ∪ T . We construct π from T according to the following rules:

• if n is odd, then π(n) = n.

• if j ∈ O, j < n we have that{
π(j) = j and π(j + 1) = j + 1 if j + 1 ∈ T
π(j) = j + 1 and π(j + 1) = j if j + 1 /∈ T.

3As a nod to the word critical.
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In short, π is constructed by first placing 1 and 2, in the order determined by T ,
then 3 and 4, etc. By construction, RLMv(π) = O ∪ T . Now we must show that a
permutation is decisive if and only if it is of this form. From the construction, it is
clear that π(i i+ 1) and π do not have the same set of right-to-left minima, for any
choice of i ∈ O. Hence, all permutations with this structure are decisive.

Claim: Every decisive permutation has the structure described above.
First note that the claim is true for n = 1 and n = 2, so suppose n ≥ 3. Now,

if n does not appear among the last two entries of π, then n is not a right-to-left
minima. Moreover, we can swap n with the entry either to its right or to its left, and
preserve the set of right-to-left minima. In particular, if n does not appear among
the last two positions, then π is not decisive. Now, if π(n) = n, we can remove the
last entry and use induction. Otherwise, suppose π(n − 1) = n and π(n) < n − 1.
In particular, n − 1 /∈ RLMv(π). It is then possible to swap n − 1 with one of its
neighbors and preserve RLMv(π) in a manner, which shows that π is not decisive.
We conclude that if π(n) 6= n, then π(n − 1) = n and π(n) = n − 1 in order for π
to be decisive. Now, we may remove the last two entries, and proceed by induction.
This ends the proof of the claim.

From (iv), we know that in order to construct a decisive permutations in Sn

with k right-to-left minima, we must include all dn/2e odd integers in [n], and pick
a subset of size k − dn/2e, from the set of even integers in [n]. The subset of even
integers has cardinality bn/2c. Hence, we get the advertised formula in (v), so it
suffices to show that all such decisive permutations have the same sign. By the claim
above, it is evident that the sign only depends on the number of right-to-left minima
in π, and from here, it is straightforward to show that it is indeed (−1)n−k.

Corollary 4.1.4. We have that for any n ≥ 1∑
π∈Sn

(−1)inv(π)xRLMv(π) =
( ∏
i∈[n]
i odd

xi
)( ∏

j∈[n]
j even

(xj − 1)
)
. (21)

In particular, for any k = 1, . . . , n we have that

|{π ∈ Se
n : rlm(π) = k}| − |{π ∈ So

n : rlm(π) = k}| = (−1)n−k
(
bn/2c

k − dn/2e

)
.

Proof. This follows directly from Lemma 4.1.3, where the first product in Equa-
tion (21) corresponds to the fact that all odd integers in [n] must be right-to-left
minima for decisive permutations, and the second product corresponds to choosing
a subset T among the even numbers in [n]. It remains to check that the signs are
chosen correctly, which is straightforward as well.

The second statement also follows from Lemma 4.1.3, or by simply comparing
coefficients of tk in Equation (21), after letting xj → t.

We conclude this section with the following problem.
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Problem 4.1.5. Is it possible to state an analog of Proposition 4.0.7? In particular,
for T ⊆ [n], is there a nice expression for the sum∑

π∈Sn
T⊆FIX(π)

(−1)inv(π)trlm(π)?

Computer experiments suggest that this sum is either 0 or of the form ±ta(t+1)b(t−
1)c, where a, b, and c depend on T in some manner.

5 Further ideas and conjectures

5.1 Multiderangements

Let Bn := (1, 1, 2, 2, 3, 3, . . . , n, n) be fixed. A biderangement of Bn, is a permuta-
tion, w, of the entries in Bn, such that w(j) 6= Bn(j) for all j ∈ [2n]. The set of
biderangements of Bn is denoted BDn. The cardinality of BDn is given by A000459,
which starts as 0, 1, 10, 297, 13756, . . . .

We compute the number of inversions of a biderangements as for words in general.
Moreover, we say that w(j) is an excedance value of w ∈ BDn if w(j) > Bn(j).
This defines the multi-set valued statistic EXCv(w). We also define the right-to-left
minima values as the set

RLMv(w) := {wi : w(i) < w(j) for all j ∈ {i, i+ 1, . . . , 2n}}.

Example 5.1.1. In the table below, we show the ten elements in BD3, together
with the corresponding inversion and excedance statistics.

Biderangement inv EXCv RLMv Biderangement inv EXCv RLMv

223311 8 {2,2,3,3} {1} 231312 7 {2,3,3} {1,2}
231321 8 {2,3,3} {1} 233112 8 {2,3,3} {1,2}
233121 9 {2,3,3} {1} 321312 8 {2,3,3} {1,2}
321321 9 {2,3,3} {1} 323112 9 {2,3,3} {1,2}
323121 10 {2,3,3} {1} 331122 8 {3,3} {1,2}

Proposition 5.1.2. For n ≥ 1 , we have that∑
w∈BDn

(−1)inv(w)xEXCv(w)yRLMv(w) =
∑
π∈Dn

xEXCv2(π)yRLMv(π), (22)

where EXCv2(π) is the multiset obtained from EXCv(π) by repeating each element
twice.

Proof. Define a mapping β : BDn → BDn as β(w) = w′, where w′ is obtained
from w by switching w(j) and w(j + 1) for the smallest odd j ∈ [2n− 1] such that
w(j) 6= w(j + 1). If there is no such j, then β(w) := w. Since w′(j) = w(j + 1) 6=
Bn(j + 1) = Bn(j) and w′(j + 1) = w(j) 6= Bn(j) = Bn(j + 1), β is a sign-reversing

http://oeis.org/A000459
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involution which preserves the excedance set values; EXCv(w) = EXCv(w′). Now,
each number appears twice in a biderangement, so w(j) and w(j + 1) each appear
again somewhere to the right of j and j + 1, respectively. Hence, the positions j
and j + 1 in w and w′ cannot be right-to-left minima indices, and it follows that
RLMv(w) = RLMv(w′).

The elements fixed by β are in bijection with the derangements; we send π ∈ Dn

to the biderangement v = π(1)π(1)π(2)π(2) · · · π(n)π(n). Consequently, EXCv(v) is
the multiset obtained from EXCv(π) by repeating each element twice, and RLMv(v)
= RLMv(π). This concludes the proof of (22).

5.2 A generalization

The set of derangements are permutations where cycles of length 1 are disallowed.
With this in mind, it is reasonable to explore what happens if we add restrictions
to the length of the cycles. Recall that the type, type(π) of a permutation is the
integer partition (µ1, µ2, . . . , µ`) where the parts are the cycle lengths of π arranged
in decreasing order.

Conjecture 5.2.1. Let k be a fixed positive integer such that 2 ≤ k ≤ n. Then

(−1)n−1
∑
π∈Sn

min(type(π))≥k

(−1)inv(π)xRLMv(π)yEXCv(π),

where type(π), the cycle type of π, is an element in N[x1, . . . , xn, y1, . . . , yn].

The case k = 2 follows from Theorem 1.0.1 (the conjecture is not true for k = 1).
For the case k = n, all permutations have the same sign, so the statement is trivial.
Interestingly, summing over all permutations consisting of a single cycle of length n,∑

π∈Sn
type(π)=(n)

xRLMv(π)yEXCv(π) (23)

is a multivariate polynomial where the number of terms (not counting multiplicity!)
seems to be given by the sequence A124302, which starts as

1, 1, 2, 5, 14, 41, 122, 365, 1094, . . . ,

[10]. For n = 3, (23) is equal to

x1x2x3y4 + x1x3y2y4 + x1y3y4 + 2x1x2y3y4 + x1y2y3y4

which has 5 terms.

http://oeis.org/A124302
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1 2 3 4 5 6 7

2 1
3 1 1
4 3 5 1
5 11 21 11 1
6 53 113 79 19 1
7 309 715 589 211 29 1
8 2119 5235 4835 2141 461 41 1

Table 2: The number of derangements of [n] with exactly k right-to-left minima.

5.3 Right to left minima and derangements

Let an,k be defined via ∑
π∈Dn

trlm(π) =
n∑
k=1

an,kt
k, (24)

so that an,k is the number of derangements with exactly k right-to-left minima. For
example, the data for an,k is shown in the table below.

It is straightforward from the definition to see that an,1 is the number of derange-
ments ending with a 1. The sequence an,1 shows up in [10] as A000255, which hints
at the recursion

an,1 = (n− 2) · an−1,1 + (n− 3) · an−2,1, a1,1 = 1, a2,1 = 1.

Moreover, it seems that an,n−1 = (n − 2) + (n − 1)2. The data in Table 2 is not in
the OEIS, and we leave it as an open problem to describe the entries via recursions
or closed-form formulas.

A straightforward recursion for the number of elements in Dn with k excedances,
can be found in [6].

Remark 5.3.1. In a recent preprint, [4] Pei and Zeng improve our results and give
a refined and shorter proof of Theorem 1.0.1 and Theorem 1.0.2. They also prove a
type B analog of Proposition 4.0.6 and Corollary 4.1.4. Moreover, they provided a
proof for the recursion of an,1.
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