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Abstract

Considering regular graphs with every edge in a triangle we prove lower
bounds for the number of triangles in such graphs. For r-regular graphs
with r ≤ 5 we exhibit families of graphs with exactly that number of
triangles and then classify all such graphs using line graphs and even-
cycle decompositions. Examples of ways to create such r-regular graphs
with r ≥ 6 are also given. In the 5-regular case, these minimal graphs are
proven to be the only regular graphs with every edge in a triangle that
cannot have an edge removed and still have every edge in a triangle.

1 Introduction

In this paper a triangle in a graph will be defined as a set of three distinct vertices
u, v and w together with three edges uv, uw and vw. We are interested in graphs
with the feature that every edge is in at least one triangle, we refer to this as the
triangle property. In particular, we are looking for graphs that have the fewest
possible triangles in them with regards their regularity and number of vertices while
still having the triangle property. If T is a triangle including v then we say that T
is incident with v.

For 2-regular and 3-regular graphs with the triangle property the only graphs
are disjoint copies of complete graphs, xK3 and zK4, respectively, for any positive
integers x and z. Any disconnected graph with the triangle property must have
all components with the property, so henceforth we can suppose all graphs under
consideration are connected.

Theorem 1.1. Suppose G is an r-regular graph with the triangle property. Every
v ∈ V (G) is incident with at least r

2
triangles.

Proof. Suppose there are t triangles at a vertex v of degree r in a graph G with the
triangle property. Each of the r edges at v is in a triangle and a triangle incident
with v requires two edges from v to neighbours of v; note that some of the edges
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may also be used in other triangles. Thus the t triangles require at most 2t edges at
v, and we can conclude that r ≤ 2t, or t ≥ r

2
, as required.

An r-regular graph with n vertices, the triangle property and b r+1
2
c× n

3
triangles

will be called triminimal. Note that for some values of r and n a graph with these
exact parameters is impossible, either because of divisibility conditions, or if n is too
small with respect to r as we will see in Section 3.

Corollary 1.1. A r-regular triminimal graph with n vertices has the fewest triangles
amongst r-regular graphs with n vertices and the triangle property.

Proof. Let G be any r-regular graph with the triangle property. By Theorem 1.1
every vertex v ∈ V (G) is incident with at least r

2
triangles and, when we count

the triangles at every vertex, each triangle is counted three times. The number of
triangles in G is therefore at least r

2
× n

3
= rn

6
, and note that if r is even then

b r+1
2
c = r

2
. If r is odd then r

2
is not an integer and so, from Theorem 1.1, we can

say there are at least b r+1
2
c = r+1

2
triangles at every vertex, giving at least (r+1)n

6

triangles for the whole graph.

1.1 Multiple edges

By our definition of a triangle, multiple edges are permitted in graphs with the
triangle property but loops cannot be in a triangle since they must repeat a vertex.
Any triangle containing a multiple edge will lead to multiple triangles using those
same three vertices, and this will prevent triminimality:

Theorem 1.2. Any triminimal graph is simple.

Proof. From Corollary 1.1 all inequalities within the proof must be equalities. For
even r every vertex must be incident with exactly r

2
triangles and any multiple edge

at a vertex would force more triangles.
When r is odd, there must be exactly one edge in two triangles at every vertex

to create the necessary r+1
2

triangles by Corollary 1.1. One of the edges at a vertex
v could possibly be a double edge instead of an edge in two triangles incident with
v; for example, we can try to create a triminimal quintic graph with double edges at
each vertex by adding extra edges from a 1-factor of a triminimal quartic graph to
that graph as is done for the line graph of the cube in Figure 1.

In general, for s ≥ 2, given a 2s-regular triminimal graph G with n vertices and ns
3

triangles we can add n
2

edges from a 1-factor of G to give a (2s+1)-regular multigraph

H. However, H will have ns
3

+ n
2

= n(2s+3)
6

triangles and the number of triangles in

a triminimal graph with r = 2s + 1 is, by definition, n((2s+1)+1)
6

= ns
3

+ n
3
< ns

3
+ n

2
.

Thus, this construction cannot lead to a triminimal graph.
Henceforth we can assume that in a (2s+1)-regular multigraph G there is at least

one vertex which is not in a double edge. Let w be a vertex which is not incident
with a double edge but in a triangle T with a double edge. At w there will be more
than s + 1 triangles, contradicting triminimality: two triangles using the vertices of
T and at least (2s−1)+1

2
= s more from the 2s− 1 neighbours of w not in T .
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Figure 1: A quintic multigraph with 12 vertices and 14 triangles

Henceforth we will assume all graphs are connected and simple.

2 Even regularity

Recall that, to form the line graph L(H) of a graph H, we create a new graph with
|E(H)| vertices (corresponding to the edges of H) and join pairs of these new vertices
if the corresponding edges of H had a vertex in common. In particular, if H is a
3-regular graph then L(H) is a 4-regular graph with every vertex incident with at
least two triangles.

Corollary 2.1. Triminimal 4-regular graphs are line graphs of 3-regular triangle-free
graphs.

Proof. If J is a triminimal 4-regular graph then all inequalities in Theorem 1.1 must
actually have been equalities for every vertex; there are exactly two triangles incident
with every vertex. We can recognise this structure as the line graph L(H) of a 3-
regular graph H.

Line graphs of 3-regular graphs were one of the base families of graphs with the
triangle property in [4]. However, to ensure triminimality, we need to ensure that H
is, additionally, triangle-free, as otherwise any triangle in H will also appear in J as
a triangle too, and will not come from the three edges incident at a vertex in H.

The line graph construction can be thought of in the following alternate way; we
replace each edge of a 3-regular graph H by a path of two edges to form a bipartite
graph B(H). The vertices in one part of B(H) have degree 3 and those in the other
part have degree 2; such a bipartite graph is called (3,2)-biregular in [1]. We can
then form L(H) from B(H) by deleting all of the vertices of degree 3 after adding
edges between their neighbours to make triangles; this is the wye-delta operation as
in [6], whose reversal is the delta-wye operation.
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In general, any triminimal 2s-regular graph J can be transformed into a (3, s)-
biregular bipartite graph B by using delta-wye operations on each triangle in J .
However, we can say more about the properties of B:

Corollary 2.2. Applying the wye-delta operation on all vertices in the first part of
a (3, s)-biregular graph of girth greater than 6 creates a triminimal 2s-regular graph.

Proof. Triminimal 4-regular graphs are characterised this way in Corollary 2.1, not-
ing that the subdivision of a triangle in the 3-regular graph will produce a 6-cycle
in the (3, 2)-biregular graph. Additionally (3, 1)-biregular graphs are simply the
graphs xK1,3 which have wye-delta transformation into the triminimal graphs xK3

as required.
Suppose now that s ≥ 3 and J is a triminimal 2s-regular graph with n vertices

and ns edges. As in Corollary 2.1, J has exactly s triangles at each vertex and, using
the delta-wye operation on each triangle in J , this gives B which is a (3, s)-biregular
graph. A cycle of length 6 in B would correspond to a triangle in J beyond those
guaranteed by the construction and cycles of length 4 would come from multiple
edges in J , contrary to simplicity.

Without using (3, s)-biregular graphs it is also sometimes possible to create a
triminimal (2s+ 2)-regular graph from a 2s-regular triminimal graph G by adding a
2-factor containing triangles from the complement of G.

For instance, as shown in red on the left of Figure 2, in the Petersen graph there
are five rotationally symmetric sets of three edges. If we take the line graph there
are then five sets of three vertices distance 3 from each other. One set of three is
shown in the figure on the right and the other sets are rotations of these. Together
they can be used to make five new triangles without creating any other triangles
including edges from the line graph. In this way we can create a 6-regular graph
with rn

6
= 15×6

6
= 15 triangles. This graph also comes from applying Corollary 2.2

to Tutte’s 8-cage which was introduced in [5].

Figure 2: Edges in Petersen at distance 3 giving a 6 regular graph with 15 triangles
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2.1 Minimal but not triminimal graphs

For the values of n and r which do not give integer values for b r+1
2
c× n

3
, it is possible

to produce graphs with only slightly more triangles than would be in a triminimal
graph as is demonstrated here for r = 4.

Theorem 2.1. The 4-regular graphs with n ≡ j (mod 3) vertices and the triangle
property with the fewest triangles have 2× bn

3
c+ 2 triangles when j 6= 0.

Proof. From Corollary 1.1 we know when r = 4 there are at least d2n
3
e triangles in

any graph with the triangle property. Define j :≡ n (mod 3) and consider the values
of j 6= 0, since when j = 0 we have the triminimal graphs themselves.

Firstly suppose j = 2, so n := 3k + 2 and k = bn
3
c. Take a triminimal 4-regular

graph with 3k vertices and 2k triangles and remove one triangle T and add two
vertices adjacent to each other and all three vertices of T , as in Figure 3 (operation
2 in [4]). This creates a 4-regular graph H with 3k + 2 vertices and every edge in
at least one triangle. In fact, all edges apart from the one between the two added
vertices are in exactly one triangle. Thus there are 2k− 1 + 3 = 2k + 2 triangles and
d2(3k+2)

3
e = 2k + 2 so H has the triangle property and the fewest number of triangles

possible.

Figure 3: Replacing a triangle by two new vertices

We can proceed similarly when n := 3k + 1, but this time it is necessary to start
with a triminimal 4-regular graph with 3k− 3 vertices and 2k− 2 triangles; we then
remove two triangles and add two pairs of vertices as in Figure 3. The resulting
graph J has 3k + 1 vertices and (2k − 2) − 2 + 6 = 2k + 2 triangles. Note that

d2(3k+1)
3
e = 2k + 1, but the only way this number of triangles could be achieved

would be if there was exactly one vertex v in three triangles, and that is not possible
since at least one neighbour of v will necessarily also be in three triangles. Hence J
is an n-vertex 4-regular graph with the smallest number of triangles

Simlar local operations can be defined for larger values of r, although most require
several triangles beyond b r+1

2
c× n

3
and more cases are required. A particular feature

making the case r = 4 work well is that r−1 is a multiple of 3 and so we can remove
r−1
3

triangles and add two vertices joined by an edge to give the new vertices degree r
as in Figure 3. Additionally, there also exist multigraphs with the triangle property
and a low number of triangles, which further complicates matters, so further work
needs to be done to fully clarify this area.
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3 Triminimal quintic graphs

For 5-regular graphs, the situation is more complicated than in Section 2. The
structure of the family of 5-regular graphs with the triangle property is investigated
in an upcoming paper by the author but, unlike in [4], the base graphs can contain
multiple edges and do not have the minimal number of triangles.

Theorem 3.1. Given a 5-regular graph with the triangle property, if it has 2n vertices
then there are at least 2n triangles and also n edges in at least two triangles.

Proof. Suppose v is a vertex in a 5-regular graph G with 2n vertices and the triangle
property. By Corollary 1.1 G contains at least 6

2
× 2n

3
= 2n triangles and, by Theorem

1.2, has no multiple edges. We can use Theorem 1.1 to show that v is incident with
at least three triangles, and so v is incident with at least one edge in two triangles
or more. Since at all 2n vertices there is at least one such edge, there are at least n
edges of G in at least two triangles.

It turns out that there do exist graphs for which the inequality is tight in Theorem
3.1, such as by the following construction of a quintic graph Ln, for n ≥ 7:

(a) Create n vertices labelled 0 to n− 1 with edges joined in a cycle.

(b) For all k from 0 to n− 1, join vertex k to a new vertex labelled n + k.

(c) For k from 0 to n− 1 add an edge between vertex n + k and

(i) vertex n + ((k + 2) mod n).

(ii) vertex ((k − 2) mod n)

(iii) vertex ((k + 1) mod n).

Ln is simple and 5-regular for n ≥ 5; vertices 0 to n− 1 are joined to two others
in the cycle in (a) and one in (b) and two in (c), and the remaining n vertices are
joined to one vertex in (b) and four via (c). In Ln (for 0 ≤ k ≤ n−1) the edges from
vertex k to vertex n+k, shown as the radial dashed spokes in Figure 4 for n = 7, are
in exactly two triangles, with vertex (k+1) mod n and vertex n+((k+2) mod n).
The other two edges from vertex k are to (k − 1) mod n and n + ((k − 1) mod n);
these vertices have an edge between them, so those edges are in a triangle. Similarly,
vertex n + k is adjacent to vertices (k − 2) mod n and n + ((k − 2) mod n) and so
the edges from vertex n + k are part of that triangle. All of the different types of
edges are therefore in a triangle and so Ln has the triangle property; there are only
three triangles at vertices k and n + k and since Ln is formed symmetrically, that is
true for all vertices of Ln.

Note that this implies that Ln contains exactly 2n triangles too, by counting
the triangles at each vertex and dividing by the number of vertices in each triangle.
Additionally these triangles partition E(Ln) into n edge-disjoint subgraphs isomor-
phic to the diamond (K2,1,1). One of the seven edge-disjoint diamonds [0, 1, 7, 9] is
highlighed in Figure 4; the edge 07 is in two triangles.
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Figure 4: The unique quintic graph L7 containing 14 vertices and 14 triangles

If n ≤ 6 then extra triangles are formed in Ln using edges between vertices n to
2n− 1, and for n ≤ 4 multiple edges are created by this construction, so the graphs
created are not triminimal. L7 is the smallest simple quintic triminimal graph, as
shown by a computer search using nauty [3].

As in Section 2, examples of triminimal r-regular graphs for larger odd r can be
constructed from a triminimal 5-regular graph F with 2n vertices by carefully adding
triangles between triples of vertices of F so as not to create any triangles other than
those we are choosing to add. Note that this is only possible, by Corollary 1.1, if n
is a multiple of 3 or r is congruent to 2 mod 3.

For instance, if we take L3j for j ≥ 5 and add edges between the triples of vertices
between 0 and 3j−1 based on their congruence mod j, and then similarly join triples
of vertices between 3j and 6j − 1 based on their value mod j, we will only create
those 2j extra triangles, and so we have created a family of triminimal 7-regular
graphs.

4 Construction of all triminimal quintic graphs

4.1 Diamonds and even-cycle decompositions

Any 5-regular graph with 2n vertices and 2n triangles must, as in Theorem 3.1, be
decomposable into n edge-disjoint diamonds. In the figures in this section the edges
that are in two triangles will again be coloured blue and dashed to highlight them,
and they will be referred to as the rotor of the diamond. Moreover, we can cover all
edges of L7 twice using a cycle of diamonds, as shown in Figure 5; if we label each
diamond cyclically from a := {0, 1, 7, 9}, b := {1, 2, 8, 10} to g := {6, 0, 13, 8}, we get
the sequence indicated underneath the figure.
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Figure 5: Double cover of E(L7) by a sequence of diamonds

This gives, in general, diamond sequences for any triminimal quintic graph G; we
pick any diamond D1 and a vertex v1 from the rotor of D1 to start the sequence.
Next we identify the other diamond that v1 is in, say D2, and v1 must not be in the
rotor of D2. We can then uniquely identify v2 as the other vertex not in the rotor of
D2 and find the other diamond v2 is in, and so on, until the rotor of D1 is reached.
Note that in Figure 5 each diamond occurs once with the rotor vertical and once
horizontal, and we will use the convention that the diamonds with the horizontal
rotor are always located in the odd numbered positions in the sequences.

We can equivalently think about diamond sequences for G by contracting each
rotor edge and removing any multiple edges thus formed. This will give a 4-regular
graph X(G) with |V (G)|

2
vertices and the diamond sequences give rise to an even-cycle

decomposition of X(G); that is a partition of E(X(G)) into cycles of even length as in
[2]. For L7 we will have X(L7) as the complement of the 7-cycle, and the contraction
of the rotors in Figure 5 gives the even-cycle [0, 5, 6, 4, 5, 3, 4, 2, 3, 1, 2, 0, 1, 6]. The
double cover given below the figure is exactly the same after substituting a = 0,
b = 1,. . . , g = 6.

Algorithm 4.1. If we are given an even-cycle decomposition C of a 4-regular graph
with its vertices labelled by letters, we can follow the algorithm below to convert it
into a 5-regular graph.

1. Create vertex-disjoint copies of the diamond for each letter in C.

2. Choose a cycle Y of length 2j from C and repeat steps 3 and 4 for k := 1, . . . , j.

3. For the diamond in position 2k − 1 of Y identify a rotor vertex from it with a
non-rotor vertex in the diamond in position 2k of Y .

4. Now identify the other non-rotor vertex in diamond 2k with a rotor vertex in
the diamond in position (2k+1) of Y (if k = j then use the initial vertex in Y ).

5. Repeat step 2 for every other cycle in the even-cycle decomposition.

For example, given the decomposition [[a, b, c, d, e, f, g, h], [b, g, d, a, f, c, h, e]], we
can convert this particular pair of 8-cycles into the triminimal quintic graph shown
in Figure 6. We first create the diamonds and join them as per the first 8-cycle of
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Figure 6: Converting a 4-regular graph to a triminimal graph

the decomposition; the dotted lines in the second figure indicate the pairs of vertices
to be identified to create the triminimal graph as per the second 8-cycle.

The even-cycle decomposition is given as a sequence of sequences of vertices. In
the example of Figure 6, [g, d] is a subsequence of the second sequence, but [a, c] is
not since nowhere in either sequence is c immediately preceded by a. Additionally,
[a, d] is not a subsequence since letter order is important but [e, b] is a subsequence
of the second sequence since we suppose each sequence is representing a cycle.

Lemma 4.1. If G is a 4-regular simple graph with an even-cycle decomposition sat-
isfying the restriction that, for any vertices x, y and z in the even-cycle decomposition
of the the 4-regular graph:

(i) Each vertex appears once in an odd numbered position and the other in an even
position;

(ii) Either [x, y] or [y, x] can appear as a subsequence, not both, and only once;

(iii) If [x, y] and [y, z] both appear as subsequences then [z, x] cannot appear as a
subsequence unless all appear as a subsequence [x, y, z, x];

then the application of Algorithm 4.1 yields a triminimal 5-regular graph. Conversely,
any 5-regular triminimal graph can be obtained in this fashion.

Proof. Following Algorithm 4.1 will guarantee the creation of a 5-regular graph with
the triangle property since every edge comes from a diamond and diamonds have
the triangle property, and the parity property (i) is necessary for 5-regularity. We
will show that neither of the properties (ii) or (iii) in the lemma can occur without
creating edges in more than one triangle other than the rotors. This cannot occur
in a triminimal graph and these edges are shown as dotted in Figure 7.

In the left figure we have [x, y] and [y, x] appearing in two different sequences
and note that the dotted edge is a double edge contributed from both diamonds and
therefore in two extra triangles with the rotors of x and y so the resulting graph
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Figure 7: Dotted edges are in more than one triangle so the graph cannot be trim-
inimal

is not triminimal. If we had a sequence of length 2 such as [x, y] then the second
structure must exist and there are four edges in more than one triangle other than
the rotors. Note that this would have to come from a double edge in the 4-regular
graph.

Similarly, if [x, y], [y, z] and [z, x] all appear in sequences but are not in the form
[x, y, z, x] then we can show there is a triangle formed by edges of the three diamonds
as shown by the dotted edges in the third structure in Figure 7. This triangle is not
part of one of the original n diamonds, contradicting triminimality.

Within sequences, using property (i), we cannot have [x, y, z] and [z, x] as subse-
quences since x and z are the same parity positions in the former and the opposite
parity in the latter. If x is in an even position, say, then [x, y] appearing means
that y is then in an odd position there, and so, if [y, z] appears non-consecutively, y
must then be in an even position too, and then similarly for z in [z, x], and we get
the dotted triangle as shown. If x, y and z are in odd positions instead we get the
pattern shown as [x, z], [z, y] and [y, x], similarly.

Any longer sequences formed by the diamonds will not create any extra triangles,
though, since the only way to get such triangles in the quintic graph is to have them
in the even-cycle decomposition. Note that for Ln we do get [x, y, z, x] appearing as
a sequence, as shown in the fourth structure, and no extra triangles are formed, but
they are consecutive diamonds as per the exception to the property.

4.2 Removable edges

One useful feature of any triminimal 5-regular graph G is that all edges e ∈ E(G)
have the property that G − e does not have every edge in a triangle. We shall call
such an e an unremovable edge and all other edges removable.

Theorem 4.1. The only quintic graphs with the triangle property and with all edges
as unremovable are the triminimal graphs.

Proof. Suppose G is a quintic graph with the triangle property and all of the edges of
G are unremovable. G must be simple since an edge in a multiple edge is removable.
Now we suppose G is not triminimal, so has more triangles than vertices; therefore
there must be more than |V (G)|

2
edges in G in at least two triangles and hence there
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exist two such edges e1 and e2 with a vertex v in common. Because G is simple
and quintic and e1 and e2 are both in at least two triangles, either e1 or e2 are in
a triangle with each other, or there is another edge (also in two triangles) incident
with v and in a triangle with one of e1 or e2.

a) Let us first suppose that G does not contain a K4. Without loss of generality
we can assume that e1 and e2 are two edges in two triangles that are also part
of a triangle T with each other. Moreover, the third edge of T is also in at
least two triangles since otherwise it is removable, and we therefore have the
symmetrical situation shown in Figure 8 where T is the triangle with the blue
dashed edges.

Figure 8: No K4 and adjacent edges in more than one triangle

If ui = uj (for some i 6= j), or ujvj is an edge then we have K4 as a subgraph,
contrary to our supposition. We can thus assume that all 6 vertices are distinct
and have no edges from any vj to these vertices other than those shown in
Figure 8.

All three vertices v1, v2 and v3 in Figure 8 are degree 5 in G, and so need one
more edge from them and that edge must be in a triangle. If all are adjacent to
the same vertex then there is a K4, so we can assume that v3, say, is adjacent
to a vertex, w3 and v1w3 and v2w3 are not edges of G. There must be an
edge from w3 to either u1 or u2 to make a triangle, and there is symmetry, so
we can assume w3u2 is an edge, but this implies that v3u2 is in two triangles.
Similarly we can now deduce that u2v1 is in two triangles too, as otherwise it
is removable. However, this means that v1v3 is removable, a contradiction to
all edges being unremovable.

b) If there is a K4 in G then each edge of it is in two triangles in the K4 alone.
Moreover, each is removable unless it is part of another triangle. However,
there are only two more edges from each vertex to other vertices in G, so at
least one of the edges from each vertex in the K4 is also in at least two triangles.
This means that there must now be a subgraph isomorphic to K5\E(K2), such
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that all edges in it are in at least two triangles. Now, as before, each of these
edges will be removable unless they are part of a triangle with a new vertex,
telling us that there must be a subgraph isomorphic to K6\E(K3). However,
the edges between the vertices of degree 5 in this subgraph are removable.
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